Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Dec 20;65(Pt 1):o177. doi: 10.1107/S1600536808042736

1-(2,6-Dichloro­benzo­yl)-3-(3,5-dichloro­phen­yl)thio­urea

M Khawar Rauf a, Michael Bolte b, Amin Badshah a,*
PMCID: PMC2968087  PMID: 21581633

Abstract

The crystal structure of the title compound, C14H8Cl4N2OS, is composed of discrete mol­ecules with bond lengths and angles quite typical for thio­urea compounds of this class. The plane containing the central SONNCC atom set subtends a dihedral angle of 31.47 (3)° with the benzene ring. An intra­molecular N—H⋯O hydrogen bond stabilizes the mol­ecular conformation and the mol­ecules form centrosymmetric dimers via inter­molecular N—H⋯S hydrogen bonds.

Related literature

For general background, see: Upadlgaya & Srivastava (1982); Wegner et al. (1986); Krishnamurthy et al. (1999). For related structures, see: Khawar Rauf et al. (2006a , 2007). For a description of the Cambridge Structural Database, see: Allen (2002). For bond lengths and angles in N,N′-disubstituted thio­urea compounds, see: Arslan et al. (2004); Khawar Rauf et al. (2006b ); Yamin & Yusof, (2003).graphic file with name e-65-0o177-scheme1.jpg

Experimental

Crystal data

  • C14H8Cl4N2OS

  • M r = 394.08

  • Monoclinic, Inline graphic

  • a = 14.7737 (13) Å

  • b = 10.3744 (6) Å

  • c = 10.6935 (11) Å

  • β = 97.250 (7)°

  • V = 1625.9 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.86 mm−1

  • T = 173 (2) K

  • 0.42 × 0.38 × 0.21 mm

Data collection

  • Stoe IPDSII two-circle diffractometer

  • Absorption correction: multi-scan (MULABS; Spek, 2003; Blessing, 1995) T min = 0.715, T max = 0.841

  • 12823 measured reflections

  • 3724 independent reflections

  • 3306 reflections with I > 2σ(I)

  • R int = 0.046

Refinement

  • R[F 2 > 2σ(F 2)] = 0.032

  • wR(F 2) = 0.087

  • S = 1.05

  • 3724 reflections

  • 208 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.36 e Å−3

Data collection: X-AREA (Stoe & Cie, 2001); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808042736/fl2225sup1.cif

e-65-0o177-sup1.cif (17.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808042736/fl2225Isup2.hkl

e-65-0o177-Isup2.hkl (182.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O1 0.91 (2) 1.89 (2) 2.6581 (17) 141 (2)
N1—H1⋯S1i 0.82 (2) 2.57 (2) 3.3653 (14) 163 (2)

Symmetry code: (i) Inline graphic.

Acknowledgments

MKR is grateful to the HEC-Pakistan for financial support for the PhD program under scholarship No. [ILC–0363104].

supplementary crystallographic information

Comment

Aliphatic and acylthioureas are well known for their fungicidal,antiviral, pesticidal and plant-growth regulating activities (Upadlgaya & Srivastava, 1982; Wegner et al., 1986). Symmetrical and unsymmetrical thioureas have shown antifungal activity against the plant pathogens Pyricularia oryzae and Drechslera oryzae (Krishnamurthy et al., 1999). The background to this study has been set out in our previous work on the structural and biological chemistry of chloro substituted N,N'-disubstituted thioureas (Khawar Rauf et al., 2006a; 2007).The biological studies of these thiourea derivatives are under investigation. Herein, as a continuation of these studies, the structure of the title compound (I) is described (Fig. 1). Bond lengths and angles, can be regarded as typical for N,N'-disubstituted thiourea compounds as found in the Cambridge Structural Database v5.28 (Allen, 2002; Khawar Rauf et al., 2006b; Arslan et al., 2004; Yamin & Yusof, 2003).The molecule exists in the thione form with typical thiourea C—S and C—O bonds, as well as shortened C—N bond lengths. The thiocarbonyl and carbonyl groups are almost coplanar. The molecule features an intramolecular N—H···O hydrogen bond and in the crystal structure, molecules associate via N—H···S intermolecular hydrogen bonds to form centrosymmetric dimers (Table 1; Fig 2).In addition to the intramolecular hydrogen bond, O1 is involved in a short O···Cl contact [O1···Cl2i: 3.0936 (14) Å, symmetry operator i: 1 - x, 1 - y, 1 - z].

Experimental

Freshly prepared 2,6-dichlorobenzoyl isothiocyanate (2.32 g, 10 mmol) was stirred in acetone (40 ml) for 20 minutes. Neat 3,5-dichloroaniline (1.62 g, 10 mmol) was then added and the resulting mixture was stirred for 1 h. The reaction mixture was then poured into acidified (pH 4) water and stirred well. The solid product was separated and washed with deionized water and purified by recrystallization from methanol/ 1,1-dichloromethane (1:10 v/v) to give fine crystals of (I), with an overall yield of 80%.

Refinement

Hydrogen atoms bonded to C were included in calculated positions and refined as riding on their parent C atom with C—H = 0.95 Å Uiso(H) = 1.2Ueq(C). The H atoms bonded to N were freely refined.

Figures

Fig. 1.

Fig. 1.

Molecular structure of (I) showing atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

Partial packing diagram of (I) with view onto the ac plane. Hydrogen bonds shown as dashed lines.

Crystal data

C14H8Cl4N2OS F(000) = 792
Mr = 394.08 Dx = 1.610 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 13230 reflections
a = 14.7737 (13) Å θ = 3.8–27.8°
b = 10.3744 (6) Å µ = 0.86 mm1
c = 10.6935 (11) Å T = 173 K
β = 97.250 (7)° Plate, colourless
V = 1625.9 (2) Å3 0.42 × 0.38 × 0.21 mm
Z = 4

Data collection

Stoe IPDSII two-circle diffractometer 3724 independent reflections
Radiation source: fine-focus sealed tube 3306 reflections with I > 2σ(I)
graphite Rint = 0.046
ω scans θmax = 27.5°, θmin = 3.7°
Absorption correction: multi-scan (MULABS; Spek, 2003; Blessing, 1995) h = −19→19
Tmin = 0.715, Tmax = 0.841 k = −13→13
12823 measured reflections l = −10→13

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.087 w = 1/[σ2(Fo2) + (0.0525P)2 + 0.486P] where P = (Fo2 + 2Fc2)/3
S = 1.05 (Δ/σ)max = 0.001
3724 reflections Δρmax = 0.44 e Å3
208 parameters Δρmin = −0.36 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0246 (15)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.35875 (3) 0.16745 (4) 0.09234 (4) 0.02939 (13)
Cl2 0.39163 (3) 0.58457 (4) 0.39696 (4) 0.02796 (12)
Cl3 0.93189 (3) 0.14605 (4) 0.52460 (4) 0.03065 (13)
Cl4 0.97033 (3) 0.59117 (4) 0.27286 (4) 0.02639 (12)
C1 0.46669 (10) 0.35599 (15) 0.26849 (14) 0.0171 (3)
O1 0.50255 (7) 0.29825 (13) 0.36158 (11) 0.0257 (3)
N1 0.51344 (8) 0.40910 (14) 0.17722 (13) 0.0185 (3)
H1 0.4844 (15) 0.443 (2) 0.115 (2) 0.028 (5)*
S1 0.64669 (2) 0.48065 (5) 0.04928 (4) 0.02559 (13)
C2 0.60770 (10) 0.41647 (15) 0.17586 (15) 0.0168 (3)
N2 0.65773 (8) 0.36848 (14) 0.27949 (13) 0.0178 (3)
H2 0.6248 (15) 0.327 (2) 0.333 (2) 0.033 (6)*
C11 0.36443 (10) 0.37608 (15) 0.24447 (14) 0.0170 (3)
C12 0.30851 (10) 0.29239 (16) 0.16745 (15) 0.0196 (3)
C13 0.21408 (11) 0.30756 (19) 0.14814 (18) 0.0265 (4)
H13 0.1771 0.2506 0.0941 0.032*
C14 0.17491 (11) 0.40754 (19) 0.2093 (2) 0.0300 (4)
H14 0.1105 0.4177 0.1978 0.036*
C15 0.22860 (12) 0.49305 (18) 0.28705 (18) 0.0270 (4)
H15 0.2014 0.5610 0.3288 0.032*
C16 0.32308 (10) 0.47701 (16) 0.30247 (15) 0.0195 (3)
C21 0.75373 (10) 0.37152 (16) 0.31296 (14) 0.0170 (3)
C22 0.79148 (10) 0.27196 (16) 0.39134 (15) 0.0196 (3)
H22 0.7539 0.2054 0.4175 0.024*
C23 0.88510 (10) 0.27226 (16) 0.43034 (15) 0.0208 (3)
C24 0.94227 (10) 0.36829 (17) 0.39447 (15) 0.0217 (3)
H24 1.0062 0.3666 0.4205 0.026*
C25 0.90178 (10) 0.46720 (16) 0.31857 (15) 0.0189 (3)
C26 0.80870 (10) 0.47105 (16) 0.27637 (15) 0.0184 (3)
H26 0.7832 0.5394 0.2242 0.022*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0285 (2) 0.0291 (2) 0.0314 (2) −0.00172 (16) 0.00678 (17) −0.00990 (17)
Cl2 0.0319 (2) 0.0247 (2) 0.0269 (2) −0.00439 (15) 0.00228 (17) −0.00444 (16)
Cl3 0.0275 (2) 0.0330 (2) 0.0291 (2) 0.00629 (16) −0.00562 (16) 0.01025 (18)
Cl4 0.01753 (19) 0.0297 (2) 0.0324 (2) −0.00597 (14) 0.00488 (15) 0.00171 (16)
C1 0.0145 (6) 0.0204 (8) 0.0165 (7) −0.0021 (5) 0.0017 (5) 0.0004 (6)
O1 0.0169 (5) 0.0394 (7) 0.0207 (6) −0.0008 (5) 0.0015 (4) 0.0116 (5)
N1 0.0121 (6) 0.0269 (7) 0.0160 (6) 0.0004 (5) 0.0005 (5) 0.0066 (5)
S1 0.01402 (18) 0.0436 (3) 0.0194 (2) 0.00106 (16) 0.00325 (14) 0.01158 (17)
C2 0.0135 (6) 0.0201 (8) 0.0168 (7) 0.0008 (5) 0.0018 (5) 0.0010 (6)
N2 0.0120 (6) 0.0237 (7) 0.0177 (6) −0.0012 (5) 0.0014 (5) 0.0037 (5)
C11 0.0138 (6) 0.0216 (8) 0.0158 (7) −0.0009 (5) 0.0032 (5) 0.0048 (6)
C12 0.0172 (7) 0.0226 (8) 0.0192 (8) −0.0013 (6) 0.0035 (5) 0.0014 (6)
C13 0.0169 (7) 0.0316 (9) 0.0298 (9) −0.0065 (6) −0.0021 (6) 0.0016 (7)
C14 0.0135 (7) 0.0371 (10) 0.0391 (10) 0.0025 (7) 0.0016 (7) 0.0051 (8)
C15 0.0222 (8) 0.0267 (9) 0.0330 (10) 0.0065 (6) 0.0065 (7) 0.0029 (7)
C16 0.0191 (7) 0.0205 (8) 0.0186 (7) −0.0009 (6) 0.0015 (6) 0.0028 (6)
C21 0.0126 (6) 0.0226 (8) 0.0157 (7) 0.0014 (5) 0.0009 (5) −0.0016 (6)
C22 0.0178 (7) 0.0232 (8) 0.0178 (7) −0.0002 (6) 0.0016 (5) 0.0013 (6)
C23 0.0213 (7) 0.0244 (8) 0.0157 (7) 0.0050 (6) −0.0010 (6) 0.0017 (6)
C24 0.0142 (6) 0.0298 (9) 0.0204 (8) 0.0020 (6) −0.0009 (5) −0.0026 (7)
C25 0.0150 (7) 0.0242 (8) 0.0178 (7) −0.0024 (6) 0.0027 (5) −0.0019 (6)
C26 0.0147 (6) 0.0213 (8) 0.0188 (7) 0.0007 (5) 0.0011 (5) 0.0005 (6)

Geometric parameters (Å, °)

Cl1—C12 1.7397 (17) C13—C14 1.390 (3)
Cl2—C16 1.7417 (17) C13—H13 0.9500
Cl3—C23 1.7414 (17) C14—C15 1.393 (3)
Cl4—C25 1.7445 (16) C14—H14 0.9500
C1—O1 1.224 (2) C15—C16 1.395 (2)
C1—N1 1.3796 (19) C15—H15 0.9500
C1—C11 1.5146 (19) C21—C26 1.400 (2)
N1—C2 1.3967 (18) C21—C22 1.401 (2)
N1—H1 0.82 (2) C22—C23 1.393 (2)
S1—C2 1.6745 (16) C22—H22 0.9500
C2—N2 1.347 (2) C23—C24 1.391 (2)
N2—C21 1.4186 (18) C24—C25 1.395 (2)
N2—H2 0.91 (2) C24—H24 0.9500
C11—C12 1.394 (2) C25—C26 1.393 (2)
C11—C16 1.396 (2) C26—H26 0.9500
C12—C13 1.393 (2)
O1—C1—N1 124.54 (14) C14—C15—C16 118.71 (16)
O1—C1—C11 121.70 (13) C14—C15—H15 120.6
N1—C1—C11 113.75 (13) C16—C15—H15 120.6
C1—N1—C2 128.18 (14) C15—C16—C11 121.63 (15)
C1—N1—H1 118.9 (15) C15—C16—Cl2 119.48 (13)
C2—N1—H1 112.9 (15) C11—C16—Cl2 118.89 (12)
N2—C2—N1 114.54 (13) C26—C21—C22 120.66 (14)
N2—C2—S1 127.07 (11) C26—C21—N2 122.87 (14)
N1—C2—S1 118.38 (11) C22—C21—N2 116.38 (14)
C2—N2—C21 128.79 (13) C23—C22—C21 118.86 (15)
C2—N2—H2 114.5 (15) C23—C22—H22 120.6
C21—N2—H2 116.7 (15) C21—C22—H22 120.6
C12—C11—C16 118.01 (13) C24—C23—C22 122.24 (15)
C12—C11—C1 121.24 (14) C24—C23—Cl3 119.19 (12)
C16—C11—C1 120.72 (14) C22—C23—Cl3 118.57 (13)
C13—C12—C11 121.66 (15) C23—C24—C25 117.16 (14)
C13—C12—Cl1 119.56 (13) C23—C24—H24 121.4
C11—C12—Cl1 118.78 (11) C25—C24—H24 121.4
C14—C13—C12 118.88 (16) C26—C25—C24 122.87 (15)
C14—C13—H13 120.6 C26—C25—Cl4 118.19 (13)
C12—C13—H13 120.6 C24—C25—Cl4 118.93 (12)
C13—C14—C15 121.08 (15) C25—C26—C21 118.19 (14)
C13—C14—H14 119.5 C25—C26—H26 120.9
C15—C14—H14 119.5 C21—C26—H26 120.9
O1—C1—N1—C2 −4.9 (3) C14—C15—C16—Cl2 178.83 (14)
C11—C1—N1—C2 174.63 (15) C12—C11—C16—C15 1.5 (2)
C1—N1—C2—N2 −2.2 (2) C1—C11—C16—C15 −176.47 (15)
C1—N1—C2—S1 177.27 (14) C12—C11—C16—Cl2 −178.89 (12)
N1—C2—N2—C21 −173.75 (15) C1—C11—C16—Cl2 3.2 (2)
S1—C2—N2—C21 6.9 (3) C2—N2—C21—C26 30.3 (3)
O1—C1—C11—C12 −95.3 (2) C2—N2—C21—C22 −152.93 (16)
N1—C1—C11—C12 85.17 (19) C26—C21—C22—C23 −1.2 (2)
O1—C1—C11—C16 82.6 (2) N2—C21—C22—C23 −178.08 (14)
N1—C1—C11—C16 −96.94 (18) C21—C22—C23—C24 0.2 (2)
C16—C11—C12—C13 −0.1 (2) C21—C22—C23—Cl3 −178.45 (12)
C1—C11—C12—C13 177.83 (15) C22—C23—C24—C25 1.1 (2)
C16—C11—C12—Cl1 179.03 (12) Cl3—C23—C24—C25 179.77 (12)
C1—C11—C12—Cl1 −3.0 (2) C23—C24—C25—C26 −1.5 (2)
C11—C12—C13—C14 −1.1 (3) C23—C24—C25—Cl4 179.11 (12)
Cl1—C12—C13—C14 179.72 (14) C24—C25—C26—C21 0.5 (2)
C12—C13—C14—C15 1.1 (3) Cl4—C25—C26—C21 179.94 (12)
C13—C14—C15—C16 0.2 (3) C22—C21—C26—C25 0.9 (2)
C14—C15—C16—C11 −1.5 (3) N2—C21—C26—C25 177.49 (14)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N2—H2···O1 0.91 (2) 1.89 (2) 2.6581 (17) 141 (2)
N1—H1···S1i 0.82 (2) 2.57 (2) 3.3653 (14) 163 (2)

Symmetry codes: (i) −x+1, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FL2225).

References

  1. Allen, F. H. (2002). Acta Cryst. B58, 380–388. [DOI] [PubMed]
  2. Arslan, H., Flörke, U. & Külcü, N. (2004). Turk. J. Chem.28, 673–678.
  3. Blessing, R. H. (1995). Acta Cryst. A51, 33–38. [DOI] [PubMed]
  4. Khawar Rauf, M., Badshah, A. & Bolte, M. (2006a). Acta Cryst. E62, o3859–o3861.
  5. Khawar Rauf, M., Badshah, A. & Bolte, M. (2006b). Acta Cryst. E62, o4296–o4298.
  6. Khawar Rauf, M., Badshah, A. & Bolte, M. (2007). Acta Cryst. E63, o2665–o2666.
  7. Krishnamurthy, R., Govindaraghavan, S. & Narayanasamy, J. (1999). Pestic. Sci.52, 145–151.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  10. Stoe & Cie (2001). X-AREA Stoe & Cie, Darmstadt, Germany.
  11. Upadlgaya, J. S. & Srivastava, P. K. (1982). J. Indian Chem. Soc.59, 767–769.
  12. Wegner, P., Hans, R., Frank, H. & Joppien, H. (1986). Eur. Patent No. 190 611.
  13. Yamin, B. M. & Yusof, M. S. M. (2003). Acta Cryst. E59, o151–o152.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808042736/fl2225sup1.cif

e-65-0o177-sup1.cif (17.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808042736/fl2225Isup2.hkl

e-65-0o177-Isup2.hkl (182.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES