Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Dec 24;65(Pt 1):o193. doi: 10.1107/S1600536808035678

2-(5-Bromo-2-hydroxy­phen­yl)-1,2-dihydro­quinazolin-4(3H)-one

Davar M Boghaei a,*, Mohammad Mahdi Najafpour a, Vickie McKee b
PMCID: PMC2968101  PMID: 21581648

Abstract

The asymmetric unit of the title compound, C14H11BrN2O2, contains two independent mol­ecules connected into a dimer by inter­molecular N—H⋯O hydrogen bonds involving the amine and carbonyl groups. The dimers are further connected by O—H⋯O hydrogen bonds, forming chains running parallel to the a axis, which are stabilized through π–π stacking inter­actions, with a centroid–centroid distance of 3.679 (8) Å. The dihedral angle between the two aromatic rings is 89.2 (4)°.

Related literature

For general background to the chemistry of quinazolinone derivatives, see: Liu (2008); Goto et al. (1993); Mohri (2001). For hydrogen-bond motifs, see: Bernstein et al. (1995).graphic file with name e-65-0o193-scheme1.jpg

Experimental

Crystal data

  • C14H11BrN2O2

  • M r = 319.16

  • Triclinic, Inline graphic

  • a = 8.8392 (5) Å

  • b = 11.2252 (7) Å

  • c = 13.8817 (8) Å

  • α = 73.0392 (9)°

  • β = 75.9620 (9)°

  • γ = 85.0936 (9)°

  • V = 1277.95 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.21 mm−1

  • T = 150 (2) K

  • 0.21 × 0.12 × 0.07 mm

Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003) T min = 0.552, T max = 0.806

  • 13015 measured reflections

  • 6129 independent reflections

  • 4580 reflections with I > 2σ(I)

  • R int = 0.035

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040

  • wR(F 2) = 0.099

  • S = 1.02

  • 6129 reflections

  • 343 parameters

  • H-atom parameters constrained

  • Δρmax = 0.64 e Å−3

  • Δρmin = −0.70 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global, New_Global_Publ_Block. DOI: 10.1107/S1600536808035678/rz2254sup1.cif

e-65-0o193-sup1.cif (21.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808035678/rz2254Isup2.hkl

e-65-0o193-Isup2.hkl (300KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2A—H2NA⋯O1B 0.95 1.97 2.897 (3) 165
N2B—H2NB⋯O1A 0.91 2.05 2.914 (3) 157
O2A—H2OA⋯O1Ai 0.85 1.90 2.701 (3) 157
O2B—H2OB⋯O1Bii 0.85 1.86 2.691 (3) 165

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

We are grateful to the Research Council of Sharif University of Technology and Loughborough University for their financial support.

supplementary crystallographic information

Comment

Quinazolinone derivatives are of interest because of their biological activity, and have been widely used as key compounds in medicinal drugs (Goto et al., 1993; Mohri, 2001). We herein report the crystal structure of 1,2-dihydro-2-(5-bromo-2-hydroxybenzene)-4(3H)-quinazolinone.

The asymmentric unit of the title compound (Fig. 1) contains two crystallographically independent molecules, which are linked into a dimer by a pair of intermolecular N—H···O hydrogen bonds (Table 1), generating a ring of graph set R22(8) (Bernstein et al., 1995). Bond lengths and angles are within normal ranges. The dimers are further connected by O—H···O hydrogen bonding interactions to form chains running parallel to the a axis (Figures 2). The chains are stabilized by π–π stacking interactions involving adjacent 5-bromo-2-hydroxybenzene rings, with a centroid-centroid separation of 3.679 (8) Å, a perpendicular interplanar distance of 3.561 (8) Å and a centroid···centroid offset of 0.924 (6) Å.

Experimental

The title compound was synthesized by adding 5-bromo-2-hydroxybenzaldehyde (2 mmol, 402 mg) to a solution of 2-aminobenzamide (2 mmol, 272 mg) and manganese acetate (0.02 mmol, 4.90 mg) in ethanol (20 ml). The mixture was refluxed with stirring for 5 h. The resultant yellow solution was filtered. Yellow single crystals of the title compound suitable for X-ray structure determination were recrystallized from a mixture of water/ethanol (2:1 v/v) by slow evaporation of the solvents at room temperature over several days.

Refinement

All H atoms atoms were placed in calculated positions and refined using the riding model approximation, with C—H = 0.95-1.0 Å, O—H = 0.85 Å, N—H = 0.89 Å and with Uiso(H) = 1.2Ueq(C). The isotropic thermal parameter of the hydrogen atoms bound to the N and O atoms was fixed at 0.04 Å2.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level. Hydrogen bonds are shown as dashed lines.

Fig. 2.

Fig. 2.

Crystal packing of the title compound viewed along the a axis with hydrogen atoms omitted for clarity. Hydrogen bonds are shown as dashed lines.

Crystal data

C14H11BrN2O2 Z = 4
Mr = 319.16 F(000) = 640
Triclinic, P1 Dx = 1.659 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 8.8392 (5) Å Cell parameters from 3058 reflections
b = 11.2252 (7) Å θ = 2.4–25.8°
c = 13.8817 (8) Å µ = 3.22 mm1
α = 73.0392 (9)° T = 150 K
β = 75.9620 (9)° Block, yellow
γ = 85.0936 (9)° 0.21 × 0.12 × 0.07 mm
V = 1277.95 (13) Å3

Data collection

Bruker APEXII CCD diffractometer 6129 independent reflections
Radiation source: fine-focus sealed tube 4580 reflections with I > 2σ(I)
graphite Rint = 0.035
φ and ω scans θmax = 28.0°, θmin = 1.6°
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) h = −11→11
Tmin = 0.552, Tmax = 0.806 k = −14→14
13015 measured reflections l = −18→18

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.099 H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0415P)2 + 0.6583P] where P = (Fo2 + 2Fc2)/3
6129 reflections (Δ/σ)max = 0.001
343 parameters Δρmax = 0.64 e Å3
0 restraints Δρmin = −0.70 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1A 0.0154 (3) −0.1619 (2) 0.82388 (19) 0.0233 (5)
C1A 0.1438 (3) −0.2154 (3) 0.7715 (2) 0.0226 (6)
C2A 0.1414 (4) −0.3350 (3) 0.7594 (2) 0.0274 (7)
H2A 0.0487 −0.3822 0.7874 0.033*
C3A 0.2724 (4) −0.3839 (3) 0.7072 (2) 0.0308 (7)
H3A 0.2693 −0.4652 0.7000 0.037*
C4A 0.4098 (4) −0.3167 (3) 0.6646 (2) 0.0301 (7)
H4A 0.4981 −0.3506 0.6262 0.036*
C5A 0.4164 (3) −0.2011 (3) 0.6785 (2) 0.0260 (7)
H5A 0.5103 −0.1554 0.6508 0.031*
C6A 0.2848 (3) −0.1506 (3) 0.7335 (2) 0.0221 (6)
C7A 0.2963 (3) −0.0355 (3) 0.7617 (2) 0.0219 (6)
O1A 0.4227 (2) 0.0103 (2) 0.75507 (16) 0.0260 (5)
N2A 0.1608 (3) 0.0141 (2) 0.80201 (19) 0.0227 (5)
C8A 0.0102 (3) −0.0267 (3) 0.7988 (2) 0.0224 (6)
H8A −0.0707 −0.0030 0.8545 0.027*
C9A −0.0345 (3) 0.0361 (3) 0.6958 (2) 0.0198 (6)
C10A 0.0667 (3) 0.1068 (3) 0.6088 (2) 0.0222 (6)
H10A 0.1705 0.1192 0.6113 0.027*
C11A 0.0160 (3) 0.1594 (3) 0.5183 (2) 0.0232 (6)
Br1A 0.15542 (4) 0.25729 (3) 0.40004 (2) 0.03233 (10)
C12A −0.1353 (3) 0.1454 (3) 0.5130 (2) 0.0246 (6)
H12A −0.1687 0.1827 0.4507 0.029*
C13A −0.2376 (3) 0.0763 (3) 0.5999 (2) 0.0248 (6)
H13A −0.3421 0.0664 0.5973 0.030*
C14A −0.1883 (3) 0.0214 (3) 0.6905 (2) 0.0212 (6)
O2A −0.2832 (2) −0.0477 (2) 0.77902 (16) 0.0265 (5)
N1B 0.5589 (3) 0.1904 (2) 1.02282 (18) 0.0235 (5)
C1B 0.4498 (3) 0.2837 (3) 1.0340 (2) 0.0215 (6)
C2B 0.4523 (4) 0.3566 (3) 1.1007 (2) 0.0272 (7)
H2B 0.5320 0.3436 1.1381 0.033*
C3B 0.3386 (4) 0.4471 (3) 1.1116 (2) 0.0297 (7)
H3B 0.3396 0.4949 1.1577 0.036*
C4B 0.2227 (4) 0.4691 (3) 1.0563 (2) 0.0306 (7)
H4B 0.1478 0.5341 1.0620 0.037*
C5B 0.2169 (3) 0.3961 (3) 0.9929 (2) 0.0266 (7)
H5B 0.1362 0.4095 0.9564 0.032*
C6B 0.3289 (3) 0.3025 (3) 0.9820 (2) 0.0209 (6)
C7B 0.3173 (3) 0.2169 (3) 0.9224 (2) 0.0224 (6)
O1B 0.1980 (2) 0.2107 (2) 0.89065 (17) 0.0307 (5)
N2B 0.4387 (3) 0.1394 (2) 0.90652 (19) 0.0224 (5)
C8B 0.5894 (3) 0.1544 (3) 0.9271 (2) 0.0217 (6)
H8B 0.6427 0.0710 0.9396 0.026*
C9B 0.6953 (3) 0.2433 (3) 0.8361 (2) 0.0203 (6)
C10B 0.6512 (3) 0.3015 (3) 0.7437 (2) 0.0217 (6)
H10B 0.5498 0.2894 0.7368 0.026*
C11B 0.7546 (3) 0.3770 (3) 0.6619 (2) 0.0246 (6)
Br1B 0.69147 (4) 0.45082 (3) 0.53632 (2) 0.03648 (11)
C12B 0.9020 (4) 0.3972 (3) 0.6699 (2) 0.0283 (7)
H12B 0.9714 0.4501 0.6133 0.034*
C13B 0.9479 (3) 0.3395 (3) 0.7613 (2) 0.0258 (6)
H13B 1.0494 0.3527 0.7675 0.031*
C14B 0.8457 (3) 0.2624 (3) 0.8440 (2) 0.0209 (6)
O2B 0.8846 (2) 0.2024 (2) 0.93607 (16) 0.0274 (5)
H1NA −0.0747 −0.1968 0.8334 0.040*
H1NB 0.6366 0.1868 1.0581 0.040*
H2NA 0.1709 0.0883 0.8199 0.040*
H2NB 0.4285 0.0809 0.8750 0.040*
H2OA −0.3770 −0.0516 0.7751 0.040*
H2OB 0.9813 0.2141 0.9279 0.040*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1A 0.0159 (11) 0.0269 (14) 0.0256 (13) −0.0034 (10) −0.0037 (10) −0.0049 (11)
C1A 0.0204 (14) 0.0291 (16) 0.0183 (14) 0.0018 (12) −0.0080 (11) −0.0041 (12)
C2A 0.0309 (17) 0.0272 (17) 0.0253 (16) −0.0028 (13) −0.0102 (13) −0.0054 (13)
C3A 0.0415 (19) 0.0265 (17) 0.0278 (16) 0.0022 (14) −0.0123 (14) −0.0098 (14)
C4A 0.0276 (16) 0.0382 (19) 0.0293 (17) 0.0080 (14) −0.0100 (13) −0.0163 (15)
C5A 0.0224 (15) 0.0331 (17) 0.0255 (15) 0.0019 (13) −0.0102 (12) −0.0094 (13)
C6A 0.0190 (14) 0.0276 (16) 0.0203 (14) 0.0012 (12) −0.0084 (11) −0.0049 (12)
C7A 0.0182 (14) 0.0290 (16) 0.0192 (14) 0.0000 (12) −0.0076 (11) −0.0052 (12)
O1A 0.0148 (10) 0.0353 (12) 0.0316 (12) −0.0002 (9) −0.0082 (9) −0.0126 (10)
N2A 0.0144 (11) 0.0293 (14) 0.0281 (13) −0.0006 (10) −0.0059 (10) −0.0130 (11)
C8A 0.0134 (13) 0.0323 (17) 0.0236 (15) −0.0002 (12) −0.0037 (11) −0.0115 (13)
C9A 0.0163 (13) 0.0207 (14) 0.0250 (15) 0.0014 (11) −0.0053 (11) −0.0105 (12)
C10A 0.0150 (13) 0.0240 (15) 0.0288 (16) −0.0027 (11) −0.0044 (11) −0.0093 (12)
C11A 0.0210 (14) 0.0206 (15) 0.0265 (15) −0.0008 (11) −0.0047 (12) −0.0048 (12)
Br1A 0.02666 (17) 0.03157 (19) 0.03285 (18) −0.00522 (13) −0.00377 (13) −0.00114 (14)
C12A 0.0247 (15) 0.0252 (16) 0.0261 (15) 0.0027 (12) −0.0103 (12) −0.0079 (13)
C13A 0.0159 (14) 0.0317 (17) 0.0311 (16) 0.0014 (12) −0.0090 (12) −0.0129 (13)
C14A 0.0159 (13) 0.0232 (15) 0.0266 (15) −0.0002 (11) −0.0030 (11) −0.0118 (12)
O2A 0.0134 (10) 0.0361 (12) 0.0281 (11) −0.0049 (9) −0.0044 (8) −0.0048 (9)
N1B 0.0178 (12) 0.0336 (14) 0.0213 (12) 0.0013 (10) −0.0078 (10) −0.0085 (11)
C1B 0.0179 (14) 0.0263 (15) 0.0170 (13) −0.0048 (11) −0.0011 (11) −0.0023 (12)
C2B 0.0284 (16) 0.0340 (18) 0.0206 (15) −0.0084 (13) −0.0054 (12) −0.0077 (13)
C3B 0.0310 (17) 0.0319 (18) 0.0263 (16) −0.0092 (14) 0.0020 (13) −0.0129 (14)
C4B 0.0252 (16) 0.0282 (17) 0.0370 (18) −0.0018 (13) 0.0022 (14) −0.0144 (14)
C5B 0.0189 (14) 0.0298 (17) 0.0309 (17) −0.0025 (12) −0.0052 (12) −0.0082 (13)
C6B 0.0173 (13) 0.0248 (15) 0.0208 (14) −0.0040 (11) −0.0032 (11) −0.0068 (12)
C7B 0.0165 (13) 0.0271 (16) 0.0240 (15) −0.0051 (11) −0.0039 (11) −0.0071 (12)
O1B 0.0157 (10) 0.0404 (13) 0.0443 (13) −0.0008 (9) −0.0090 (9) −0.0226 (11)
N2B 0.0167 (12) 0.0212 (13) 0.0343 (14) −0.0003 (10) −0.0080 (10) −0.0133 (11)
C8B 0.0153 (13) 0.0279 (16) 0.0246 (15) 0.0021 (11) −0.0078 (11) −0.0094 (12)
C9B 0.0177 (13) 0.0233 (15) 0.0240 (15) 0.0020 (11) −0.0070 (11) −0.0117 (12)
C10B 0.0200 (14) 0.0252 (15) 0.0243 (15) 0.0030 (12) −0.0069 (12) −0.0133 (12)
C11B 0.0291 (16) 0.0263 (16) 0.0217 (15) 0.0064 (13) −0.0096 (12) −0.0108 (13)
Br1B 0.0462 (2) 0.0396 (2) 0.02454 (17) 0.00589 (16) −0.01352 (15) −0.00780 (14)
C12B 0.0254 (16) 0.0275 (17) 0.0284 (16) −0.0011 (13) 0.0008 (13) −0.0080 (13)
C13B 0.0167 (14) 0.0287 (16) 0.0337 (17) 0.0006 (12) −0.0054 (12) −0.0119 (14)
C14B 0.0186 (14) 0.0220 (15) 0.0247 (15) 0.0044 (11) −0.0069 (12) −0.0104 (12)
O2B 0.0153 (10) 0.0376 (13) 0.0288 (11) 0.0000 (9) −0.0095 (8) −0.0049 (10)

Geometric parameters (Å, °)

N1A—C1A 1.384 (4) N1B—C1B 1.379 (4)
N1A—C8A 1.453 (4) N1B—C8B 1.457 (4)
N1A—H1NA 0.8822 N1B—H1NB 0.9273
C1A—C2A 1.402 (4) C1B—C6B 1.397 (4)
C1A—C6A 1.405 (4) C1B—C2B 1.408 (4)
C2A—C3A 1.373 (4) C2B—C3B 1.380 (4)
C2A—H2A 0.9500 C2B—H2B 0.9500
C3A—C4A 1.393 (5) C3B—C4B 1.389 (5)
C3A—H3A 0.9500 C3B—H3B 0.9500
C4A—C5A 1.375 (4) C4B—C5B 1.377 (4)
C4A—H4A 0.9500 C4B—H4B 0.9500
C5A—C6A 1.402 (4) C5B—C6B 1.396 (4)
C5A—H5A 0.9500 C5B—H5B 0.9500
C6A—C7A 1.474 (4) C6B—C7B 1.463 (4)
C7A—O1A 1.242 (3) C7B—O1B 1.252 (3)
C7A—N2A 1.342 (4) C7B—N2B 1.340 (4)
N2A—C8A 1.459 (3) N2B—C8B 1.461 (3)
N2A—H2NA 0.9523 N2B—H2NB 0.9095
C8A—C9A 1.528 (4) C8B—C9B 1.522 (4)
C8A—H8A 1.0000 C8B—H8B 1.0000
C9A—C10A 1.388 (4) C9B—C10B 1.390 (4)
C9A—C14A 1.405 (4) C9B—C14B 1.399 (4)
C10A—C11A 1.387 (4) C10B—C11B 1.382 (4)
C10A—H10A 0.9500 C10B—H10B 0.9500
C11A—C12A 1.381 (4) C11B—C12B 1.377 (4)
C11A—Br1A 1.903 (3) C11B—Br1B 1.894 (3)
C12A—C13A 1.386 (4) C12B—C13B 1.385 (4)
C12A—H12A 0.9500 C12B—H12B 0.9500
C13A—C14A 1.386 (4) C13B—C14B 1.391 (4)
C13A—H13A 0.9500 C13B—H13B 0.9500
C14A—O2A 1.368 (3) C14B—O2B 1.370 (3)
O2A—H2OA 0.8493 O2B—H2OB 0.8511
C1A—N1A—C8A 116.9 (2) C1B—N1B—C8B 117.7 (2)
C1A—N1A—H1NA 115.4 C1B—N1B—H1NB 113.3
C8A—N1A—H1NA 115.0 C8B—N1B—H1NB 121.5
N1A—C1A—C2A 122.7 (3) N1B—C1B—C6B 119.3 (3)
N1A—C1A—C6A 118.9 (3) N1B—C1B—C2B 121.6 (3)
C2A—C1A—C6A 118.3 (3) C6B—C1B—C2B 119.0 (3)
C3A—C2A—C1A 120.2 (3) C3B—C2B—C1B 119.8 (3)
C3A—C2A—H2A 119.9 C3B—C2B—H2B 120.1
C1A—C2A—H2A 119.9 C1B—C2B—H2B 120.1
C2A—C3A—C4A 121.3 (3) C2B—C3B—C4B 121.0 (3)
C2A—C3A—H3A 119.3 C2B—C3B—H3B 119.5
C4A—C3A—H3A 119.3 C4B—C3B—H3B 119.5
C5A—C4A—C3A 119.4 (3) C5B—C4B—C3B 119.6 (3)
C5A—C4A—H4A 120.3 C5B—C4B—H4B 120.2
C3A—C4A—H4A 120.3 C3B—C4B—H4B 120.2
C4A—C5A—C6A 120.0 (3) C4B—C5B—C6B 120.5 (3)
C4A—C5A—H5A 120.0 C4B—C5B—H5B 119.8
C6A—C5A—H5A 120.0 C6B—C5B—H5B 119.8
C5A—C6A—C1A 120.5 (3) C5B—C6B—C1B 120.1 (3)
C5A—C6A—C7A 120.5 (3) C5B—C6B—C7B 121.3 (3)
C1A—C6A—C7A 118.7 (3) C1B—C6B—C7B 118.5 (3)
O1A—C7A—N2A 120.9 (3) O1B—C7B—N2B 120.1 (3)
O1A—C7A—C6A 123.0 (3) O1B—C7B—C6B 122.8 (3)
N2A—C7A—C6A 115.9 (2) N2B—C7B—C6B 117.0 (2)
C7A—N2A—C8A 122.3 (2) C7B—N2B—C8B 122.6 (2)
C7A—N2A—H2NA 114.5 C7B—N2B—H2NB 117.5
C8A—N2A—H2NA 122.0 C8B—N2B—H2NB 119.5
N1A—C8A—N2A 107.8 (2) N1B—C8B—N2B 107.5 (2)
N1A—C8A—C9A 113.3 (2) N1B—C8B—C9B 113.8 (2)
N2A—C8A—C9A 112.4 (2) N2B—C8B—C9B 112.8 (2)
N1A—C8A—H8A 107.7 N1B—C8B—H8B 107.5
N2A—C8A—H8A 107.7 N2B—C8B—H8B 107.5
C9A—C8A—H8A 107.7 C9B—C8B—H8B 107.5
C10A—C9A—C14A 118.8 (3) C10B—C9B—C14B 118.7 (3)
C10A—C9A—C8A 124.0 (2) C10B—C9B—C8B 122.6 (2)
C14A—C9A—C8A 117.2 (2) C14B—C9B—C8B 118.6 (2)
C11A—C10A—C9A 119.9 (3) C11B—C10B—C9B 120.2 (3)
C11A—C10A—H10A 120.0 C11B—C10B—H10B 119.9
C9A—C10A—H10A 120.0 C9B—C10B—H10B 119.9
C12A—C11A—C10A 121.4 (3) C12B—C11B—C10B 121.2 (3)
C12A—C11A—Br1A 119.1 (2) C12B—C11B—Br1B 120.0 (2)
C10A—C11A—Br1A 119.4 (2) C10B—C11B—Br1B 118.7 (2)
C11A—C12A—C13A 119.1 (3) C11B—C12B—C13B 119.3 (3)
C11A—C12A—H12A 120.5 C11B—C12B—H12B 120.4
C13A—C12A—H12A 120.5 C13B—C12B—H12B 120.4
C14A—C13A—C12A 120.3 (3) C12B—C13B—C14B 120.2 (3)
C14A—C13A—H13A 119.8 C12B—C13B—H13B 119.9
C12A—C13A—H13A 119.8 C14B—C13B—H13B 119.9
O2A—C14A—C13A 123.3 (2) O2B—C14B—C13B 122.9 (3)
O2A—C14A—C9A 116.2 (3) O2B—C14B—C9B 116.7 (3)
C13A—C14A—C9A 120.5 (3) C13B—C14B—C9B 120.4 (3)
C14A—O2A—H2OA 114.4 C14B—O2B—H2OB 107.1

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N2A—H2NA···O1B 0.95 1.97 2.897 (3) 165.2
N2B—H2NB···O1A 0.91 2.05 2.914 (3) 157.3
O2A—H2OA···O1Ai 0.85 1.90 2.701 (3) 156.7
O2B—H2OB···O1Bii 0.85 1.86 2.691 (3) 165.4

Symmetry codes: (i) x−1, y, z; (ii) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2254).

References

  1. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555-1573.
  2. Bruker (2005). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Goto, S., Tsuboi, H. & Kagara, K. (1993). Chem. Express, 8, 761–764.
  4. Liu, G. (2008). Acta Cryst. E64, o1677. [DOI] [PMC free article] [PubMed]
  5. Mohri, S. J. (2001). Synth. Org. Chem. Jpn, 59, 514–515.
  6. Sheldrick, G. M. (2003). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global, New_Global_Publ_Block. DOI: 10.1107/S1600536808035678/rz2254sup1.cif

e-65-0o193-sup1.cif (21.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808035678/rz2254Isup2.hkl

e-65-0o193-Isup2.hkl (300KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES