Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Dec 20;65(Pt 1):o184. doi: 10.1107/S1600536808043031

2-(4-Chloro­phen­yl)-3-methyl-N-(5-methyl­thia­zol-2-yl)butanamide

Jing-Li Cheng a, Jin-Hao Zhao a, Guo-Nian Zhu a, Fu-Cheng Lin b,*
PMCID: PMC2968093  PMID: 21581639

Abstract

In the title compound, C15H17ClN2OS, the thia­zole ring, which is essentially planar with a maximum deviation of 0.044 (3) Å, makes a dihedral angle of 54.76 (8)° with the benzene ring. In the crystal, adjacent molecules related by twofold rotation symmetry are linked by pairs of N—H⋯N hydrogen bonds.

Related literature

For background, see: Holmstead et al. (1978); Forlani (1978). For a related structure, see: Zhao et al. (2006).graphic file with name e-65-0o184-scheme1.jpg

Experimental

Crystal data

  • C15H17ClN2OS

  • M r = 308.83

  • Monoclinic, Inline graphic

  • a = 14.9649 (6) Å

  • b = 17.6062 (7) Å

  • c = 12.5606 (5) Å

  • β = 99.9482 (11)°

  • V = 3259.6 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.36 mm−1

  • T = 298 (1) K

  • 0.41 × 0.33 × 0.26 mm

Data collection

  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995) T min = 0.858, T max = 0.911

  • 15655 measured reflections

  • 3708 independent reflections

  • 2559 reflections with F 2 > 2σ(F 2)

  • R int = 0.027

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040

  • wR(F 2) = 0.172

  • S = 1.01

  • 3708 reflections

  • 183 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.29 e Å−3

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: CrystalStructure.

Supplementary Material

Crystal structure: contains datablocks General, I. DOI: 10.1107/S1600536808043031/is2368sup1.cif

e-65-0o184-sup1.cif (17.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808043031/is2368Isup2.hkl

e-65-0o184-Isup2.hkl (181.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H111⋯N2i 0.86 2.08 2.929 (2) 168

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors are grateful for support from the National Natural Science Foundation of China (No. 30700532) and also thank Professor Jian-Ming Gu for help with the analysis of the crystal data.

supplementary crystallographic information

Comment

2-(4-Chlorophenyl)-3-methylbutanoyl chloride is an intermediate in the synthesis of fenvalerate, an excellent insecticide (Holmstead et al., 1978). 2-Amino-5-methyl-thiazole is another heterocyclic intermediate (Forlani, 1978). As part of our continuing interest in the design and synthesis of new pesticides, we have isolated the title compound, (I), the product of the condensation reaction between 2-(4-chlorophenyl)-3-methylbutanoyl chloride and 5-methyl-2-aminothiazole, as colourless crystals suitable for X-ray analysis.

The molecular structure of (I) is illustrated in Fig. 1. Atoms N2, C10, C11, S1, C9 and N1 are coplanar, the largest deviation being 0.044 (3) Å for N1. As expected, the benzene ring is planar, and atom Cl1 lies only 0.018 (4) Å from the plane defined by the ring C atoms and itself. The angle between these two rings is 54.76 (8)°, smaller than the angle between the thiazole and benzene rings of the compound 2-(4-chlorophenyl)-3-methyl-N-(thiazol-2-yl) butanamide (Zhao et al., 2006). There are N—H···N interactions in the crystal structure, which lead to the formation of hydrogen-bonded dimers (Figs. 2 and 3).

Experimental

2-Amino-5-methylthiazole (1.14 g, 10 mmol), 4-dimethylaminopyridine (0.12 g), triethylamine (1.31 g) and chloroform (100 ml) were added to a 250 ml round flask. The mixture was stirred and cooled to 273 K, and then 2-(4-chlorophenyl)-3-methylbutanoyl chloride (3.47 g) was added dropwise within 30 min. The mixture was stirred at room temperature for 3 h and then 1% aqueous HCl was added (5 ml). The organic layer was washed with water to a neutral pH and dried over Na2SO4. After being filtered and concentrated, the organic residue was purified by silica-gel column chromatography, eluted with ethyl acetate-petroleum ether-formic acid (10:80:1, v/v/v), to give a white solid (yield 85%, 2.5 g), (I). It was then recrystallized from ethyl acetate-petroleum ether (2:1, v/v) to give colourless blocks (m.p. 460–461 K).

Refinement

H atoms were included in calculated positions and refined using a riding model, with C—H distances constrained to 0.96 Å for methyl H atoms, 0.93 Å for aryl H atoms and 0.98 Å for the remainder, with N—H distances constrained to 0.86 Å, and with Uiso(H) = 1.2Ueq(C,N) or 1.5Ueq(methyl C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.

Fig. 2.

Fig. 2.

Molecular packing arrangement in the unit cell.

Fig. 3.

Fig. 3.

View showing the N—H···N hydrogen bonding (dashed lines) [symmetry code: (i) 1 - x, y, 3/2 - z].

Crystal data

C15H17ClN2OS F(000) = 1296.00
Mr = 308.83 Dx = 1.258 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71075 Å
Hall symbol: -C 2yc Cell parameters from 10539 reflections
a = 14.9649 (6) Å θ = 3.3–27.4°
b = 17.6062 (7) Å µ = 0.36 mm1
c = 12.5606 (5) Å T = 298 K
β = 99.9482 (11)° Block, colorless
V = 3259.6 (2) Å3 0.41 × 0.33 × 0.26 mm
Z = 8

Data collection

Rigaku R-AXIS RAPID diffractometer 2559 reflections with F2 > 2σ(F2)
Detector resolution: 10.00 pixels mm-1 Rint = 0.027
ω scans θmax = 27.4°
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) h = −19→19
Tmin = 0.858, Tmax = 0.911 k = −22→22
15655 measured reflections l = −16→15
3708 independent reflections

Refinement

Refinement on F2 H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.040 w = 1/[σ2(Fo2) + (0.121P)2] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.172 (Δ/σ)max = 0.001
S = 1.00 Δρmax = 0.27 e Å3
3708 reflections Δρmin = −0.29 e Å3
183 parameters Extinction correction: SHELXL
0 restraints Extinction coefficient: 0.0028 (7)

Special details

Geometry. ENTER SPECIAL DETAILS OF THE MOLECULAR GEOMETRY
Refinement. Refinement using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.02408 (6) 0.70387 (4) 0.59960 (9) 0.1206 (3)
S1 0.46203 (3) 0.39223 (3) 0.44117 (3) 0.0559 (2)
O1 0.29216 (10) 0.40983 (10) 0.48366 (10) 0.0696 (4)
N1 0.40090 (10) 0.41256 (9) 0.63283 (11) 0.0496 (3)
N2 0.55713 (11) 0.40575 (9) 0.63079 (12) 0.0530 (4)
C1 0.24241 (12) 0.41401 (12) 0.65622 (13) 0.0534 (4)
C2 0.18766 (12) 0.48677 (12) 0.64116 (13) 0.0531 (4)
C3 0.18371 (13) 0.53424 (12) 0.72811 (17) 0.0611 (5)
C4 0.13313 (17) 0.60024 (12) 0.7171 (2) 0.0739 (6)
C5 0.08679 (16) 0.61988 (13) 0.6158 (2) 0.0756 (6)
C6 0.08973 (17) 0.57396 (14) 0.5282 (2) 0.0790 (6)
C7 0.13902 (13) 0.50774 (13) 0.54031 (16) 0.0667 (5)
C8 0.31263 (12) 0.41250 (11) 0.58189 (13) 0.0506 (4)
C9 0.47375 (12) 0.40501 (10) 0.57886 (13) 0.0452 (4)
C10 0.61571 (13) 0.39512 (12) 0.55850 (16) 0.0583 (5)
C11 0.57888 (13) 0.38625 (12) 0.45425 (16) 0.0563 (5)
C12 0.62499 (18) 0.37260 (17) 0.35901 (19) 0.0818 (7)
C13 0.18427 (14) 0.34156 (12) 0.63811 (17) 0.0646 (5)
C14 0.24379 (18) 0.27066 (14) 0.6583 (2) 0.0850 (7)
C15 0.11223 (17) 0.34038 (16) 0.7103 (2) 0.0856 (7)
H1 0.2751 0.4131 0.7309 0.064*
H3 0.2160 0.5213 0.7957 0.073*
H4 0.1303 0.6309 0.7766 0.089*
H6 0.0583 0.5877 0.4605 0.095*
H7 0.1400 0.4765 0.4808 0.080*
H10 0.6782 0.3942 0.5812 0.070*
H13 0.1535 0.3409 0.5626 0.078*
H111 0.4119 0.4175 0.7020 0.060*
H121 0.6896 0.3732 0.3823 0.098*
H122 0.6081 0.4118 0.3062 0.098*
H123 0.6068 0.3241 0.3276 0.098*
H141 0.2729 0.2694 0.7326 0.102*
H142 0.2890 0.2719 0.6126 0.102*
H143 0.2068 0.2262 0.6422 0.102*
H151 0.0750 0.2960 0.6946 0.103*
H152 0.0752 0.3850 0.6972 0.103*
H153 0.1412 0.3393 0.7848 0.103*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.1126 (6) 0.0730 (4) 0.1748 (9) 0.0221 (3) 0.0210 (5) 0.0226 (5)
S1 0.0557 (3) 0.0783 (3) 0.0340 (2) −0.0055 (2) 0.0085 (2) −0.00354 (19)
O1 0.0527 (8) 0.1174 (13) 0.0374 (7) 0.0055 (7) 0.0038 (5) −0.0021 (6)
N1 0.0439 (8) 0.0725 (9) 0.0325 (7) 0.0020 (6) 0.0070 (5) −0.0005 (6)
N2 0.0462 (8) 0.0767 (10) 0.0363 (7) −0.0003 (6) 0.0074 (6) −0.0030 (6)
C1 0.0451 (10) 0.0762 (12) 0.0382 (8) 0.0032 (8) 0.0052 (7) 0.0008 (8)
C2 0.0412 (9) 0.0713 (11) 0.0466 (9) −0.0028 (8) 0.0073 (7) 0.0040 (8)
C3 0.0579 (11) 0.0705 (12) 0.0553 (10) 0.0004 (9) 0.0109 (8) −0.0006 (9)
C4 0.0711 (15) 0.0687 (14) 0.0854 (17) −0.0069 (10) 0.0233 (12) −0.0088 (11)
C5 0.0608 (13) 0.0676 (13) 0.0987 (19) −0.0022 (10) 0.0142 (12) 0.0143 (13)
C6 0.0658 (14) 0.0892 (17) 0.0771 (15) 0.0059 (11) −0.0015 (11) 0.0222 (13)
C7 0.0589 (11) 0.0826 (14) 0.0546 (11) 0.0032 (10) −0.0012 (8) 0.0027 (10)
C8 0.0454 (9) 0.0673 (11) 0.0388 (9) 0.0019 (7) 0.0060 (7) 0.0025 (7)
C9 0.0487 (9) 0.0531 (9) 0.0338 (7) −0.0006 (6) 0.0071 (6) 0.0013 (6)
C10 0.0463 (10) 0.0830 (14) 0.0472 (10) −0.0028 (8) 0.0127 (8) −0.0056 (8)
C11 0.0564 (11) 0.0683 (11) 0.0465 (10) −0.0072 (8) 0.0159 (8) −0.0059 (8)
C12 0.0754 (15) 0.118 (2) 0.0586 (12) −0.0162 (14) 0.0299 (11) −0.0212 (13)
C13 0.0569 (11) 0.0775 (13) 0.0589 (11) −0.0026 (9) 0.0083 (9) 0.0043 (10)
C14 0.0848 (17) 0.0730 (15) 0.0990 (19) 0.0032 (12) 0.0214 (14) 0.0015 (13)
C15 0.0702 (15) 0.0908 (17) 0.1022 (19) −0.0038 (12) 0.0331 (13) 0.0192 (14)

Geometric parameters (Å, °)

Cl1—C5 1.744 (2) C13—C14 1.529 (3)
S1—C9 1.7227 (17) C13—C15 1.524 (3)
S1—C11 1.731 (2) N1—H111 0.860
O1—C8 1.220 (2) C1—H1 0.980
N1—C8 1.365 (2) C3—H3 0.930
N1—C9 1.386 (2) C4—H4 0.930
N2—C9 1.304 (2) C6—H6 0.930
N2—C10 1.380 (2) C7—H7 0.930
C1—C2 1.515 (2) C10—H10 0.930
C1—C8 1.522 (2) C12—H121 0.960
C1—C13 1.539 (2) C12—H122 0.960
C2—C3 1.385 (2) C12—H123 0.960
C2—C7 1.397 (2) C13—H13 0.980
C3—C4 1.381 (3) C14—H141 0.960
C4—C5 1.384 (3) C14—H142 0.960
C5—C6 1.372 (3) C14—H143 0.960
C6—C7 1.374 (3) C15—H151 0.960
C10—C11 1.339 (2) C15—H152 0.960
C11—C12 1.500 (3) C15—H153 0.960
C9—S1—C11 89.24 (9) C13—C1—H1 107.7
C8—N1—C9 123.37 (14) C2—C3—H3 119.1
C9—N2—C10 109.35 (15) C4—C3—H3 119.1
C2—C1—C8 110.74 (16) C3—C4—H4 120.6
C2—C1—C13 113.75 (15) C5—C4—H4 120.6
C8—C1—C13 109.12 (16) C5—C6—H6 119.9
C1—C2—C3 120.52 (15) C7—C6—H6 119.9
C1—C2—C7 121.50 (17) C2—C7—H7 119.7
C3—C2—C7 117.97 (19) C6—C7—H7 119.7
C2—C3—C4 121.75 (19) N2—C10—H10 121.4
C3—C4—C5 118.8 (2) C11—C10—H10 121.4
Cl1—C5—C4 119.5 (2) C11—C12—H121 109.5
Cl1—C5—C6 119.8 (2) C11—C12—H122 109.5
C4—C5—C6 120.6 (2) C11—C12—H123 109.5
C5—C6—C7 120.1 (2) H121—C12—H122 109.5
C2—C7—C6 120.7 (2) H121—C12—H123 109.5
O1—C8—N1 121.86 (17) H122—C12—H123 109.5
O1—C8—C1 122.81 (15) C1—C13—H13 108.2
N1—C8—C1 115.30 (14) C14—C13—H13 108.2
S1—C9—N1 123.45 (12) C15—C13—H13 108.2
S1—C9—N2 115.22 (14) C13—C14—H141 109.5
N1—C9—N2 121.32 (15) C13—C14—H142 109.5
N2—C10—C11 117.29 (18) C13—C14—H143 109.5
S1—C11—C10 108.91 (16) H141—C14—H142 109.5
S1—C11—C12 122.03 (14) H141—C14—H143 109.5
C10—C11—C12 129.06 (19) H142—C14—H143 109.5
C1—C13—C14 110.73 (18) C13—C15—H151 109.5
C1—C13—C15 111.30 (18) C13—C15—H152 109.5
C14—C13—C15 110.0 (2) C13—C15—H153 109.5
C8—N1—H111 118.3 H151—C15—H152 109.5
C9—N1—H111 118.3 H151—C15—H153 109.5
C2—C1—H1 107.7 H152—C15—H153 109.5
C8—C1—H1 107.7
C9—S1—C11—C10 −0.73 (16) C13—C1—C2—C7 −65.9 (2)
C9—S1—C11—C12 178.9 (2) C8—C1—C13—C14 57.6 (2)
C11—S1—C9—N1 −178.04 (16) C8—C1—C13—C15 −179.67 (16)
C11—S1—C9—N2 0.70 (15) C13—C1—C8—O1 60.1 (2)
C8—N1—C9—S1 −1.7 (2) C13—C1—C8—N1 −118.44 (17)
C8—N1—C9—N2 179.66 (17) C1—C2—C3—C4 −178.9 (2)
C9—N1—C8—O1 −4.1 (2) C1—C2—C7—C6 −180.0 (2)
C9—N1—C8—C1 174.50 (16) C3—C2—C7—C6 0.7 (3)
C9—N2—C10—C11 −0.2 (2) C7—C2—C3—C4 0.4 (3)
C10—N2—C9—S1 −0.4 (2) C2—C3—C4—C5 −1.3 (3)
C10—N2—C9—N1 178.33 (16) C3—C4—C5—Cl1 −178.89 (19)
C2—C1—C8—O1 −65.9 (2) C3—C4—C5—C6 1.1 (3)
C2—C1—C8—N1 115.61 (17) Cl1—C5—C6—C7 179.97 (13)
C8—C1—C2—C3 −123.34 (19) C4—C5—C6—C7 −0.0 (3)
C8—C1—C2—C7 57.4 (2) C5—C6—C7—C2 −0.9 (3)
C2—C1—C13—C14 −178.17 (17) N2—C10—C11—S1 0.7 (2)
C2—C1—C13—C15 −55.5 (2) N2—C10—C11—C12 −178.9 (2)
C13—C1—C2—C3 113.3 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H111···N2i 0.86 2.08 2.929 (2) 168

Symmetry codes: (i) −x+1, y, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2368).

References

  1. Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst.32, 115–119.
  2. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  3. Forlani, L. (1978). J. Chem. Soc. Perkin Trans. 1, pp. 1169–1171.
  4. Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  5. Holmstead, R. L., Fullmer, D. G. & Ruzo, L. O. (1978). J. Agric. Food Chem.26, 954–959.
  6. Rigaku (1998). PROCESS-AUTO Rigaku Corporation, Tokyo, Japan.
  7. Rigaku/MSC (2004). CrystalStructure Rigaku/MSC, The Woodlands, Texas, USA.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Zhao, J.-H., Cheng, J.-L., Huang, Y.-K. & Zhu, G.-N. (2006). Acta Cryst. E62, o4840–o4841.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks General, I. DOI: 10.1107/S1600536808043031/is2368sup1.cif

e-65-0o184-sup1.cif (17.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808043031/is2368Isup2.hkl

e-65-0o184-Isup2.hkl (181.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES