Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Dec 20;65(Pt 1):o166. doi: 10.1107/S1600536808041573

N,N,N′,N′-Tetra­kis(2-hydroxy­ethyl)terephthalamide

Zhi-Qiang Wang a,*, Chen Xu a, Ying-Fei Li b, Fei-Fei Cen b, Yu-Qing Zhang b
PMCID: PMC2968077  PMID: 21581622

Abstract

The mol­ecule of the title compound, C16H24N2O6, which lies on a crystallographic inversion centre in the centre of the benzene ring, adopts an anti conformation in terms of the relative orientation of two amide carbonyl groups. One pair of the 2-hydroxy­ethyl groups is partially disordered with site occupancy factors of 0.811 (2) and 0.189 (2). The dihedral angle between the amide group and central benzene ring is 67.0 (2)°. Two O—H⋯O and one bifurcated O—H⋯(O,O) hydrogen bonds are present, resulting in a three-dimensional network.

Related literature

For bond-length data, see: Allen et al. (1987). For general background, see: Katoono et al. (2006); Tosin et al. (2005); Yin et al. (2005). graphic file with name e-65-0o166-scheme1.jpg

Experimental

Crystal data

  • C16H24N2O6

  • M r = 340.37

  • Orthorhombic, Inline graphic

  • a = 10.3244 (12) Å

  • b = 12.5378 (14) Å

  • c = 12.8384 (15) Å

  • V = 1661.9 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 296 (2) K

  • 0.29 × 0.24 × 0.23 mm

Data collection

  • Bruker SMART APEXII detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.961, T max = 0.976

  • 11505 measured reflections

  • 1550 independent reflections

  • 1273 reflections with I > 2σ(I)

  • R int = 0.022

Refinement

  • R[F 2 > 2σ(F 2)] = 0.042

  • wR(F 2) = 0.126

  • S = 1.06

  • 1550 reflections

  • 111 parameters

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.21 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808041573/rn2054sup1.cif

e-65-0o166-sup1.cif (17.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808041573/rn2054Isup2.hkl

e-65-0o166-Isup2.hkl (76.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯O3i 0.82 1.91 2.723 (9) 169
O2—H2A⋯O3′i 0.82 1.90 2.675 (10) 157
O3′—H3′⋯O2ii 0.82 2.31 2.675 (3) 108
O3—H3D⋯O1iii 0.82 2.00 2.810 (2) 170

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

This work was supported by the Doctoral Foundation of Luoyang Normal University.

supplementary crystallographic information

Comment

Terephthalamide derivatives are important compounds in molecular recognition and supramolecular chemistry (Yin et al., 2005; Tosin et al.,2005; Katoono et al.,2006). Although numerous tetrasubstituted terephthalamides have been investigated, only a few tetrakis(alkyl)terephthalamides are known. In order to further the study of such compounds, we report the crystal structure of the title compound.

A view of the molecular structure of the title compound is given in Fig.1. Molecules of the title compound lie across crystallographic inversion centres and adopt the anti-conformation. The bond distances and angles are normal (Allen et al., 1987). One set of the 2-hydroxyethyl groups is disordered with site occupancy factors of ca 0.811 (2) and 0.189 (2). The dihedral angle between the amide plane (C4,O1,N1) and phenyl planes (C1—C3,C1A—C3A) is 67.0 (2)°. The structural study shows the presence of four different intermolecular O—H···O hydrogen bonds (Table 1), resulting in a three-dimensional supramolecular architecture (Fig. 2).

Experimental

To a solution of diethanolamine (2 mmol) in dry chloroform (5 ml), at 273 K, was added dropwise a solution of terephthalyl chloride (2 mmol) in dry chloroform (25 ml). Then, the mixture stirred at room temperature for 24hr, removal of solvent resulted in a yellow powder that was recrystallized from methanol-DMF solution at room temperature to give the desired product as colourless crystals suitable for single-crystal X-ray diffraction.

Refinement

H atoms attached to C atoms of the title compound were placed in geometrically idealized positions and treated as riding with C—H distances constrained to 0.93–0.97 Å, with Uĩso~(H) = 1.2 or 1.5 times U~eq~(C). H atoms bonded to O atoms were located in a difference map and refined independently with isotropic displacement parameters.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with displacement ellipsoids at the 30% probability level (suffix A denotes the symmetry code: -x + 2, -y, -z + 1).

Fig. 2.

Fig. 2.

Partial view of the crystal packing showing the intermolecular O—H···O hydrogen bonds.

Crystal data

C16H24N2O6 Dx = 1.360 Mg m3
Mr = 340.37 Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pbca Cell parameters from 3593 reflections
a = 10.3244 (12) Å θ = 3.0–23.6°
b = 12.5378 (14) Å µ = 0.10 mm1
c = 12.8384 (15) Å T = 296 K
V = 1661.9 (3) Å3 Block, colourless
Z = 4 0.29 × 0.24 × 0.23 mm
F(000) = 728

Data collection

Bruker SMART APEXII detector diffractometer 1550 independent reflections
Radiation source: fine-focus sealed tube 1273 reflections with I > 2σ(I)
graphite Rint = 0.022
phi and ω scans θmax = 25.5°, θmin = 3.0°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −12→12
Tmin = 0.961, Tmax = 0.976 k = −15→15
11505 measured reflections l = −15→15

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.126 H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.061P)2 + 0.6392P] where P = (Fo2 + 2Fc2)/3
1550 reflections (Δ/σ)max < 0.001
111 parameters Δρmax = 0.35 e Å3
0 restraints Δρmin = −0.21 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)are estimated using the full covariance matrix. The cell e.s.d.'s are takeninto account individually in the estimation of e.s.d.'s in distances, anglesand torsion angles; correlations between e.s.d.'s in cell parameters are onlyused when they are defined by crystal symmetry. An approximate (isotropic)treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR andgoodness of fit S are based on F2, conventional R-factors R are basedon F, with F set to zero for negative F2. The threshold expression ofF2 > σ(F2) is used only for calculating R-factors(gt) etc. and isnot relevant to the choice of reflections for refinement. R-factors basedon F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
C7 0.78238 (19) 0.31459 (17) 0.30476 (16) 0.0460 (6) 0.811 (2)
H7A 0.8162 0.3857 0.3168 0.055* 0.811 (2)
H7B 0.8130 0.2906 0.2373 0.055* 0.811 (2)
C8 0.63782 (13) 0.31829 (14) 0.30437 (14) 0.0498 (6) 0.811 (2)
H8A 0.6033 0.2481 0.2887 0.060* 0.811 (2)
H8B 0.6064 0.3396 0.3725 0.060* 0.811 (2)
O3 0.59529 (19) 0.39348 (12) 0.22709 (12) 0.0569 (6) 0.811 (2)
H3D 0.6203 0.4534 0.2429 0.085* 0.811 (2)
C7' 0.70527 (19) 0.28471 (18) 0.34485 (17) 0.0460 (6) 0.189 (2)
H7'1 0.6561 0.3216 0.3982 0.055* 0.189 (2)
H7'2 0.6523 0.2288 0.3147 0.055* 0.189 (2)
C8' 0.75511 (17) 0.36199 (17) 0.26151 (16) 0.0498 (6) 0.189 (2)
H8'1 0.8070 0.4170 0.2944 0.060* 0.189 (2)
H8'2 0.8102 0.3236 0.2131 0.060* 0.189 (2)
O3' 0.6539 (2) 0.40926 (16) 0.20721 (15) 0.0569 (6) 0.189 (2)
H3' 0.5952 0.3659 0.1996 0.085* 0.189 (2)
C1 0.93464 (15) 0.07120 (12) 0.43518 (12) 0.0362 (4)
C2 1.06224 (16) 0.04283 (12) 0.41398 (13) 0.0392 (4)
H2 1.1041 0.0714 0.3562 0.047*
C3 1.12701 (16) −0.02751 (13) 0.47837 (14) 0.0405 (4)
H3 1.2124 −0.0458 0.4638 0.049*
C4 0.86624 (17) 0.14222 (13) 0.35884 (14) 0.0436 (4)
C5 0.84524 (17) 0.28318 (13) 0.49384 (14) 0.0440 (4)
H5A 0.8715 0.2257 0.5398 0.053*
H5B 0.7615 0.3087 0.5175 0.053*
C6 0.94175 (18) 0.37226 (15) 0.50233 (16) 0.0492 (5)
H6A 0.9164 0.4296 0.4559 0.059*
H6B 0.9410 0.3999 0.5729 0.059*
N1 0.83155 (14) 0.24090 (12) 0.38745 (12) 0.0496 (4)
O1 0.84678 (17) 0.10814 (11) 0.26939 (11) 0.0669 (5)
O2 1.06824 (13) 0.33898 (13) 0.47707 (12) 0.0645 (5)
H2A 1.0808 0.3474 0.4145 0.097*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C7 0.0484 (13) 0.0439 (12) 0.0455 (12) 0.0069 (9) −0.0011 (9) 0.0099 (9)
C8 0.0524 (13) 0.0459 (12) 0.0510 (13) 0.0052 (10) −0.0096 (10) 0.0017 (10)
O3 0.0677 (14) 0.0500 (9) 0.0530 (11) 0.0135 (9) −0.0240 (9) −0.0022 (7)
C7' 0.0484 (13) 0.0439 (12) 0.0455 (12) 0.0069 (9) −0.0011 (9) 0.0099 (9)
C8' 0.0524 (13) 0.0459 (12) 0.0510 (13) 0.0052 (10) −0.0096 (10) 0.0017 (10)
O3' 0.0677 (14) 0.0500 (9) 0.0530 (11) 0.0135 (9) −0.0240 (9) −0.0022 (7)
C1 0.0407 (9) 0.0283 (8) 0.0397 (9) 0.0003 (6) −0.0054 (7) −0.0037 (7)
C2 0.0428 (9) 0.0343 (8) 0.0405 (9) −0.0014 (7) 0.0026 (7) 0.0014 (7)
C3 0.0340 (8) 0.0362 (8) 0.0514 (10) 0.0022 (7) 0.0006 (7) −0.0013 (7)
C4 0.0482 (10) 0.0382 (9) 0.0445 (9) 0.0042 (7) −0.0087 (8) −0.0018 (7)
C5 0.0449 (9) 0.0377 (9) 0.0494 (10) 0.0065 (7) 0.0000 (7) −0.0032 (8)
C6 0.0548 (11) 0.0423 (10) 0.0505 (10) −0.0013 (8) 0.0010 (9) −0.0028 (8)
N1 0.0605 (10) 0.0382 (8) 0.0500 (9) 0.0135 (7) −0.0178 (7) −0.0031 (7)
O1 0.1004 (12) 0.0534 (8) 0.0468 (8) 0.0175 (7) −0.0234 (8) −0.0089 (6)
O2 0.0476 (8) 0.0816 (11) 0.0641 (9) −0.0001 (7) 0.0030 (7) 0.0111 (8)

Geometric parameters (Å, °)

C7—C8 1.4933 (14) C1—C3i 1.392 (2)
C7—N1 1.496 (2) C1—C4 1.501 (2)
C7—H7A 0.9700 C2—C3 1.382 (2)
C7—H7B 0.9700 C2—H2 0.9300
C8—O3 1.4372 (14) C3—C1i 1.392 (2)
C8—H8A 0.9700 C3—H3 0.9300
C8—H8B 0.9700 C4—O1 1.242 (2)
O3—H3D 0.8200 C4—N1 1.339 (2)
C7'—N1 1.517 (2) C5—N1 1.472 (2)
C7'—C8' 1.5324 (15) C5—C6 1.501 (3)
C7'—H7'1 0.9700 C5—H5A 0.9700
C7'—H7'2 0.9700 C5—H5B 0.9700
C8'—O3' 1.3890 (13) C6—O2 1.409 (2)
C8'—H8'1 0.9700 C6—H6A 0.9700
C8'—H8'2 0.9700 C6—H6B 0.9700
O3'—H3' 0.8200 O2—H2A 0.8200
C1—C2 1.391 (2)
C8—C7—N1 111.14 (14) C3—C2—C1 120.30 (16)
C8—C7—H7A 109.4 C3—C2—H2 119.8
N1—C7—H7A 109.4 C1—C2—H2 119.8
C8—C7—H7B 109.4 C2—C3—C1i 120.47 (15)
N1—C7—H7B 109.4 C2—C3—H3 119.8
H7A—C7—H7B 108.0 C1i—C3—H3 119.8
O3—C8—C7 109.1 O1—C4—N1 121.89 (16)
O3—C8—H8A 109.9 O1—C4—C1 118.42 (15)
C7—C8—H8A 109.9 N1—C4—C1 119.66 (15)
O3—C8—H8B 109.9 N1—C5—C6 113.53 (15)
C7—C8—H8B 109.9 N1—C5—H5A 108.9
H8A—C8—H8B 108.3 C6—C5—H5A 108.9
N1—C7'—C8' 101.08 (14) N1—C5—H5B 108.9
N1—C7'—H7'1 111.6 C6—C5—H5B 108.9
C8'—C7'—H7'1 111.6 H5A—C5—H5B 107.7
N1—C7'—H7'2 111.6 O2—C6—C5 112.23 (15)
C8'—C7'—H7'2 111.6 O2—C6—H6A 109.2
H7'1—C7'—H7'2 109.4 C5—C6—H6A 109.2
O3'—C8'—C7' 111.6 O2—C6—H6B 109.2
O3'—C8'—H8'1 109.3 C5—C6—H6B 109.2
C7'—C8'—H8'1 109.3 H6A—C6—H6B 107.9
O3'—C8'—H8'2 109.3 C4—N1—C5 124.16 (14)
C7'—C8'—H8'2 109.3 C4—N1—C7 117.81 (15)
H8'1—C8'—H8'2 108.0 C5—N1—C7 117.94 (14)
C8'—O3'—H3' 109.5 C4—N1—C7' 117.74 (16)
C2—C1—C3i 119.23 (15) C5—N1—C7' 106.66 (15)
C2—C1—C4 118.00 (15) C7—N1—C7' 39.54 (8)
C3i—C1—C4 122.62 (15) C6—O2—H2A 109.5
N1—C7—C8—O3 177.43 (15) C1—C4—N1—C7 170.75 (15)
N1—C7'—C8'—O3' 177.19 (14) O1—C4—N1—C7' 37.8 (3)
C3i—C1—C2—C3 −0.3 (3) C1—C4—N1—C7' −144.29 (16)
C4—C1—C2—C3 −176.06 (15) C6—C5—N1—C4 113.8 (2)
C1—C2—C3—C1i 0.3 (3) C6—C5—N1—C7 −62.8 (2)
C2—C1—C4—O1 64.1 (2) C6—C5—N1—C7' −104.03 (17)
C3i—C1—C4—O1 −111.5 (2) C8—C7—N1—C4 98.8 (2)
C2—C1—C4—N1 −113.88 (19) C8—C7—N1—C5 −84.3 (2)
C3i—C1—C4—N1 70.5 (2) C8—C7—N1—C7' −1.98 (10)
N1—C5—C6—O2 −63.2 (2) C8'—C7'—N1—C4 −104.2 (2)
O1—C4—N1—C5 176.24 (18) C8'—C7'—N1—C5 110.73 (19)
C1—C4—N1—C5 −5.8 (3) C8'—C7'—N1—C7 −3.21 (8)
O1—C4—N1—C7 −7.2 (3)

Symmetry codes: (i) −x+2, −y, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O2—H2A···O3ii 0.82 1.91 2.723 (9) 169
O2—H2A···O3'ii 0.82 1.90 2.675 (10) 157
O3'—H3'···O2iii 0.82 2.31 2.675 (3) 108
O3—H3D···O1iv 0.82 2.00 2.810 (2) 170

Symmetry codes: (ii) x+1/2, y, −z+1/2; (iii) x−1/2, y, −z+1/2; (iv) −x+3/2, y+1/2, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RN2054).

References

  1. Allen, F. H., Kennard, Q., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Bruker (2004). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Katoono, R., Kawai, H., Fujiwara, K. & Suzuki, T. (2006). Tetrahedron Lett.47, 1513–1518.
  4. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Tosin, M., Gouin, S. G. & Murphy, P. V. (2005). Org. Lett.7, 211–214. [DOI] [PubMed]
  7. Yin, H., Lee, G., Sedey, K. A., Rodriguez, J. M., Wang, H. G., Sebti, S. M. & Hamilton, A. D. (2005). J. Am. Chem. Soc.127, 5463–5468. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808041573/rn2054sup1.cif

e-65-0o166-sup1.cif (17.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808041573/rn2054Isup2.hkl

e-65-0o166-Isup2.hkl (76.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES