Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Dec 20;65(Pt 1):o180–o181. doi: 10.1107/S1600536808042797

1-Benzothio­phene-2-carbaldehyde 4-ethyl­thio­semicarbazone

Safa’a Fares Kayed a, Yang Farina a,*, Jim Simpson b
PMCID: PMC2968090  PMID: 21581636

Abstract

The title compound, C13H15N3S2, crystallizes with two unique mol­ecules, A and B, in the asymmetric unit. These differ principally in that the methyl group of the 4-ethyl­thio­semicarbazone moiety is ordered in mol­ecule A but disordered over two positions with equal occupancies in mol­ecule B. The benzothio­phene group and the semicarbazone unit are inclined at dihedral angles of 11.78 (8)° for mol­ecule A and 8.18 (13)° for mol­ecule B. Weak intra­molecular N—H⋯N inter­actions contribute to the planarity of the semicarbazone units in both mol­ecules and each mol­ecule adopts an E configuration with respect to the C=N bonds. In the crystal structure, mol­ecules form centrosymmetric dimers as a result of N—H⋯S hydrogen bonds, augmented by C—H⋯S inter­actions for mol­ecule A and C—H⋯S inter­actions for mol­ecule B. Weak C—H⋯π inter­actions stack the dimers of both mol­ecules into columns down the a axis.

Related literature

For background to the biological activity of thio­semicarbazones, see: de Sousa et al. (2007). For related structures, see: Chuev et al. (1992); de Lima et al. (2002); Isik et al. (2006); Kayed et al. (2008). For details of graph-set analysis of hydrogen-bonding patterns, see: Bernstein et al. (1995). For reference structural data, see: Allen et al. (1987).graphic file with name e-65-0o180-scheme1.jpg

Experimental

Crystal data

  • C13H15N3S2

  • M r = 277.40

  • Triclinic, Inline graphic

  • a = 5.5343 (5) Å

  • b = 10.9943 (10) Å

  • c = 23.443 (2) Å

  • α = 78.825 (5)°

  • β = 88.175 (5)°

  • γ = 76.298 (5)°

  • V = 1359.4 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.38 mm−1

  • T = 92 (2) K

  • 0.37 × 0.10 × 0.05 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2006) T min = 0.873, T max = 0.981

  • 18044 measured reflections

  • 5907 independent reflections

  • 4307 reflections with I > 2σ(I)

  • R int = 0.051

Refinement

  • R[F 2 > 2σ(F 2)] = 0.042

  • wR(F 2) = 0.111

  • S = 1.05

  • 5907 reflections

  • 354 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.41 e Å−3

Data collection: APEX2 (Bruker 2006); cell refinement: APEX2 and SAINT (Bruker 2006); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) and TITAN (Hunter & Simpson, 1999); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97, enCIFer (Allen et al., 2004), PLATON (Spek, 2003) and publCIF (Westrip, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808042797/ci2731sup1.cif

e-65-0o180-sup1.cif (26.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808042797/ci2731Isup2.hkl

e-65-0o180-Isup2.hkl (289.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N3A—H3NA⋯N1A 0.84 (1) 2.27 (2) 2.623 (3) 106 (2)
N3B—H3NB⋯N1B 0.83 (1) 2.26 (2) 2.627 (3) 107 (2)
C10A—H10A⋯S2Ai 0.98 2.84 3.374 (2) 115
N2A—H2NA⋯S2Ai 0.85 (1) 2.81 (1) 3.638 (2) 164 (2)
C10B—H10D⋯S2Bii 0.98 2.82 3.373 (2) 117
C10A—H10BCg1iii 0.98 2.71 3.577 (2) 147
C10B—H10ECg2iv 0.98 2.72 3.600 (2) 150

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic. Cg1 and Cg2 are the centroids of the S1A/C1A/C2A/C3A/C8A and S1B/C1B/C2B/C3B/C8B rings, respectively.

Acknowledgments

The authors thank the Universiti Kebangsaan Malaysia and the Ministry of Higher Education, Malaysia, for supporting this research through grants UKM-ST-01-FRGS0022–2006 and UKM-GUP-NBT-08–27-112. The authors also thank the University of Otago for purchase of the diffractometer.

supplementary crystallographic information

Comment

Thiosemicarbazones are a class of compounds that have been investigated because of their biological activity (de Sousa et al., 2007). As a continuation of our work on thiosemicarbazone compounds as potential ligands in transition metal chemistry (Kayed et al., 2008;) we report here the structure of the title compound (Fig. 1), which crystallizes with two unique molecules, A and B, in the asymmetric unit. The two molecules are closely similar with the exception of the methyl C atom of the ethyl group which is disordered over two positions C131 and C132, with equal occupancies. The similarities of the remainder of the two molecules are demonstrated by the fact that the non-hydrogen atoms of molecules A and B overlay in Mercury (Macrae et al., 2006) with an r.m.s. deviation of 0.077 Å, when the C132 disorder component is excluded. The molecules are each reasonably planar with r.m.s. deviations of 0.137 Å and 0.128 Å from the planes through all non-hydrogen atoms of the two molecules excluding the C132 disorder component. The planarity of the N1/N2/C11/S2/N3 segments of both molecules (r.m.s. deviations 0.050 Å for molecule A and 0.037 Å for molecule B) is aided by weak intramolecular N3—H3N···N1 interactions. The benzothiophene groups and the semicarbazone groups are inclined at dihedral angles of 11.78 (8)° for molecule A and 8.18 (13)° for molecule B. Both molecules adopt an E configuration with respect to the C═N bonds, bond distances are normal (Allen et al., 1987) and comparable to those in similar structures (Chuev et al. 1992; de Lima et al. 2002; Isik et al. 2006; Kayed et al. 2008).

In the crystal structure, a centrosymmetric dimer with an R22(8) ring motif (Bernstein et al., 1995) is formed by through N2A—H2NA···S2A hydrogen bonds strengthened by additional C10A—H10A···S2A interactions for molecule A. A second dimer forms via C10B—H10D···S2B interactions for molecule B (Table 1 and Fig. 2). The dimers are further aggregated into columns down the a axis by weak C—H···π interactions involving the C10A and C10B methyl groups and the thiophene rings of adjacent molecules, Fig. 3.

Experimental

The title compound was prepared by heating 35 ml of an ethanolic solution of 2-acetylbenzothiophene (1.76 g, 10 mmol) and 4-ethyl-3-thiosemicarbazide (1.2 g, 10 mmol) under reflux for 2 h. Three drops of concentrated H2SO4 were added. The resulting product was isolated and recrystallized from acetonitrile to afford yellow needles of the title compound in 63.5% yield (m.p. 448–450 K).

Refinement

H atoms bound to N2A, N2B, N3A and N3B were located in a difference electron density map and refined freely with Uiso = 1.2Ueq(N). All other H-atoms were refined using a riding model with d(C-H) = 0.95 Å, Uiso = 1.2Ueq (C) for aromatic, and 0.98 Å and Uiso = 1.5Ueq (C) for CH3 H atoms. The methyl C atom of the ethyl group in molecule B is disordered over two positions, C131 and C132, each with occupancies of approximately 0.5. These occupancies were fixed at 0.5 in the final refinement cycles.

Figures

Fig. 1.

Fig. 1.

The asymmetric unit of the title compound, with atom labels and 50% probability displacement ellipsoids for non-H atoms. For clarity, only one disorder component is shown.

Fig. 2.

Fig. 2.

Formation of dimers in the crystal structure of the title compound, through N—H···S and C—H···S hydrogen bonds, shown as dashed lines. H atoms not involved in hydrogen bonding and atoms of one of the disorder components have been omitted for clarity.

Fig. 3.

Fig. 3.

C—H···π interactions between dimers in the title compound. Cg1 is the centroid of the S1A/C1A/C2A/C3A/C8A ring and Cg2 that of the S1B/C1B/C2B/C3B/C8B ring. H···Cg interactions are drawn as dotted lines and hydrogen bonds as dashed lines. H atoms not involved in these interactions and atoms of one of the disorder components have been omitted for clarity.

Crystal data

C13H15N3S2 Z = 4
Mr = 277.40 F(000) = 584
Triclinic, P1 Dx = 1.355 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 5.5343 (5) Å Cell parameters from 3088 reflections
b = 10.9943 (10) Å θ = 4.7–52.7°
c = 23.443 (2) Å µ = 0.38 mm1
α = 78.825 (5)° T = 92 K
β = 88.175 (5)° Needle, yellow
γ = 76.298 (5)° 0.37 × 0.10 × 0.05 mm
V = 1359.4 (2) Å3

Data collection

Bruker APEXII CCD area-detector diffractometer 5907 independent reflections
Radiation source: fine-focus sealed tube 4307 reflections with I > 2σ(I)
graphite Rint = 0.051
ω scans θmax = 27.1°, θmin = 0.9°
Absorption correction: multi-scan (SADABS; Bruker, 2006) h = −7→6
Tmin = 0.873, Tmax = 0.981 k = −14→14
18044 measured reflections l = −30→29

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111 H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0519P)2] where P = (Fo2 + 2Fc2)/3
5907 reflections (Δ/σ)max = 0.001
354 parameters Δρmax = 0.49 e Å3
6 restraints Δρmin = −0.41 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
S1A 0.93115 (11) 0.05062 (5) 0.82595 (2) 0.01751 (15)
S2A 0.13864 (11) −0.19901 (5) 0.99817 (3) 0.02041 (15)
N1A 0.5271 (3) 0.01724 (17) 0.90359 (8) 0.0153 (4)
N2A 0.3543 (3) −0.02135 (17) 0.94186 (8) 0.0163 (4)
H2NA 0.225 (3) 0.0337 (19) 0.9488 (10) 0.028 (7)*
N3A 0.5742 (4) −0.22703 (18) 0.94436 (8) 0.0170 (4)
H3NA 0.691 (3) −0.195 (2) 0.9300 (10) 0.022 (7)*
C1A 0.6844 (4) 0.1718 (2) 0.84181 (9) 0.0150 (5)
C2A 0.6914 (4) 0.2885 (2) 0.80979 (9) 0.0182 (5)
H2A 0.5730 0.3648 0.8132 0.022*
C3A 0.8956 (4) 0.2843 (2) 0.77044 (9) 0.0175 (5)
C4A 0.9572 (5) 0.3831 (2) 0.72958 (10) 0.0238 (6)
H4A 0.8591 0.4678 0.7260 0.029*
C5A 1.1606 (5) 0.3570 (2) 0.69452 (10) 0.0253 (6)
H5A 1.2001 0.4241 0.6665 0.030*
C6A 1.3095 (5) 0.2332 (2) 0.69971 (10) 0.0241 (6)
H6A 1.4497 0.2169 0.6755 0.029*
C7A 1.2534 (4) 0.1345 (2) 0.73997 (10) 0.0222 (5)
H7A 1.3555 0.0506 0.7440 0.027*
C8A 1.0452 (4) 0.1596 (2) 0.77463 (9) 0.0162 (5)
C9A 0.4991 (4) 0.1378 (2) 0.88361 (9) 0.0148 (5)
C10A 0.2935 (4) 0.2411 (2) 0.89979 (10) 0.0203 (5)
H10A 0.2988 0.2372 0.9419 0.030*
H10B 0.1328 0.2289 0.8887 0.030*
H10C 0.3146 0.3244 0.8793 0.030*
C11A 0.3697 (4) −0.1483 (2) 0.95961 (9) 0.0154 (5)
C12A 0.6216 (4) −0.3666 (2) 0.95906 (10) 0.0194 (5)
H12A 0.4719 −0.3938 0.9496 0.023*
H12B 0.6555 −0.3954 1.0013 0.023*
C13A 0.8407 (4) −0.4280 (2) 0.92596 (11) 0.0253 (6)
H13A 0.8674 −0.5210 0.9362 0.038*
H13B 0.9899 −0.4029 0.9361 0.038*
H13C 0.8068 −0.4000 0.8841 0.038*
S1B 0.67836 (11) 0.71828 (5) 0.64398 (3) 0.01964 (15)
S2B 1.51802 (11) 0.85218 (6) 0.44850 (3) 0.02281 (16)
N1B 1.0500 (3) 0.82960 (18) 0.57598 (8) 0.0180 (4)
N2B 1.2186 (4) 0.87090 (19) 0.53790 (8) 0.0187 (4)
H2NB 1.300 (4) 0.9225 (19) 0.5457 (11) 0.028 (8)*
N3B 1.1624 (4) 0.72808 (19) 0.48311 (9) 0.0205 (5)
H3NB 1.040 (3) 0.721 (2) 0.5042 (9) 0.022 (7)*
C1B 0.8201 (4) 0.8337 (2) 0.66072 (10) 0.0159 (5)
C2B 0.7499 (4) 0.8626 (2) 0.71398 (9) 0.0163 (5)
H2B 0.8087 0.9234 0.7301 0.020*
C3B 0.5797 (4) 0.7926 (2) 0.74310 (9) 0.0161 (5)
C4B 0.4694 (4) 0.7975 (2) 0.79772 (10) 0.0207 (5)
H4B 0.5074 0.8524 0.8210 0.025*
C5B 0.3050 (4) 0.7218 (2) 0.81723 (11) 0.0241 (6)
H5B 0.2285 0.7258 0.8539 0.029*
C6B 0.2499 (4) 0.6392 (2) 0.78363 (11) 0.0256 (6)
H6B 0.1380 0.5872 0.7979 0.031*
C7B 0.3576 (4) 0.6328 (2) 0.72976 (11) 0.0234 (6)
H7B 0.3197 0.5771 0.7069 0.028*
C8B 0.5215 (4) 0.7090 (2) 0.70985 (10) 0.0179 (5)
C9B 0.9933 (4) 0.8839 (2) 0.62066 (9) 0.0156 (5)
C10B 1.0962 (4) 0.9905 (2) 0.63256 (10) 0.0204 (5)
H10D 1.0649 1.0607 0.5988 0.031*
H10E 1.2757 0.9602 0.6400 0.031*
H10F 1.0154 1.0207 0.6667 0.031*
C11B 1.2880 (4) 0.8130 (2) 0.49148 (9) 0.0163 (5)
C12B 1.1924 (5) 0.6655 (2) 0.43327 (12) 0.0370 (7)
H12C 1.3697 0.6441 0.4224 0.044* 0.50
H12D 1.0953 0.7219 0.3995 0.044* 0.50
H12E 1.2155 0.7286 0.4004 0.044* 0.50
H12F 1.0372 0.6450 0.4271 0.044* 0.50
C131 1.0968 (10) 0.5437 (4) 0.4516 (2) 0.0281 (12) 0.50
H13D 0.9176 0.5667 0.4586 0.042* 0.50
H13E 1.1834 0.4928 0.4873 0.042* 0.50
H13F 1.1282 0.4939 0.4205 0.042* 0.50
C132 1.3847 (8) 0.5534 (4) 0.4312 (2) 0.0265 (12) 0.50
H13G 1.5473 0.5719 0.4354 0.040* 0.50
H13H 1.3754 0.5271 0.3939 0.040* 0.50
H13I 1.3629 0.4846 0.4630 0.040* 0.50

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1A 0.0177 (3) 0.0162 (3) 0.0184 (3) −0.0042 (2) 0.0046 (2) −0.0031 (2)
S2A 0.0159 (3) 0.0207 (3) 0.0252 (3) −0.0071 (2) 0.0071 (3) −0.0033 (2)
N1A 0.0121 (10) 0.0206 (10) 0.0135 (9) −0.0053 (8) 0.0028 (8) −0.0022 (8)
N2A 0.0129 (10) 0.0169 (10) 0.0190 (10) −0.0034 (8) 0.0034 (8) −0.0042 (8)
N3A 0.0145 (11) 0.0188 (10) 0.0180 (10) −0.0069 (8) 0.0055 (9) −0.0011 (8)
C1A 0.0115 (11) 0.0185 (11) 0.0149 (11) −0.0025 (9) −0.0003 (9) −0.0044 (9)
C2A 0.0169 (12) 0.0198 (12) 0.0175 (12) −0.0041 (10) 0.0010 (10) −0.0034 (9)
C3A 0.0202 (13) 0.0192 (11) 0.0146 (11) −0.0078 (10) −0.0017 (10) −0.0026 (9)
C4A 0.0294 (15) 0.0218 (12) 0.0206 (13) −0.0090 (11) 0.0038 (11) −0.0015 (10)
C5A 0.0333 (15) 0.0294 (14) 0.0180 (12) −0.0185 (12) 0.0049 (11) −0.0028 (10)
C6A 0.0246 (14) 0.0380 (15) 0.0162 (12) −0.0153 (12) 0.0069 (11) −0.0120 (11)
C7A 0.0215 (13) 0.0277 (13) 0.0209 (13) −0.0097 (11) 0.0038 (11) −0.0088 (10)
C8A 0.0205 (13) 0.0189 (11) 0.0123 (11) −0.0095 (10) 0.0015 (10) −0.0050 (9)
C9A 0.0134 (12) 0.0183 (11) 0.0124 (11) −0.0042 (9) −0.0022 (9) −0.0014 (9)
C10A 0.0183 (13) 0.0209 (12) 0.0220 (13) −0.0058 (10) 0.0054 (10) −0.0045 (10)
C11A 0.0163 (12) 0.0186 (11) 0.0120 (11) −0.0052 (9) −0.0026 (9) −0.0026 (9)
C12A 0.0212 (13) 0.0154 (11) 0.0196 (12) −0.0039 (10) 0.0024 (10) 0.0005 (9)
C13A 0.0211 (13) 0.0227 (13) 0.0300 (14) −0.0013 (10) 0.0028 (11) −0.0050 (11)
S1B 0.0211 (3) 0.0214 (3) 0.0196 (3) −0.0081 (2) 0.0061 (3) −0.0087 (2)
S2B 0.0208 (3) 0.0305 (3) 0.0218 (3) −0.0125 (3) 0.0100 (3) −0.0099 (3)
N1B 0.0152 (10) 0.0216 (10) 0.0163 (10) −0.0047 (8) 0.0034 (8) −0.0017 (8)
N2B 0.0176 (11) 0.0252 (11) 0.0170 (10) −0.0100 (9) 0.0050 (9) −0.0074 (9)
N3B 0.0204 (12) 0.0247 (11) 0.0203 (11) −0.0109 (9) 0.0112 (9) −0.0084 (9)
C1B 0.0125 (12) 0.0153 (11) 0.0186 (12) −0.0003 (9) −0.0018 (10) −0.0036 (9)
C2B 0.0152 (12) 0.0193 (11) 0.0145 (11) −0.0038 (9) 0.0002 (9) −0.0039 (9)
C3B 0.0130 (12) 0.0168 (11) 0.0157 (11) 0.0002 (9) −0.0010 (9) −0.0008 (9)
C4B 0.0204 (13) 0.0255 (13) 0.0145 (12) −0.0033 (10) 0.0027 (10) −0.0027 (10)
C5B 0.0191 (13) 0.0280 (13) 0.0196 (12) 0.0006 (10) 0.0041 (11) 0.0009 (10)
C6B 0.0183 (13) 0.0212 (12) 0.0315 (14) −0.0020 (10) 0.0062 (11) 0.0048 (11)
C7B 0.0214 (13) 0.0211 (12) 0.0289 (14) −0.0070 (10) 0.0051 (11) −0.0059 (10)
C8B 0.0143 (12) 0.0177 (11) 0.0183 (12) 0.0004 (9) 0.0035 (10) −0.0007 (9)
C9B 0.0126 (12) 0.0195 (11) 0.0136 (11) −0.0013 (9) −0.0020 (9) −0.0033 (9)
C10B 0.0199 (13) 0.0264 (13) 0.0195 (12) −0.0118 (10) 0.0066 (10) −0.0083 (10)
C11B 0.0130 (12) 0.0200 (12) 0.0149 (11) −0.0018 (9) 0.0011 (9) −0.0037 (9)
C12B 0.0458 (18) 0.0446 (17) 0.0388 (16) −0.0330 (14) 0.0295 (14) −0.0292 (14)
C131 0.038 (3) 0.025 (3) 0.028 (3) −0.011 (2) 0.005 (2) −0.015 (2)
C132 0.027 (3) 0.029 (3) 0.021 (3) −0.001 (2) 0.006 (2) −0.004 (2)

Geometric parameters (Å, °)

S1A—C8A 1.741 (2) N1B—N2B 1.365 (3)
S1A—C1A 1.754 (2) N2B—C11B 1.365 (3)
S2A—C11A 1.683 (2) N2B—H2NB 0.852 (10)
N1A—C9A 1.291 (3) N3B—C11B 1.334 (3)
N1A—N2A 1.375 (3) N3B—C12B 1.453 (3)
N2A—C11A 1.360 (3) N3B—H3NB 0.835 (10)
N2A—H2NA 0.852 (10) C1B—C2B 1.369 (3)
N3A—C11A 1.337 (3) C1B—C9B 1.449 (3)
N3A—C12A 1.467 (3) C2B—C3B 1.429 (3)
N3A—H3NA 0.839 (10) C2B—H2B 0.95
C1A—C2A 1.363 (3) C3B—C4B 1.406 (3)
C1A—C9A 1.459 (3) C3B—C8B 1.411 (3)
C2A—C3A 1.434 (3) C4B—C5B 1.384 (3)
C2A—H2A 0.95 C4B—H4B 0.95
C3A—C4A 1.402 (3) C5B—C6B 1.400 (4)
C3A—C8A 1.411 (3) C5B—H5B 0.95
C4A—C5A 1.380 (3) C6B—C7B 1.386 (3)
C4A—H4A 0.95 C6B—H6B 0.95
C5A—C6A 1.399 (3) C7B—C8B 1.387 (3)
C5A—H5A 0.95 C7B—H7B 0.95
C6A—C7A 1.381 (3) C9B—C10B 1.493 (3)
C6A—H6A 0.95 C10B—H10D 0.98
C7A—C8A 1.393 (3) C10B—H10E 0.98
C7A—H7A 0.95 C10B—H10F 0.98
C9A—C10A 1.502 (3) C12B—C132 1.432 (4)
C10A—H10A 0.98 C12B—C131 1.535 (4)
C10A—H10B 0.98 C12B—H12C 0.99
C10A—H10C 0.98 C12B—H12D 0.99
C12A—C13A 1.511 (3) C12B—H12E 0.96
C12A—H12A 0.99 C12B—H12F 0.96
C12A—H12B 0.99 C131—H12F 1.13
C13A—H13A 0.98 C131—H13D 0.98
C13A—H13B 0.98 C131—H13E 0.98
C13A—H13C 0.98 C131—H13F 0.98
S1B—C8B 1.745 (2) C132—H13G 0.98
S1B—C1B 1.750 (2) C132—H13H 0.98
S2B—C11B 1.683 (2) C132—H13I 0.98
N1B—C9B 1.298 (3)
C8A—S1A—C1A 91.23 (11) C9B—C1B—S1B 120.17 (17)
C9A—N1A—N2A 118.26 (18) C1B—C2B—C3B 113.6 (2)
C11A—N2A—N1A 118.93 (18) C1B—C2B—H2B 123.2
C11A—N2A—H2NA 120.8 (18) C3B—C2B—H2B 123.2
N1A—N2A—H2NA 119.2 (18) C4B—C3B—C8B 118.8 (2)
C11A—N3A—C12A 123.92 (19) C4B—C3B—C2B 129.2 (2)
C11A—N3A—H3NA 117.9 (17) C8B—C3B—C2B 111.9 (2)
C12A—N3A—H3NA 117.6 (17) C5B—C4B—C3B 119.5 (2)
C2A—C1A—C9A 128.8 (2) C5B—C4B—H4B 120.3
C2A—C1A—S1A 112.27 (17) C3B—C4B—H4B 120.3
C9A—C1A—S1A 118.84 (16) C4B—C5B—C6B 120.9 (2)
C1A—C2A—C3A 113.2 (2) C4B—C5B—H5B 119.6
C1A—C2A—H2A 123.4 C6B—C5B—H5B 119.6
C3A—C2A—H2A 123.4 C7B—C6B—C5B 120.5 (2)
C4A—C3A—C8A 118.6 (2) C7B—C6B—H6B 119.8
C4A—C3A—C2A 129.4 (2) C5B—C6B—H6B 119.8
C8A—C3A—C2A 111.9 (2) C6B—C7B—C8B 118.9 (2)
C5A—C4A—C3A 119.9 (2) C6B—C7B—H7B 120.6
C5A—C4A—H4A 120.1 C8B—C7B—H7B 120.6
C3A—C4A—H4A 120.1 C7B—C8B—C3B 121.5 (2)
C4A—C5A—C6A 120.9 (2) C7B—C8B—S1B 127.42 (19)
C4A—C5A—H5A 119.5 C3B—C8B—S1B 111.11 (17)
C6A—C5A—H5A 119.5 N1B—C9B—C1B 115.7 (2)
C7A—C6A—C5A 120.2 (2) N1B—C9B—C10B 124.4 (2)
C7A—C6A—H6A 119.9 C1B—C9B—C10B 119.94 (19)
C5A—C6A—H6A 119.9 C9B—C10B—H10D 109.5
C6A—C7A—C8A 119.2 (2) C9B—C10B—H10E 109.5
C6A—C7A—H7A 120.4 H10D—C10B—H10E 109.5
C8A—C7A—H7A 120.4 C9B—C10B—H10F 109.5
C7A—C8A—C3A 121.2 (2) H10D—C10B—H10F 109.5
C7A—C8A—S1A 127.48 (18) H10E—C10B—H10F 109.5
C3A—C8A—S1A 111.36 (17) N3B—C11B—N2B 116.2 (2)
N1A—C9A—C1A 115.43 (19) N3B—C11B—S2B 124.21 (18)
N1A—C9A—C10A 125.1 (2) N2B—C11B—S2B 119.61 (18)
C1A—C9A—C10A 119.50 (19) C132—C12B—N3B 122.0 (3)
C9A—C10A—H10A 109.5 C132—C12B—C131 68.4 (3)
C9A—C10A—H10B 109.5 N3B—C12B—C131 106.5 (3)
H10A—C10A—H10B 109.5 N3B—C12B—H12C 110.4
C9A—C10A—H10C 109.5 C131—C12B—H12C 110.4
H10A—C10A—H10C 109.5 C132—C12B—H12D 125.7
H10B—C10A—H10C 109.5 N3B—C12B—H12D 110.4
N3A—C11A—N2A 116.3 (2) C131—C12B—H12D 110.4
N3A—C11A—S2A 123.46 (17) H12C—C12B—H12D 108.6
N2A—C11A—S2A 120.25 (17) C132—C12B—H12E 106.6
N3A—C12A—C13A 111.06 (19) N3B—C12B—H12E 106.2
N3A—C12A—H12A 109.4 C131—C12B—H12E 143.4
C13A—C12A—H12A 109.4 H12C—C12B—H12E 72.4
N3A—C12A—H12B 109.4 C132—C12B—H12F 107.0
C13A—C12A—H12B 109.4 N3B—C12B—H12F 107.2
H12A—C12A—H12B 108.0 C131—C12B—H12F 47.0
C12A—C13A—H13A 109.5 H12C—C12B—H12F 140.9
C12A—C13A—H13B 109.5 H12D—C12B—H12F 66.4
H13A—C13A—H13B 109.5 H12E—C12B—H12F 106.9
C12A—C13A—H13C 109.5 C12B—C131—H13D 109.5
H13A—C13A—H13C 109.5 H12F—C131—H13D 76.5
H13B—C13A—H13C 109.5 C12B—C131—H13E 109.5
C8B—S1B—C1B 91.60 (11) H12F—C131—H13E 141.6
C9B—N1B—N2B 117.9 (2) C12B—C131—H13F 109.5
C11B—N2B—N1B 119.3 (2) H12F—C131—H13F 103.3
C11B—N2B—H2NB 118.7 (18) C12B—C132—H13G 109.5
N1B—N2B—H2NB 121.0 (18) C12B—C132—H13H 109.5
C11B—N3B—C12B 124.4 (2) H13G—C132—H13H 109.5
C11B—N3B—H3NB 117.9 (17) C12B—C132—H13I 109.5
C12B—N3B—H3NB 116.7 (17) H13G—C132—H13I 109.5
C2B—C1B—C9B 128.1 (2) H13H—C132—H13I 109.5
C2B—C1B—S1B 111.75 (18)
C9A—N1A—N2A—C11A 174.7 (2) C8B—S1B—C1B—C2B 0.07 (17)
C8A—S1A—C1A—C2A −0.36 (18) C8B—S1B—C1B—C9B 178.56 (17)
C8A—S1A—C1A—C9A 177.19 (18) C9B—C1B—C2B—C3B −178.3 (2)
C9A—C1A—C2A—C3A −176.5 (2) S1B—C1B—C2B—C3B 0.1 (2)
S1A—C1A—C2A—C3A 0.8 (3) C1B—C2B—C3B—C4B −179.9 (2)
C1A—C2A—C3A—C4A 177.4 (2) C1B—C2B—C3B—C8B −0.2 (3)
C1A—C2A—C3A—C8A −0.9 (3) C8B—C3B—C4B—C5B −0.7 (3)
C8A—C3A—C4A—C5A 0.1 (4) C2B—C3B—C4B—C5B 179.0 (2)
C2A—C3A—C4A—C5A −178.1 (2) C3B—C4B—C5B—C6B 0.9 (3)
C3A—C4A—C5A—C6A −1.0 (4) C4B—C5B—C6B—C7B −0.6 (3)
C4A—C5A—C6A—C7A 0.5 (4) C5B—C6B—C7B—C8B 0.3 (3)
C5A—C6A—C7A—C8A 0.9 (4) C6B—C7B—C8B—C3B −0.2 (3)
C6A—C7A—C8A—C3A −1.8 (4) C6B—C7B—C8B—S1B −179.72 (17)
C6A—C7A—C8A—S1A 177.30 (18) C4B—C3B—C8B—C7B 0.4 (3)
C4A—C3A—C8A—C7A 1.3 (3) C2B—C3B—C8B—C7B −179.4 (2)
C2A—C3A—C8A—C7A 179.8 (2) C4B—C3B—C8B—S1B −179.99 (16)
C4A—C3A—C8A—S1A −177.92 (18) C2B—C3B—C8B—S1B 0.2 (2)
C2A—C3A—C8A—S1A 0.6 (3) C1B—S1B—C8B—C7B 179.4 (2)
C1A—S1A—C8A—C7A −179.3 (2) C1B—S1B—C8B—C3B −0.18 (17)
C1A—S1A—C8A—C3A −0.14 (18) N2B—N1B—C9B—C1B −178.00 (18)
N2A—N1A—C9A—C1A −178.12 (18) N2B—N1B—C9B—C10B 1.4 (3)
N2A—N1A—C9A—C10A 1.3 (3) C2B—C1B—C9B—N1B 172.1 (2)
C2A—C1A—C9A—N1A 173.7 (2) S1B—C1B—C9B—N1B −6.1 (3)
S1A—C1A—C9A—N1A −3.4 (3) C2B—C1B—C9B—C10B −7.3 (3)
C2A—C1A—C9A—C10A −5.8 (4) S1B—C1B—C9B—C10B 174.51 (16)
S1A—C1A—C9A—C10A 177.12 (16) C12B—N3B—C11B—N2B 174.0 (2)
C12A—N3A—C11A—N2A −179.3 (2) C12B—N3B—C11B—S2B −5.2 (3)
C12A—N3A—C11A—S2A 0.3 (3) N1B—N2B—C11B—N3B 7.4 (3)
N1A—N2A—C11A—N3A 8.8 (3) N1B—N2B—C11B—S2B −173.36 (15)
N1A—N2A—C11A—S2A −170.77 (15) C11B—N3B—C12B—C132 84.2 (4)
C11A—N3A—C12A—C13A 168.7 (2) C11B—N3B—C12B—C131 158.7 (3)
C9B—N1B—N2B—C11B 177.9 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N3A—H3NA···N1A 0.84 (1) 2.27 (2) 2.623 (3) 106 (2)
N3B—H3NB···N1B 0.83 (1) 2.26 (2) 2.627 (3) 107 (2)
C10A—H10A···S2Ai 0.98 2.84 3.374 (2) 115
N2A—H2NA···S2Ai 0.85 (1) 2.81 (1) 3.638 (2) 164 (2)
C10B—H10D···S2Bii 0.98 2.82 3.373 (2) 117
C10A—H10B···Cg1iii 0.98 2.71 3.577 (2) 147
C10B—H10E···Cg2iv 0.98 2.72 3.600 (2) 150

Symmetry codes: (i) −x, −y, −z+2; (ii) −x+3, −y+2, −z+1; (iii) x+1, y, z; (iv) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2731).

References

  1. Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst.37, 335–338.
  2. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  3. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  4. Bruker (2006). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Chuev, I. I., Filipenko, O. S., Ryzhikov, V. G., Aldoshin, S. M. & Atovmyan, L. O. (1992). Izv. Akad. Nauk SSSR Ser. Khim. pp. 917–922.
  6. Hunter, K. A. & Simpson, J. (1999). TITAN2000 University of Otago, New Zealand.
  7. Işık, S., Köysal, Y., Özdemir, Z. & Bilgin, A. A. (2006). Acta Cryst. E62, o491–o493.
  8. Kayed, S. F., Farina, Y., Kassim, M. & Simpson, J. (2008). Acta Cryst. E64, o1022–o1023. [DOI] [PMC free article] [PubMed]
  9. Lima, G. M. de, Neto, J. L., Beraldo, H., Siebald, H. G. L. & Duncalf, D. J. (2002). J. Mol. Struct.604, 287–291.
  10. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst.39, 453–457.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Sousa, G. F. de, Manso, L. C. C., Lang, E. S., Gatto, C. C. & Mahieu, B. (2007). J. Mol. Struct.826, 185–191.
  13. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  14. Westrip, S. P. (2009). publCIF In preparation.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808042797/ci2731sup1.cif

e-65-0o180-sup1.cif (26.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808042797/ci2731Isup2.hkl

e-65-0o180-Isup2.hkl (289.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES