Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Dec 24;65(Pt 1):o205. doi: 10.1107/S1600536808042554

2′-Fluoro-3′,5′-dimethoxy­acetanilide

Kai Xie a, Yuan-yuan Lou a, Jin Zheng b, Qing-jie Zhao b, Ya-bing Wei a,*
PMCID: PMC2968110  PMID: 21581659

Abstract

Mol­ecules of the title compound, C10H12FNO3, are nearly planar considering all non-H atoms with a mean deviation of 0.0288 Å. Mol­ecules are linked through inter­molecular N—H⋯O and N—H⋯F hydrogen bonds.

Related literature

For bond-length data, see: Allen et al. (1987). For the synthesis, see: Borodkin et al. (2006); Stavber et al. (2002).graphic file with name e-65-0o205-scheme1.jpg

Experimental

Crystal data

  • C10H12FNO3

  • M r = 213.21

  • Monoclinic, Inline graphic

  • a = 9.741 (3) Å

  • b = 4.8439 (12) Å

  • c = 21.634 (6) Å

  • β = 98.082 (3)°

  • V = 1010.7 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 296 (2) K

  • 0.20 × 0.20 × 0.10 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000) T min = 0.977, T max = 0.989

  • 4791 measured reflections

  • 1780 independent reflections

  • 1434 reflections with I > 2σ(I)

  • R int = 0.030

Refinement

  • R[F 2 > 2σ(F 2)] = 0.046

  • wR(F 2) = 0.121

  • S = 1.02

  • 1780 reflections

  • 139 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.18 e Å−3

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808042554/bt2815sup1.cif

e-65-0o205-sup1.cif (16.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808042554/bt2815Isup2.hkl

e-65-0o205-Isup2.hkl (87.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.86 2.61 3.246 (2) 131
N1—H1⋯F1i 0.86 2.47 3.3128 (19) 166

Symmetry code: (i) Inline graphic.

Acknowledgments

Acknowledgement is made to the crew of Topharman Shanghai Co Ltd for their active cooperation in this work. We also thank Instrument Analysis and Research Center of Shanghai University for structural confirmation.

supplementary crystallographic information

Comment

In our recent research for the synthesis of potential PDE5 inhitiors, 2-fluoro-3,5-dimethoxyanilide, (I), was synthesized as one of the structural units by fluorination (Stavber et al., 2002) of 3,5-dimethoxyanilide (Borodkin et al., 2006).

A view of the molecular structure of (I) is depicted in Fig. 1. In the molecule, almost all non-H atoms are in the same plane. All bond lengths and angles are normal (Allen et al., 1987). The molecules are linked via intermolecular hydrogen bonds in which the amide group acts as a donor to F and O atoms (Fig. 2 and Table 1).

Experimental

To a solution of 3,5-dimethoxyanilide (195 mg, 1.0 mmol) in CH3CN (5 ml), 1-Chloromethyl-4-fluoro-1,4-diazoniabicyclo[2.2.2]octane-bis(tetrafluoroborate) (390 mg, 1.1 mmol) was added at 0°C. After 3 h, TLC showed that the reaction was complete, the mixture was evaporated to give an oil, then ethyl acetate was added, and the solution was washed with 5% aqueous sodium bicarbonate, dried and then concentrated by rotary evaporation. The crude product was purified by column chromatography over silica gel (CH2Cl2/MeOH = 100/1) to afford (I) (111 mg, 52%) as a white solid. Single crystals suitable for X-ray analysis (m.p. 403 K) were obtained by slow evaporation of a dichloromethane solution at 298 K.

Refinement

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.93Å and Uiso(H) =1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

View of the molecule of (I) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.

Fig. 2.

Fig. 2.

The crystal packing of (I), viewed along the c-axis. Hydrogen bonds are shown as dashed lines.

Crystal data

C10H12FNO3 F(000) = 448
Mr = 213.21 Dx = 1.401 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 9.741 (3) Å Cell parameters from 2061 reflections
b = 4.8439 (12) Å θ = 2.6–26.6°
c = 21.634 (6) Å µ = 0.12 mm1
β = 98.082 (3)° T = 296 K
V = 1010.7 (4) Å3 Block, colourless
Z = 4 0.20 × 0.20 × 0.10 mm

Data collection

Bruker SMART CCD area-detector diffractometer 1780 independent reflections
Radiation source: fine-focus sealed tube 1434 reflections with I > 2σ(I)
graphite Rint = 0.030
φ and ω scans θmax = 25.1°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Bruker, 2000) h = −11→11
Tmin = 0.977, Tmax = 0.989 k = −5→5
4791 measured reflections l = −23→25

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.121 H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.058P)2 + 0.3484P] where P = (Fo2 + 2Fc2)/3
1780 reflections (Δ/σ)max < 0.001
139 parameters Δρmax = 0.20 e Å3
0 restraints Δρmin = −0.18 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
F1 0.42666 (11) 0.1466 (2) 0.26102 (5) 0.0512 (3)
C1 0.31928 (18) 0.2862 (4) 0.22731 (8) 0.0397 (4)
C2 0.25035 (18) 0.4812 (4) 0.25813 (8) 0.0406 (4)
C3 0.14087 (19) 0.6226 (4) 0.22477 (9) 0.0446 (5)
H3 0.0918 0.7534 0.2443 0.053*
C4 0.10546 (18) 0.5662 (4) 0.16181 (9) 0.0430 (5)
C5 0.17582 (18) 0.3739 (4) 0.13084 (9) 0.0429 (5)
H5 0.1503 0.3404 0.0885 0.051*
C6 0.28642 (17) 0.2311 (4) 0.16492 (9) 0.0394 (4)
C7 0.3591 (2) −0.0570 (4) 0.07947 (9) 0.0465 (5)
C8 0.4620 (2) −0.2755 (5) 0.06870 (10) 0.0580 (6)
H8A 0.4152 −0.4232 0.0448 0.087*
H8B 0.5056 −0.3455 0.1081 0.087*
H8C 0.5311 −0.1978 0.0463 0.087*
C9 0.2337 (2) 0.7206 (5) 0.35272 (10) 0.0565 (6)
H9A 0.2418 0.8972 0.3334 0.085*
H9B 0.2777 0.7274 0.3953 0.085*
H9C 0.1375 0.6752 0.3516 0.085*
C10 −0.0414 (2) 0.6888 (6) 0.06772 (10) 0.0661 (7)
H10A 0.0364 0.7382 0.0473 0.099*
H10B −0.1180 0.8085 0.0537 0.099*
H10C −0.0673 0.5011 0.0578 0.099*
N1 0.36727 (16) 0.0327 (3) 0.13913 (7) 0.0458 (4)
H1 0.4313 −0.0427 0.1651 0.055*
O1 0.29930 (14) 0.5157 (3) 0.31975 (6) 0.0527 (4)
O2 −0.00485 (14) 0.7163 (3) 0.13322 (7) 0.0582 (4)
O3 0.27541 (18) 0.0299 (4) 0.03737 (7) 0.0754 (6)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
F1 0.0422 (6) 0.0570 (7) 0.0516 (7) 0.0111 (5) −0.0030 (5) 0.0003 (5)
C1 0.0305 (9) 0.0417 (11) 0.0454 (10) 0.0019 (8) 0.0004 (7) 0.0042 (8)
C2 0.0344 (9) 0.0440 (11) 0.0435 (10) −0.0049 (8) 0.0051 (8) −0.0013 (8)
C3 0.0372 (10) 0.0453 (11) 0.0519 (11) 0.0029 (9) 0.0090 (8) −0.0030 (9)
C4 0.0319 (9) 0.0460 (11) 0.0504 (11) 0.0038 (8) 0.0036 (8) 0.0051 (9)
C5 0.0367 (10) 0.0475 (12) 0.0437 (10) 0.0006 (8) 0.0029 (8) −0.0001 (9)
C6 0.0328 (9) 0.0401 (10) 0.0454 (10) −0.0004 (8) 0.0057 (7) 0.0000 (8)
C7 0.0445 (11) 0.0497 (12) 0.0451 (11) 0.0029 (9) 0.0060 (9) −0.0001 (9)
C8 0.0587 (13) 0.0590 (14) 0.0574 (13) 0.0130 (11) 0.0120 (10) −0.0077 (11)
C9 0.0553 (13) 0.0627 (14) 0.0526 (12) −0.0030 (11) 0.0117 (10) −0.0140 (10)
C10 0.0594 (14) 0.0814 (17) 0.0540 (13) 0.0227 (13) −0.0048 (11) 0.0055 (12)
N1 0.0403 (8) 0.0511 (10) 0.0442 (9) 0.0121 (8) −0.0005 (7) −0.0014 (7)
O1 0.0464 (8) 0.0643 (10) 0.0461 (8) 0.0060 (7) 0.0022 (6) −0.0097 (7)
O2 0.0490 (8) 0.0678 (10) 0.0555 (8) 0.0238 (7) −0.0002 (6) 0.0008 (7)
O3 0.0767 (11) 0.0974 (14) 0.0481 (9) 0.0365 (10) −0.0052 (8) −0.0069 (9)

Geometric parameters (Å, °)

F1—C1 1.367 (2) C7—C8 1.498 (3)
C1—C6 1.369 (3) C8—H8A 0.9600
C1—C2 1.383 (3) C8—H8B 0.9600
C2—O1 1.362 (2) C8—H8C 0.9600
C2—C3 1.382 (3) C9—O1 1.425 (2)
C3—C4 1.384 (3) C9—H9A 0.9600
C3—H3 0.9300 C9—H9B 0.9600
C4—O2 1.371 (2) C9—H9C 0.9600
C4—C5 1.384 (3) C10—O2 1.418 (3)
C5—C6 1.400 (2) C10—H10A 0.9600
C5—H5 0.9300 C10—H10B 0.9600
C6—N1 1.407 (2) C10—H10C 0.9600
C7—O3 1.209 (2) N1—H1 0.8600
C7—N1 1.354 (2)
C6—C1—F1 119.01 (16) C7—C8—H8B 109.5
C6—C1—C2 123.11 (17) H8A—C8—H8B 109.5
F1—C1—C2 117.87 (16) C7—C8—H8C 109.5
O1—C2—C1 115.39 (16) H8A—C8—H8C 109.5
O1—C2—C3 126.06 (17) H8B—C8—H8C 109.5
C1—C2—C3 118.55 (17) O1—C9—H9A 109.5
C4—C3—C2 118.88 (17) O1—C9—H9B 109.5
C4—C3—H3 120.6 H9A—C9—H9B 109.5
C2—C3—H3 120.6 O1—C9—H9C 109.5
O2—C4—C3 114.22 (16) H9A—C9—H9C 109.5
O2—C4—C5 123.28 (17) H9B—C9—H9C 109.5
C3—C4—C5 122.50 (17) O2—C10—H10A 109.5
C4—C5—C6 118.32 (17) O2—C10—H10B 109.5
C4—C5—H5 120.8 H10A—C10—H10B 109.5
C6—C5—H5 120.8 O2—C10—H10C 109.5
C1—C6—C5 118.62 (17) H10A—C10—H10C 109.5
C1—C6—N1 117.25 (16) H10B—C10—H10C 109.5
C5—C6—N1 124.13 (17) C7—N1—C6 129.53 (16)
O3—C7—N1 123.31 (19) C7—N1—H1 115.2
O3—C7—C8 121.59 (19) C6—N1—H1 115.2
N1—C7—C8 115.10 (17) C2—O1—C9 117.11 (15)
C7—C8—H8A 109.5 C4—O2—C10 118.15 (16)
C6—C1—C2—O1 −178.01 (17) F1—C1—C6—N1 −0.4 (3)
F1—C1—C2—O1 0.8 (2) C2—C1—C6—N1 178.37 (17)
C6—C1—C2—C3 1.6 (3) C4—C5—C6—C1 0.5 (3)
F1—C1—C2—C3 −179.52 (16) C4—C5—C6—N1 −179.38 (17)
O1—C2—C3—C4 178.88 (17) O3—C7—N1—C6 0.5 (3)
C1—C2—C3—C4 −0.7 (3) C8—C7—N1—C6 −179.28 (19)
C2—C3—C4—O2 179.66 (17) C1—C6—N1—C7 −178.81 (19)
C2—C3—C4—C5 −0.2 (3) C5—C6—N1—C7 1.1 (3)
O2—C4—C5—C6 −179.54 (17) C1—C2—O1—C9 178.18 (17)
C3—C4—C5—C6 0.3 (3) C3—C2—O1—C9 −1.4 (3)
F1—C1—C6—C5 179.65 (16) C3—C4—O2—C10 174.96 (19)
C2—C1—C6—C5 −1.5 (3) C5—C4—O2—C10 −5.2 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1···O1i 0.86 2.61 3.246 (2) 131
N1—H1···F1i 0.86 2.47 3.3128 (19) 166

Symmetry codes: (i) −x+1, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2815).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Borodkin, G. I., Zaikin, P. A. & Shubin, V. G. (2006). Tetrahedron Lett.47, 15, 2639–2642.
  3. Bruker (2000). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  5. Stavber, S., Jereb, M. & Zupan, M. (2002). J. Phys. Org. Chem.15, 1, 56–61.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808042554/bt2815sup1.cif

e-65-0o205-sup1.cif (16.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808042554/bt2815Isup2.hkl

e-65-0o205-Isup2.hkl (87.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES