Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Dec 24;65(Pt 1):o192. doi: 10.1107/S1600536808042931

Potassium trifluoro­[(Z)-3-(oxan-2-yl­oxy)prop-1-en-1-yl]borate monohydrate

Julio Zukerman-Schpector a,*, Rafael C Guadagnin b, Hélio A Stefani b, Lorenzo do Canto Visentin c
PMCID: PMC2968100  PMID: 21581647

Abstract

The title compound, K+·C8H13BF3O2 ·H2O, which was obtained from the reaction of a modified form of Z-vinylic telluride via a transmetalation reaction with n-BuLi, crystallizes as K+ and C8H13BF3O2 ions along with a water mol­ecule. The K+ cation is surrounded by four anions, making close contacts with six F atoms at 2.659 (3)–2.906 (3) Å and with two O atoms at 2.806 (3) and 2.921 (3) Å in a distorted bicapped trigonal-prismatic geometry.

Related literature

For related structures, see: Stefani et al. (2006); Caracelli et al. (2007); Zukerman-Schpector et al. (2008). For related literature, see: Vieira et al. (2008). For the synthesis, see: Bernady et al. (1979). For ring puckering analysis, see: Cremer & Pople (1975).graphic file with name e-65-0o192-scheme1.jpg

Experimental

Crystal data

  • K+·C8H13BF3O2 ·H2O

  • M r = 266.11

  • Orthorhombic, Inline graphic

  • a = 8.5210 (7) Å

  • b = 17.056 (1) Å

  • c = 8.6318 (7) Å

  • V = 1254.50 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.45 mm−1

  • T = 291 (2) K

  • 0.27 × 0.10 × 0.04 mm

Data collection

  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2006) T min = 0.888, T max = 0.982

  • 11914 measured reflections

  • 2324 independent reflections

  • 1604 reflections with I > 2σ(I)

  • R int = 0.074

Refinement

  • R[F 2 > 2σ(F 2)] = 0.041

  • wR(F 2) = 0.096

  • S = 1.03

  • 2324 reflections

  • 145 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.19 e Å−3

  • Absolute structure: Flack (Flack, 1983), 1064 Friedel pairs

  • Flack parameter: 0.07 (9)

Data collection: COLLECT (Nonius, 1998); cell refinement: PHICHI (Duisenberg et al., 2000); data reduction: EVAL-14 (CCD) (Duisenberg et al., 2003); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808042931/ng2525sup1.cif

e-65-0o192-sup1.cif (15.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808042931/ng2525Isup2.hkl

e-65-0o192-Isup2.hkl (112KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank FAPESP (grants 07/59404–2 to HAS and 08/02531–5 to JZ-S), CNPq (grants 300613/2007 to HAS and 307121/2006–0 to JZ-S) and CAPES for financial support. The LDRX (Laboratório de Difração de Raios X), UFF-RJ, for the use of the diffractometer.

supplementary crystallographic information

Comment

Organic compounds of tellurium, such as Z-vinylic tellurides, are important synthetic precursors of organometallic molecules and organic salts and can be useful in the synthesis of new potassium vinyl trifluoroborate salts. Organotrifluoroborates represent an alternative to boronic acids, boronate esters, and organoboranes for use in the Suzuki-Miyaura reaction and other transition-metal-catalyzed cross-coupling reactions (Vieira et al. 2008). The title compound (I), Fig. 1, was studied as part of an ongoing systematic synthesis of trifluoroborate compounds (Stefani et al.(2006), Caracelli et al. (2007); Zukerman-Schpector et al. (2008)). The oxane ring is in a slightly distorted chair conformation, the ring-puckering parameters (Cremer & Pople, 1975) are q2 = 0.033 (6) Å, q3 = 0.555 (6) Å, Q = 0.556 (7)°, θ = 3.4 (6)° and φ2 = 156 (11)°. The geometry around the K+ ion can be described as a distorted bicaped trigonal prism as shown in Figure 2. Besides the K+ interactions,the molecules are connected via C3···O2i = 3.600 (6) Å, C3—H3A···O2i = 132° (i = -x + 3/2, y, z + 1/2) contact.

Experimental

The starting propargylic alcohol was protected with dihydropyran (Bernady et al. 1979) and via hydrotelluration of the alkyne transformed in the correspondent Z-vinylic telluride. Next, nBuLi (0.8 mmol) was added dropwise at 203 K to a solution of the Z-vinylic telluride (1 mmol) in Et2O (6 ml). The bath temperature was raised to 253 K. After 20 minutes B(OiPr)3 (1.0 mmol) was added at 233 K. After 1 h, an aqueous solution of KHF2 (4 mmol in 10 ml of water) was added to the reaction mixture. Then, the solvent and water were eliminated by evaporation. To the obtained solid hot acetone was added and the bulk reactional was filtered and dried, yielding 24% of (Z)-potassium vinyltrifluoroborate salt. Single crystals were obtained by slow evaporation from Et2O.

Refinement

The H atoms were refined in the riding-model approximation with Uiso(H) = 1.2Ueq, and with C—H = 0.93 - 0.97 Å. The water molecule H atoms were refined riding in the position found in a difference map.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound showing atom labelling scheme and displacement ellipsoids at the 50% probability level (arbitrary spheres for the H atoms).

Fig. 2.

Fig. 2.

The bicapped trigonal prism around the K+ ion. Symmetry operations: a = 1 - x, -y, z - 1/2; b = 1/2 - x, y, z - 1/2; c = x - 1/2, -y, z.

Crystal data

K+·C8H13BF3O2·H2O F(000) = 552
Mr = 266.11 Dx = 1.409 Mg m3
Orthorhombic, Pca21 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2ac Cell parameters from 9536 reflections
a = 8.5210 (7) Å θ = 2.3–21.8°
b = 17.056 (1) Å µ = 0.45 mm1
c = 8.6318 (7) Å T = 291 K
V = 1254.50 (16) Å3 Plate, colourless
Z = 4 0.27 × 0.10 × 0.04 mm

Data collection

Nonius KappaCCD diffractometer 2324 independent reflections
Radiation source: fine-focus sealed tube 1604 reflections with I > 2σ(I)
graphite Rint = 0.074
φ and ω scans θmax = 25.5°, θmin = 3.4°
Absorption correction: multi-scan (SADABS; Bruker, 2006) h = −10→10
Tmin = 0.888, Tmax = 0.982 k = −20→20
11914 measured reflections l = −10→10

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041 H-atom parameters constrained
wR(F2) = 0.096 w = 1/[σ2(Fo2) + (0.0438P)2] where P = (Fo2 + 2Fc2)/3
S = 1.03 (Δ/σ)max < 0.001
2324 reflections Δρmax = 0.23 e Å3
145 parameters Δρmin = −0.19 e Å3
1 restraint Absolute structure: Flack (Flack, 1983), 1064 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: 0.07 (9)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
K 0.24966 (12) −0.03852 (4) 0.49817 (17) 0.04270 (18)
B 0.3952 (4) 0.1021 (2) 0.7488 (8) 0.0421 (8)
F1 0.2390 (2) 0.07214 (10) 0.7452 (5) 0.0524 (4)
F2 0.4623 (4) 0.08281 (14) 0.6069 (3) 0.0627 (8)
F3 0.4710 (3) 0.05485 (16) 0.8649 (3) 0.0714 (9)
O1 0.5509 (3) 0.32819 (14) 0.5091 (4) 0.0665 (8)
O2 0.5808 (3) 0.28932 (14) 0.2496 (5) 0.0675 (7)
O3 0.3979 (3) −0.12040 (12) 0.7392 (4) 0.0516 (6)
H1O3 0.4374 −0.1060 0.8252 0.062*
H2O3 0.4006 −0.1711 0.7375 0.062*
C1 0.4036 (5) 0.1914 (2) 0.7978 (4) 0.0585 (12)
H1 0.3581 0.2026 0.8932 0.070*
C2 0.4642 (5) 0.2527 (2) 0.7267 (6) 0.0614 (11)
H2 0.4563 0.3010 0.7758 0.074*
C3 0.5447 (6) 0.2502 (3) 0.5726 (5) 0.0673 (12)
H3A 0.6502 0.2297 0.5846 0.081*
H3B 0.4877 0.2159 0.5028 0.081*
C4 0.6461 (6) 0.3325 (2) 0.3741 (6) 0.0677 (12)
H4 0.7499 0.3110 0.3982 0.081*
C6 0.4336 (7) 0.3192 (3) 0.1981 (7) 0.101 (2)
H6A 0.3585 0.3169 0.2824 0.121*
H6B 0.3944 0.2868 0.1143 0.121*
C7 0.4488 (8) 0.4031 (4) 0.1427 (8) 0.114 (2)
H7A 0.3468 0.4229 0.1115 0.137*
H7B 0.5183 0.4054 0.0538 0.137*
C8 0.5146 (8) 0.4530 (3) 0.2740 (10) 0.100 (2)
H8A 0.5340 0.5059 0.2372 0.120*
H8B 0.4392 0.4558 0.3580 0.120*
C9 0.6638 (8) 0.4176 (3) 0.3308 (7) 0.0904 (17)
H9A 0.6999 0.4467 0.4205 0.108*
H9B 0.7431 0.4223 0.2507 0.108*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
K 0.0363 (3) 0.0543 (4) 0.0374 (3) −0.0017 (5) 0.0004 (3) 0.0036 (7)
B 0.0300 (17) 0.053 (2) 0.0437 (18) −0.0018 (16) 0.007 (3) −0.001 (3)
F1 0.0330 (9) 0.0674 (10) 0.0569 (10) −0.0045 (9) 0.0018 (15) −0.005 (2)
F2 0.0665 (17) 0.0580 (15) 0.0635 (15) −0.0067 (13) 0.0313 (13) −0.0131 (13)
F3 0.0493 (17) 0.0804 (18) 0.085 (2) −0.0009 (15) −0.0228 (15) 0.0288 (16)
O1 0.080 (2) 0.0450 (14) 0.0746 (19) 0.0016 (14) 0.010 (2) 0.0035 (17)
O2 0.0800 (18) 0.0491 (14) 0.0735 (16) −0.0009 (14) 0.004 (2) −0.002 (2)
O3 0.0605 (14) 0.0446 (13) 0.0497 (13) 0.0003 (11) 0.0093 (17) −0.0057 (18)
C1 0.073 (3) 0.056 (3) 0.046 (2) −0.007 (2) 0.0120 (19) −0.0077 (17)
C2 0.066 (2) 0.049 (2) 0.069 (3) −0.0020 (19) 0.008 (3) −0.019 (2)
C3 0.079 (3) 0.053 (3) 0.070 (3) 0.003 (2) 0.015 (2) 0.003 (2)
C4 0.060 (3) 0.057 (3) 0.086 (3) −0.008 (2) 0.014 (2) 0.005 (3)
C6 0.093 (4) 0.108 (4) 0.101 (5) −0.014 (3) −0.016 (3) −0.008 (3)
C7 0.115 (6) 0.105 (5) 0.123 (6) 0.024 (4) −0.017 (4) 0.034 (5)
C8 0.133 (5) 0.053 (3) 0.113 (6) 0.023 (3) 0.015 (4) 0.012 (3)
C9 0.106 (5) 0.067 (3) 0.098 (4) −0.022 (3) 0.021 (3) 0.004 (3)

Geometric parameters (Å, °)

B—F1 1.426 (4) C3—H3B 0.9700
B—F2 1.392 (6) C4—C9 1.507 (6)
B—F3 1.439 (6) C4—H4 0.9800
B—C1 1.582 (5) C6—C7 1.514 (8)
O1—C4 1.422 (5) C6—H6A 0.9700
O1—C3 1.439 (5) C6—H6B 0.9700
O2—C4 1.417 (6) C7—C8 1.525 (10)
O2—C6 1.425 (6) C7—H7A 0.9700
O3—H1O3 0.8518 C7—H7B 0.9700
O3—H2O3 0.8651 C8—C9 1.490 (8)
C1—C2 1.317 (6) C8—H8A 0.9700
C1—H1 0.9300 C8—H8B 0.9700
C2—C3 1.497 (7) C9—H9A 0.9700
C2—H2 0.9300 C9—H9B 0.9700
C3—H3A 0.9700
F2—B—F1 106.2 (4) C9—C4—H4 108.8
F2—B—F3 107.2 (3) O2—C6—C7 111.2 (4)
F1—B—F3 103.5 (3) O2—C6—H6A 109.4
F2—B—C1 116.4 (3) C7—C6—H6A 109.4
F1—B—C1 113.2 (3) O2—C6—H6B 109.4
F3—B—C1 109.4 (4) C7—C6—H6B 109.4
C4—O1—C3 112.3 (3) H6A—C6—H6B 108.0
C4—O2—C6 113.4 (4) C6—C7—C8 108.9 (5)
H1O3—O3—H2O3 107.0 C6—C7—H7A 109.9
C2—C1—B 131.1 (4) C8—C7—H7A 109.9
C2—C1—H1 114.5 C6—C7—H7B 109.9
B—C1—H1 114.5 C8—C7—H7B 109.9
C1—C2—C3 124.8 (4) H7A—C7—H7B 108.3
C1—C2—H2 117.6 C9—C8—C7 109.4 (5)
C3—C2—H2 117.6 C9—C8—H8A 109.8
O1—C3—C2 109.2 (3) C7—C8—H8A 109.8
O1—C3—H3A 109.8 C9—C8—H8B 109.8
C2—C3—H3A 109.8 C7—C8—H8B 109.8
O1—C3—H3B 109.8 H8A—C8—H8B 108.2
C2—C3—H3B 109.8 C8—C9—C4 112.7 (5)
H3A—C3—H3B 108.3 C8—C9—H9A 109.0
O2—C4—O1 111.8 (3) C4—C9—H9A 109.0
O2—C4—C9 110.6 (4) C8—C9—H9B 109.0
O1—C4—C9 108.1 (4) C4—C9—H9B 109.0
O2—C4—H4 108.8 H9A—C9—H9B 107.8
O1—C4—H4 108.8
F2—B—C1—C2 0.1 (7) C3—O1—C4—O2 66.2 (5)
F1—B—C1—C2 −123.4 (6) C3—O1—C4—C9 −171.9 (4)
F3—B—C1—C2 121.8 (5) C4—O2—C6—C7 60.0 (6)
B—C1—C2—C3 −0.3 (8) O2—C6—C7—C8 −57.6 (7)
C4—O1—C3—C2 171.2 (4) C6—C7—C8—C9 54.2 (7)
C1—C2—C3—O1 161.9 (4) C7—C8—C9—C4 −53.4 (7)
C6—O2—C4—O1 63.8 (5) O2—C4—C9—C8 53.8 (6)
C6—O2—C4—C9 −56.6 (5) O1—C4—C9—C8 −68.9 (6)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2525).

References

  1. Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst.32, 115–119.
  2. Bernady, K. F., Floyd, M. B., Poletto, J. F. & Weiss, M. J. (1979). J. Org. Chem.44, 1438–1447.
  3. Bruker (2006). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Caracelli, I., Stefani, H. A., Vieira, A. S., Machado, M. M. P. & Zukerman-Schpector, J. (2007). Z. Krist. New Cryst. Struct.222, 345–346.
  5. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  6. Duisenberg, A. J. M., Hooft, R. W. W., Schreurs, A. M. M. & Kroon, J. (2000). J. Appl. Cryst.33, 893–898.
  7. Duisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst.36, 220–229.
  8. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  9. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  10. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  11. Nonius (1998) COLLECT Nonius BV, Delft, The Netherlands.
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Stefani, H. A., Cella, R., Zukerman-Schpector, J. & Caracelli, I. (2006). Z. Krist. New Cryst. Struct.221, 167–168.
  14. Vieira, A. S., Fiorante, P. F., Zukerman-Schpector, J., Alves, D., Botteselle, G. V. & Stefani, H. A. (2008). Tetrahedron, 64, 7234–7241.
  15. Zukerman-Schpector, J., Guadagnin, R. C., Stefani, H. A. & Visentin, L. do C. (2008). Acta Cryst. E64, m1525. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808042931/ng2525sup1.cif

e-65-0o192-sup1.cif (15.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808042931/ng2525Isup2.hkl

e-65-0o192-Isup2.hkl (112KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES