Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Dec 20;65(Pt 1):o188. doi: 10.1107/S160053680804292X

Methyl 2-diphenyl­phosphor­yloxy-2-aza­bicyclo­[2.2.1]hept-5-ene-3-exo-carboxyl­ate

Carlos A D Sousa a,*, M Luísa C Vale a, José E Rodríguez-Borges a, Xerardo Garcia-Mera b
PMCID: PMC2968096  PMID: 21581642

Abstract

In the title compound, C20H20NO4P, the dihedral angle between the phenyl rings is 68.52 (7)°. In the crystal structure, the mol­ecules are linked by a weak C—H⋯π(arene) inter­action along [010] involving the phenyl CH group and the phenyl rings. There are no further significant inter­molecular inter­actions.

Related literature

For the preparation of the precursor of the title compound, see: Sousa et al. (2008). For related literature about this type of bicyclic compound and their relevance see: Vale et al. (2006), Alves et al. (2006), Yoda et al. (1995).graphic file with name e-65-0o188-scheme1.jpg

Experimental

Crystal data

  • C20H20NO4P

  • M r = 369.34

  • Monoclinic, Inline graphic

  • a = 18.4223 (6) Å

  • b = 8.5522 (3) Å

  • c = 11.6022 (4) Å

  • β = 97.1810 (10)°

  • V = 1813.60 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.18 mm−1

  • T = 100 (2) K

  • 0.37 × 0.34 × 0.34 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2006) T min = 0.871, T max = 0.940

  • 14828 measured reflections

  • 3717 independent reflections

  • 3172 reflections with I > 2σ(I)

  • R int = 0.033

Refinement

  • R[F 2 > 2σ(F 2)] = 0.035

  • wR(F 2) = 0.091

  • S = 1.05

  • 3717 reflections

  • 236 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.41 e Å−3

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablocks I, New_Global_Publ_Block. DOI: 10.1107/S160053680804292X/bx2188sup1.cif

e-65-0o188-sup1.cif (21.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680804292X/bx2188Isup2.hkl

e-65-0o188-Isup2.hkl (178.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12⋯Cg1i 0.95 2.77 3.566 (2) 142

Symmetry code: (i) Inline graphic. Cg1 is the centroid of the C15–C20 ring.

Acknowledgments

This work was supported by the Centro de Investigação em Química of the University of Porto. The X-ray data were collected at the Unidade de Raios X, RIAIDT, University of Santiago de Compostela. The authors thank Antonio L. Llamas-Saiz for his help and the Fundação para a Ciência e Tecnologia (FCT) and Xunta de Galicia for financial support (grants POCTI/QUI/44471/2002 and 07CSA008203-PR, respectively). CADS thanks the FCT for grant No. SFRH/BD/31526/2006.

supplementary crystallographic information

Comment

The stucture of the title compound, (I), is shown in Fig. 1. It can be seen the existence of three chiral centers at C2 (R), C5 (S) and C6 (R). In the crystalline structure, the molecules are linked by a weak C—H···π interaction, Fig. 2 [H12-πi 2.77 Å, C12-H12-π 142°, C12-π 3.566 (2) Å, symmetry code: (i) 1-x,1/2+y, 1/2-z] along [010] directions. There are no further significant intermolecular interactions.

Experimental

The title compound was synthesized from the previously prepared (3exo)-2-hydroxy-2-azabicyclo[2.2.1]hept-5-ene-3-carboxylate (Sousa et al. 2008). Equimolar amounts of (3exo)-2-hydroxy-2-azabicyclo[2.2.1]hept-5-ene-3-carboxylate (0.56 g, 3.3 mmol) and diphenylpfosphinic chloride (0.63 ml, 3.3 mmol), in the presence of 1 eq. of anidrous triethylamine and and a catalytic quantity of DMAP, were let to react overnigth in dichloromethane, at room temperature under argon atmosphere. Water was added and the product was extracted with dichloromethane (3 × 15 ml). The organic layers were dried over sodium sulfate and the solvent was evaporated. The obtained product was purified by flash chromatography (eluent: dichloromethane/diethyl ether 1:1), leading to a light clear yellow oil in 80% yield. Crystals of (I) were made from a slow evaporation of a dichloromethane/hexane solution.

Refinement

All H atoms were found in a difference Fourier map and placed in geometrically idealized and constrained to ride on their parent atoms [C—H = 0.95–1.00 Å and Uiso(H) = 1.2 or 1.5Ueq(C)].

Figures

Fig. 1.

Fig. 1.

A view of (I), showing the three chiral carbons C2, C5 and C6 and the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are shown as spheres of arbitary radius.

Fig. 2.

Fig. 2.

Part of the crystal structute of (I) viewed along the c axis. Dashed lines show C—H···π (arene) interactions. Only H atoms participating in hydrogen bonding are shown. π is the centroid of the ring defined by atoms C15-C20.

Crystal data

C20H20NO4P F(000) = 776
Mr = 369.34 Dx = 1.353 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 1953 reflections
a = 18.4223 (6) Å θ = 3.1–25.9°
b = 8.5522 (3) Å µ = 0.18 mm1
c = 11.6022 (4) Å T = 100 K
β = 97.181 (1)° Prism, colourless
V = 1813.60 (11) Å3 0.37 × 0.34 × 0.34 mm
Z = 4

Data collection

Bruker ApexII CCD area-detector diffractometer 3717 independent reflections
Radiation source: sealed tube 3172 reflections with I > 2σ(I)
graphite Rint = 0.033
phi and ω scans θmax = 26.4°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Bruker, 2006) h = −23→22
Tmin = 0.871, Tmax = 0.940 k = 0→10
14828 measured reflections l = 0→14

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.091 H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0429P)2 + 0.8843P] where P = (Fo2 + 2Fc2)/3
3717 reflections (Δ/σ)max = 0.001
236 parameters Δρmax = 0.28 e Å3
0 restraints Δρmin = −0.41 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.04005 (8) 0.24766 (17) 0.08174 (13) 0.0156 (3)
H1A −0.005 0.3099 0.0614 0.019*
H1B 0.0318 0.1646 0.1381 0.019*
C2 0.10739 (8) 0.34831 (17) 0.12086 (13) 0.0140 (3)
H2 0.1038 0.4159 0.1902 0.017*
C3 0.11615 (8) 0.43459 (18) 0.00937 (13) 0.0157 (3)
H3 0.1328 0.539 0.003 0.019*
C4 0.09614 (8) 0.33679 (18) −0.07788 (13) 0.0170 (3)
H4 0.0965 0.358 −0.1582 0.02*
C5 0.07271 (8) 0.18529 (18) −0.02579 (13) 0.0152 (3)
H5 0.0408 0.1144 −0.0788 0.018*
C6 0.14566 (8) 0.11298 (17) 0.03659 (12) 0.0124 (3)
H6 0.1849 0.1189 −0.0155 0.015*
C7 0.13407 (7) −0.05517 (17) 0.07081 (12) 0.0126 (3)
C8 0.10791 (9) −0.23359 (18) 0.21479 (14) 0.0188 (3)
H8A 0.0638 −0.2759 0.1694 0.028*
H8B 0.1021 −0.2364 0.2976 0.028*
H8C 0.1503 −0.2968 0.201 0.028*
C9 0.37374 (8) 0.32042 (17) 0.19955 (13) 0.0135 (3)
C10 0.39313 (8) 0.28107 (18) 0.09030 (13) 0.0156 (3)
H10 0.3592 0.2281 0.0353 0.019*
C11 0.46227 (8) 0.31986 (19) 0.06275 (14) 0.0196 (3)
H11 0.4758 0.2923 −0.011 0.024*
C12 0.51155 (8) 0.3985 (2) 0.14240 (15) 0.0220 (4)
H12 0.559 0.4232 0.1236 0.026*
C13 0.49180 (9) 0.4412 (2) 0.24924 (15) 0.0228 (4)
H13 0.5253 0.4974 0.3029 0.027*
C14 0.42326 (8) 0.40209 (18) 0.27826 (14) 0.0180 (3)
H14 0.41 0.431 0.3519 0.022*
C15 0.29184 (7) 0.05353 (17) 0.27096 (13) 0.0125 (3)
C16 0.31090 (8) −0.05303 (18) 0.18853 (13) 0.0156 (3)
H16 0.3218 −0.017 0.1151 0.019*
C17 0.31393 (9) −0.21192 (18) 0.21417 (14) 0.0190 (3)
H17 0.3284 −0.2841 0.1591 0.023*
C18 0.29590 (8) −0.26536 (18) 0.31971 (15) 0.0200 (3)
H18 0.2972 −0.3742 0.3364 0.024*
C19 0.27594 (8) −0.16006 (19) 0.40103 (14) 0.0185 (3)
H19 0.2629 −0.197 0.4729 0.022*
C20 0.27503 (8) −0.00078 (18) 0.37771 (13) 0.0149 (3)
H20 0.2629 0.0713 0.4346 0.018*
N1 0.16332 (6) 0.21932 (14) 0.13812 (11) 0.0116 (3)
O1 0.11889 (6) −0.07336 (12) 0.17981 (9) 0.0166 (2)
O2 0.13582 (6) −0.16137 (12) 0.00278 (9) 0.0190 (2)
O3 0.23563 (5) 0.28855 (12) 0.12671 (9) 0.0131 (2)
O4 0.27071 (6) 0.34776 (12) 0.34900 (9) 0.0158 (2)
P1 0.288697 (19) 0.26111 (4) 0.24650 (3) 0.01112 (11)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0105 (7) 0.0152 (8) 0.0210 (8) 0.0011 (6) 0.0016 (6) 0.0022 (6)
C2 0.0121 (7) 0.0126 (7) 0.0175 (7) 0.0026 (6) 0.0025 (6) −0.0004 (6)
C3 0.0118 (7) 0.0132 (7) 0.0218 (8) 0.0026 (6) 0.0016 (6) 0.0041 (6)
C4 0.0154 (7) 0.0179 (8) 0.0172 (7) 0.0029 (6) 0.0000 (6) 0.0060 (6)
C5 0.0130 (7) 0.0149 (8) 0.0167 (7) −0.0011 (6) −0.0020 (6) 0.0021 (6)
C6 0.0112 (7) 0.0123 (7) 0.0135 (7) −0.0005 (6) 0.0008 (5) 0.0000 (6)
C7 0.0081 (6) 0.0149 (7) 0.0145 (7) 0.0003 (6) −0.0001 (5) −0.0004 (6)
C8 0.0206 (8) 0.0145 (8) 0.0209 (8) −0.0045 (6) 0.0010 (6) 0.0058 (6)
C9 0.0106 (7) 0.0116 (7) 0.0180 (7) 0.0001 (6) 0.0005 (6) 0.0035 (6)
C10 0.0133 (7) 0.0161 (8) 0.0169 (7) −0.0018 (6) −0.0003 (6) 0.0041 (6)
C11 0.0170 (8) 0.0232 (8) 0.0192 (8) 0.0001 (6) 0.0047 (6) 0.0046 (6)
C12 0.0131 (7) 0.0242 (9) 0.0289 (9) −0.0026 (6) 0.0031 (6) 0.0075 (7)
C13 0.0152 (8) 0.0235 (9) 0.0283 (9) −0.0056 (7) −0.0031 (7) −0.0009 (7)
C14 0.0157 (7) 0.0174 (8) 0.0205 (8) −0.0009 (6) 0.0002 (6) −0.0009 (6)
C15 0.0086 (7) 0.0114 (7) 0.0165 (7) −0.0001 (5) −0.0021 (5) 0.0011 (6)
C16 0.0139 (7) 0.0163 (8) 0.0162 (7) 0.0004 (6) 0.0008 (6) 0.0004 (6)
C17 0.0188 (8) 0.0145 (8) 0.0226 (8) 0.0031 (6) −0.0022 (6) −0.0060 (6)
C18 0.0166 (8) 0.0120 (8) 0.0296 (9) −0.0001 (6) −0.0043 (7) 0.0042 (7)
C19 0.0151 (7) 0.0198 (8) 0.0202 (8) −0.0022 (6) 0.0002 (6) 0.0068 (6)
C20 0.0121 (7) 0.0154 (8) 0.0169 (7) −0.0008 (6) 0.0008 (6) −0.0007 (6)
N1 0.0071 (6) 0.0117 (6) 0.0161 (6) −0.0022 (5) 0.0017 (5) −0.0004 (5)
O1 0.0224 (6) 0.0119 (5) 0.0163 (5) −0.0032 (4) 0.0049 (4) 0.0011 (4)
O2 0.0245 (6) 0.0139 (6) 0.0189 (6) −0.0012 (4) 0.0038 (5) −0.0031 (5)
O3 0.0079 (5) 0.0142 (5) 0.0168 (5) −0.0033 (4) 0.0003 (4) 0.0029 (4)
O4 0.0165 (5) 0.0135 (5) 0.0177 (5) −0.0003 (4) 0.0030 (4) −0.0014 (4)
P1 0.00981 (19) 0.01024 (19) 0.0131 (2) −0.00066 (14) 0.00083 (14) 0.00053 (14)

Geometric parameters (Å, °)

C1—C2 1.531 (2) C10—C11 1.392 (2)
C1—C5 1.546 (2) C10—H10 0.95
C1—H1A 0.99 C11—C12 1.386 (2)
C1—H1B 0.99 C11—H11 0.95
C2—N1 1.5057 (18) C12—C13 1.384 (2)
C2—C3 1.515 (2) C12—H12 0.95
C2—H2 1 C13—C14 1.388 (2)
C3—C4 1.329 (2) C13—H13 0.95
C3—H3 0.95 C14—H14 0.95
C4—C5 1.515 (2) C15—C20 1.393 (2)
C4—H4 0.95 C15—C16 1.397 (2)
C5—C6 1.571 (2) C15—P1 1.7976 (15)
C5—H5 1 C16—C17 1.391 (2)
C6—N1 1.4915 (18) C16—H16 0.95
C6—C7 1.514 (2) C17—C18 1.386 (2)
C6—H6 1 C17—H17 0.95
C7—O2 1.2064 (18) C18—C19 1.387 (2)
C7—O1 1.3379 (17) C18—H18 0.95
C8—O1 1.4505 (18) C19—C20 1.389 (2)
C8—H8A 0.98 C19—H19 0.95
C8—H8B 0.98 C20—H20 0.95
C8—H8C 0.98 N1—O3 1.4786 (15)
C9—C14 1.395 (2) O3—P1 1.6133 (10)
C9—C10 1.400 (2) O4—P1 1.4737 (11)
C9—P1 1.7950 (15)
C2—C1—C5 92.89 (11) C11—C10—H10 120.2
C2—C1—H1A 113.1 C9—C10—H10 120.2
C5—C1—H1A 113.1 C12—C11—C10 120.30 (15)
C2—C1—H1B 113.1 C12—C11—H11 119.8
C5—C1—H1B 113.1 C10—C11—H11 119.8
H1A—C1—H1B 110.5 C13—C12—C11 120.11 (14)
N1—C2—C3 109.04 (11) C13—C12—H12 119.9
N1—C2—C1 98.23 (11) C11—C12—H12 119.9
C3—C2—C1 100.92 (12) C12—C13—C14 120.20 (15)
N1—C2—H2 115.5 C12—C13—H13 119.9
C3—C2—H2 115.5 C14—C13—H13 119.9
C1—C2—H2 115.5 C13—C14—C9 120.14 (15)
C4—C3—C2 107.14 (13) C13—C14—H14 119.9
C4—C3—H3 126.4 C9—C14—H14 119.9
C2—C3—H3 126.4 C20—C15—C16 119.59 (14)
C3—C4—C5 107.46 (13) C20—C15—P1 117.59 (11)
C3—C4—H4 126.3 C16—C15—P1 122.82 (11)
C5—C4—H4 126.3 C17—C16—C15 119.85 (14)
C4—C5—C1 100.71 (12) C17—C16—H16 120.1
C4—C5—C6 104.50 (12) C15—C16—H16 120.1
C1—C5—C6 99.25 (11) C18—C17—C16 120.24 (15)
C4—C5—H5 116.6 C18—C17—H17 119.9
C1—C5—H5 116.6 C16—C17—H17 119.9
C6—C5—H5 116.6 C17—C18—C19 120.02 (14)
N1—C6—C7 113.33 (11) C17—C18—H18 120
N1—C6—C5 102.32 (11) C19—C18—H18 120
C7—C6—C5 110.74 (12) C18—C19—C20 120.14 (15)
N1—C6—H6 110.1 C18—C19—H19 119.9
C7—C6—H6 110.1 C20—C19—H19 119.9
C5—C6—H6 110.1 C19—C20—C15 120.11 (14)
O2—C7—O1 123.83 (14) C19—C20—H20 119.9
O2—C7—C6 121.82 (13) C15—C20—H20 119.9
O1—C7—C6 114.29 (12) O3—N1—C6 106.47 (10)
O1—C8—H8A 109.5 O3—N1—C2 107.69 (10)
O1—C8—H8B 109.5 C6—N1—C2 105.28 (11)
H8A—C8—H8B 109.5 C7—O1—C8 115.30 (12)
O1—C8—H8C 109.5 N1—O3—P1 108.68 (8)
H8A—C8—H8C 109.5 O4—P1—O3 116.67 (6)
H8B—C8—H8C 109.5 O4—P1—C9 113.30 (7)
C14—C9—C10 119.54 (13) O3—P1—C9 98.94 (6)
C14—C9—P1 117.84 (12) O4—P1—C15 112.04 (7)
C10—C9—P1 122.54 (11) O3—P1—C15 106.49 (6)
C11—C10—C9 119.67 (14) C9—P1—C15 108.35 (7)
C5—C1—C2—N1 −60.85 (12) C18—C19—C20—C15 2.1 (2)
C5—C1—C2—C3 50.47 (12) C16—C15—C20—C19 −1.2 (2)
N1—C2—C3—C4 68.17 (15) P1—C15—C20—C19 179.43 (11)
C1—C2—C3—C4 −34.58 (15) C7—C6—N1—O3 120.70 (12)
C2—C3—C4—C5 0.88 (16) C5—C6—N1—O3 −120.03 (11)
C3—C4—C5—C1 32.73 (15) C7—C6—N1—C2 −125.14 (12)
C3—C4—C5—C6 −69.86 (15) C5—C6—N1—C2 −5.87 (13)
C2—C1—C5—C4 −49.87 (12) C3—C2—N1—O3 51.25 (14)
C2—C1—C5—C6 56.93 (12) C1—C2—N1—O3 155.87 (10)
C4—C5—C6—N1 71.20 (13) C3—C2—N1—C6 −62.06 (14)
C1—C5—C6—N1 −32.48 (13) C1—C2—N1—C6 42.56 (13)
C4—C5—C6—C7 −167.72 (12) O2—C7—O1—C8 3.0 (2)
C1—C5—C6—C7 88.59 (13) C6—C7—O1—C8 −179.72 (12)
N1—C6—C7—O2 −162.95 (13) C6—N1—O3—P1 −127.24 (9)
C5—C6—C7—O2 82.74 (17) C2—N1—O3—P1 120.25 (10)
N1—C6—C7—O1 19.76 (17) N1—O3—P1—O4 −68.47 (10)
C5—C6—C7—O1 −94.56 (14) N1—O3—P1—C9 169.71 (9)
C14—C9—C10—C11 1.8 (2) N1—O3—P1—C15 57.44 (9)
P1—C9—C10—C11 −174.85 (12) C14—C9—P1—O4 18.47 (14)
C9—C10—C11—C12 −0.7 (2) C10—C9—P1—O4 −164.79 (12)
C10—C11—C12—C13 −1.0 (2) C14—C9—P1—O3 142.70 (12)
C11—C12—C13—C14 1.6 (3) C10—C9—P1—O3 −40.56 (14)
C12—C13—C14—C9 −0.4 (2) C14—C9—P1—C15 −106.51 (13)
C10—C9—C14—C13 −1.3 (2) C10—C9—P1—C15 70.23 (14)
P1—C9—C14—C13 175.54 (12) C20—C15—P1—O4 2.24 (13)
C20—C15—C16—C17 −0.9 (2) C16—C15—P1—O4 −177.14 (11)
P1—C15—C16—C17 178.48 (11) C20—C15—P1—O3 −126.43 (11)
C15—C16—C17—C18 2.0 (2) C16—C15—P1—O3 54.19 (13)
C16—C17—C18—C19 −1.1 (2) C20—C15—P1—C9 127.97 (11)
C17—C18—C19—C20 −1.0 (2) C16—C15—P1—C9 −51.41 (14)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C12—H12···Cg1i 0.95 2.77 3.566 (2) 142

Symmetry codes: (i) −x+1, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BX2188).

References

  1. Altomare, A., Cascarano, C., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Burla, M. C., Polidori, G., Camalli, M. & Spagna, R. (1997). SIR97 University of Bari, Italy.
  2. Alves, M. J., García-Mera, X., Vale, M. L. C., Santos, T. P., Aguiar, F. R. & Rodrígues-Borges, J. E. (2006). Tetrahedron Lett 47, 7595–7597.
  3. Bruker (2006). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  5. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Sousa, C. A. D., Vale, M. L. C., Rodrígues-Borges, J. E. & García-Mera, X. (2008). Tetrahedron Lett 49, 5777–5781.
  8. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  9. Vale, M. L. C., Rodrígues-Borges, J. E., Caamaño, O., Fernández, F. & García-Mera, X. (2006). Tetrahedron, 62, 9475–9482.
  10. Yoda, H., Yamazaki, H., Kawauchi, M. & Takabe, K. (1995). Tetrahedron Asymmetry, 6, 2669–2672.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, New_Global_Publ_Block. DOI: 10.1107/S160053680804292X/bx2188sup1.cif

e-65-0o188-sup1.cif (21.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680804292X/bx2188Isup2.hkl

e-65-0o188-Isup2.hkl (178.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES