Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Dec 24;65(Pt 1):o208–o209. doi: 10.1107/S1600536808043250

1-(4-tert-Butyl­benz­yl)-3-(3,4,5-tri­methoxy­benz­yl)benzimidazolium bromide monohydrate

Hakan Arslan a,b,*, Don VanDerveer c, Serpil Demir d, İsmail Özdemir d, Bekir Çetinkaya e
PMCID: PMC2968113  PMID: 21581662

Abstract

A novel N-heterocyclic carbene derivative, C28H33N2O3 +·Br·H2O, was synthesized and characterized by elemental analysis, 1H and 13C-NMR and IR spectroscopy and a single-crystal X-ray diffraction study. Ions of the title compound are linked by π⋯π stacking inter­actions (face–face separation 3.441 Å) and C—H⋯Br and O—H⋯Br inter­actions. Intra- and intermolecular C—H⋯O inter­actions are also present. The C—N bond lengths for the compound [1.329 (3), 1.325 (3), 1.389 (3) and 1.391 (3) Å] are all shorter than the average single C—N bond length of 1.48 Å, thus showing varying degrees of double-bond character.

Related literature

For the synthesis, see: Yaşar et al. (2008). For general background, see: Herrmann (2002); Arduengo & Krafczyc (1998); Herrmann et al. (1995, 1998); Navarro et al. (2006). For related compounds, see: Yaşar et al. (2008); Arslan et al. (2009 and references therein). For bond-length data, see: Allen et al. (1987).graphic file with name e-65-0o208-scheme1.jpg

Experimental

Crystal data

  • C28H33N2O3 +·Br·H2O

  • M r = 543.49

  • Triclinic, Inline graphic

  • a = 10.389 (2) Å

  • b = 10.436 (2) Å

  • c = 14.038 (3) Å

  • α = 109.79 (3)°

  • β = 90.70 (3)°

  • γ = 103.57 (3)°

  • V = 1385.1 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.52 mm−1

  • T = 298 (2) K

  • 0.48 × 0.29 × 0.26 mm

Data collection

  • Mercury CCD diffractometer

  • Absorption correction: multi-scan (REQAB; Jacobson, 1998) T min = 0.514, T max = 0.673

  • 11938 measured reflections

  • 4860 independent reflections

  • 3921 reflections with I > 2σ(I)

  • R int = 0.022

Refinement

  • R[F 2 > 2σ(F 2)] = 0.042

  • wR(F 2) = 0.112

  • S = 1.08

  • 4860 reflections

  • 328 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.55 e Å−3

Data collection: CrystalClear (Rigaku/MSC, 2001); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I. DOI: 10.1107/S1600536808043250/hg2459sup1.cif

e-65-0o208-sup1.cif (25.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808043250/hg2459Isup2.hkl

e-65-0o208-Isup2.hkl (238KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4A⋯Br1i 0.87 (3) 2.54 (3) 3.393 (3) 169 (5)
O4—H4B⋯Br1ii 0.88 (5) 2.52 (5) 3.399 (3) 176 (5)
C1—H1⋯Br1 0.96 2.65 3.587 (3) 165
C3—H3⋯O2iii 0.96 2.57 3.294 (4) 132
C6—H6⋯O4 0.96 2.38 3.305 (5) 161
C10—H10⋯O4 0.96 2.59 3.463 (5) 152
C14—H14⋯Br1 0.96 2.88 3.823 (3) 167
C18—H18A⋯Br1iv 0.96 2.82 3.718 (3) 155

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

We thank the Technological and Scientific Research Council of Turkey TÜBİTAK-CNRS [TBAG-U/181 (106 T716)] and İnönü University Research Fund (İÜ BAP: 2008/Güdümlü 3) for financial support.

supplementary crystallographic information

Comment

N-heterocyclic carbenes have attracted much interest as a new class of compound in organometallic chemistry. The applications of N-heterocyclic carbenes were first reported by Herrmann in 1998 (Herrmann et al., 1998). Recently, Herrmann et al. and other researchers have designed new N-heterocyclic carbene compounds and have used them to prepare new catalysts for Suzuki-Miyura, Sonogashira, Stille and Heck reactions (Herrmann, 2002; Herrmann et al., 1995; Navarro et al., 2006; Arduengo & Krafczyc, 1998).

Recently, we have focused on the synthesis, characterization and use of palladium, platinum and ruthenium N-heterocyclic carbene complexes as catalysts for Suzuki-Miyura and Heck reactions (Yaşar et al., 2008; Arslan et al., 2009, and references therein).

In the present work, we report the preparation and characterization of a novel N-heterocyclic carbene derivative, 1-(4-tert-butylbenzyl)-3-(3,4,5-trimethoxybenzyl)benzimidazolium bromide monohydrate, (I). The compound was purified by re-crystallization from ethanol:diethylether mixture (1:1) and characterized by elemental analysis, 1H and 13C-NMR and IR spectroscopy. The analytical and spectroscopic data are consistent with the proposed structure given in Scheme 1.

The molecular structure of the title compound is depicted in Figure 1. The crystal structure is composed of a 1-(4-tert-butylbenzyl)-3-(3,4,5-trimethoxybenzyl)benzimidazolium cation, a Br anion and solvent water molecules. All bond lengths in (I) are in normal ranges (Allen et al.,1987). The benzimidazole ring is almost coplanar with a maximum and a minimum deviation of 0.016 (2) Å for atom C2 and, 0.002 (2) Å for atom C6, respectively. In the crystal structure, π···π stacking interactions occurs between parallel benzimidazole rings, with a face-face separation of 3.441 Å (Figure 2) (Macrae et al., 2006). The dihedral angle between the benzimidazole ring and 4-tert-butylbenzyl and 3,4,5-trimethoxybenzyl groups are 70.23 (3)° and 73.48 (3) o, respectively.

The C—N bond lengths for the investigated compound are all shorter than the average single C—N bond length of 1.48 Å, being N1—C1 = 1.329 (3) Å, N2—C1 =1.325 (3) Å, N1—C7 = 1.389 (3) Å, and N2—C2 = 1.391 (3) Å thus showing varying degrees of double bond character in these C—N bonds. The other CN bond lengths are in agreement with the expected 1.48 Å C—N single bond lengths. This information indicates a partial electron delocalization within the C7—N1—C1—N2—C2 fragment. The N1—C1—N2 bond angle is also consistent with this hypothesis.

The crystal packing is shown in Figure 3. The intermolecular C—H···Br and O—H···Br hydrogen bonds (Figure 4, Table 1) and π···π stacking interactions link the molecules of the title compound.

Experimental

4-tertbutylbenzyl bromide (2.27 g, 10.0 mmol) was slowly added to a solution of 1-(3,4,5-trimethoxylbenzyl) benzimidazole (II) (2.98 g, 10.0 mmol) in DMF (5 mL) and the resulting mixture was stirred at room temperature for 5 h (Scheme 2). Diethylether (10 ml) was added to obtain a white crystalline solid which was filtered off. The solid was washed with diethylether (3 x 10 ml) dried under vacuum and the crude product was re-crystallized from ethanole/diethylether. M.p. = 246–247°C; yield 4.47 g, 85%; ν(CN) = 1594 cm-1. 1H NMR (δ, 200.13 MHz, CDCl3): 1.25 (s, 9H, CH2C6H4C(CH3)3-p); 3.86 and 3.79 (s, 9H, CH2C6H2(OCH3)3-3,4,5); 5.81 (s,4H, CH2C6H2(OCH3)3-3,4,5 and CH2C6H4C(CH3)3-p); 6.90 (s, 2H, CH2C6H2(OCH3)3-3,4,5); 7.33 and 7.48 (m, 8H, NC6H4N and CH2C6H4C(CH3)3-p); 11.64 (s, 1H, NCHN). 13C NMR (δ, 50 MHz, CDCl3): 31.6 (CH2C6H4C(CH3)3-p); 35.1 (CH2C6H4C(CH3)3-p); 51.6 (CH2C6H4C(CH3)3-p); 52.1 (CH2C6H2(OCH3)3-3,4,5); 57.2 and 61.2 (CH2C6H2(OCH3)3-3,4,5); 106.5, 131.7, 138.9 and 152.9 (CH2C6H2(OCH3)3-3,4,5); 114.2, 127.5, 128.7, 130.1, 131.8 and 143.2 (NC6H4N); 114.1, 126.7, 128.5 and 130.9 (CH2C6H4C(CH3)3-p); 154.2 (NCHN). Anal. Found: C, 63.96; H, 6.28; N: 5.35. Calc. for C28H33N2O3Br: C, 64.00; H, 6.33; N, 5.33.

Refinement

All H atoms attached to carbons were geometrically fixed and allowed to ride on the corresponding non-H atom with C—H = 0.96 Å, and Uiso(H) = 1.5Ueq(C) of the attached C atom for methyl H atoms and 1.2Ueq(C) for other H atoms. The water H atoms were located from a Fourier map and their distances were constrained to 0.86 Å and the Uiso(H) = 1.5Ueq(O).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing the atom-numbering scheme and displacement ellipsoids drawn at the 50% probability level.

Fig. 2.

Fig. 2.

A packing diagram for (I).

Fig. 3.

Fig. 3.

A packing diagram for (I).

Fig. 4.

Fig. 4.

Hydrogen bonding for (I). Symmetry: O4A = x, 1 + y, z; O4B =1 - x,1 - y,1 - z; Br1A, etc. = 1 - x, 2 - y, 1 - z.

Fig. 5.

Fig. 5.

The preparation of the title compound.

Crystal data

C28H33N2O3+·Br·H2O Z = 2
Mr = 543.49 F(000) = 568
Triclinic, P1 Dx = 1.303 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 10.389 (2) Å Cell parameters from 4659 reflections
b = 10.436 (2) Å θ = 3.2–26.4°
c = 14.038 (3) Å µ = 1.52 mm1
α = 109.79 (3)° T = 298 K
β = 90.70 (3)° Rod, colorless
γ = 103.57 (3)° 0.48 × 0.29 × 0.26 mm
V = 1385.1 (6) Å3

Data collection

Mercury CCD diffractometer 4860 independent reflections
Radiation source: Sealed Tube 3921 reflections with I > 2σ(I)
Graphite Monochromator Rint = 0.022
Detector resolution: 14.6306 pixels mm-1 θmax = 25.0°, θmin = 3.2°
ω scans h = −12→12
Absorption correction: multi-scan (REQAB; Jacobson, 1998) k = −12→12
Tmin = 0.514, Tmax = 0.673 l = −16→16
11938 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112 H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0505P)2 + 0.6557P] where P = (Fo2 + 2Fc2)/3
4860 reflections (Δ/σ)max = 0.001
328 parameters Δρmax = 0.31 e Å3
2 restraints Δρmin = −0.55 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 0.75295 (3) 0.93707 (4) 0.51515 (3) 0.06917 (15)
N1 0.8315 (2) 0.5830 (2) 0.57685 (15) 0.0384 (5)
N2 1.0326 (2) 0.7189 (2) 0.62364 (16) 0.0407 (5)
C1 0.9118 (3) 0.7064 (3) 0.5843 (2) 0.0439 (6)
H1 0.8858 0.7766 0.5640 0.053*
C2 1.0322 (2) 0.5974 (2) 0.64403 (18) 0.0363 (5)
C3 1.1313 (3) 0.5558 (3) 0.6834 (2) 0.0497 (7)
H3 1.2196 0.6159 0.7050 0.060*
C4 1.0966 (3) 0.4233 (3) 0.6901 (2) 0.0609 (8)
H4 1.1626 0.3902 0.7168 0.073*
C5 0.9681 (3) 0.3364 (3) 0.6591 (2) 0.0573 (7)
H5 0.9483 0.2449 0.6650 0.069*
C6 0.8695 (3) 0.3772 (3) 0.6207 (2) 0.0449 (6)
H6 0.7811 0.3170 0.5997 0.054*
C7 0.9039 (2) 0.5104 (2) 0.61354 (18) 0.0351 (5)
C8 0.6876 (2) 0.5379 (3) 0.5428 (2) 0.0454 (6)
H8A 0.6617 0.4377 0.5084 0.054*
H8B 0.6699 0.5814 0.4955 0.054*
C9 0.6061 (2) 0.5776 (3) 0.6319 (2) 0.0438 (6)
C10 0.5443 (3) 0.4785 (3) 0.6729 (2) 0.0456 (6)
H10 0.5523 0.3835 0.6449 0.055*
C11 0.4705 (3) 0.5178 (3) 0.7550 (2) 0.0521 (7)
C12 0.4583 (3) 0.6547 (3) 0.7952 (2) 0.0537 (7)
C13 0.5222 (3) 0.7534 (3) 0.7543 (2) 0.0553 (7)
C14 0.5963 (3) 0.7155 (3) 0.6720 (2) 0.0508 (7)
H14 0.6399 0.7839 0.6435 0.061*
C15 0.4234 (4) 0.2906 (4) 0.7695 (3) 0.0873 (12)
H15A 0.3873 0.2414 0.6998 0.131*
H15B 0.3783 0.2416 0.8112 0.131*
H15C 0.5166 0.2951 0.7756 0.131*
C16 0.4304 (4) 0.7401 (6) 0.9699 (3) 0.1083 (17)
H16A 0.4738 0.6735 0.9805 0.162*
H16B 0.3620 0.7526 1.0150 0.162*
H16C 0.4944 0.8286 0.9835 0.162*
C17 0.5773 (7) 0.9936 (4) 0.7672 (4) 0.119 (2)
H17A 0.6705 0.9984 0.7736 0.179*
H17B 0.5622 1.0823 0.8082 0.179*
H17C 0.5478 0.9731 0.6973 0.179*
C18 1.1457 (3) 0.8450 (3) 0.6461 (2) 0.0536 (7)
H18A 1.1451 0.8826 0.5925 0.064*
H18B 1.2277 0.8182 0.6483 0.064*
C19 1.1387 (3) 0.9570 (3) 0.7460 (2) 0.0450 (6)
C20 1.0657 (4) 1.0516 (3) 0.7490 (2) 0.0671 (9)
H20 1.0205 1.0466 0.6873 0.081*
C21 1.0563 (4) 1.1546 (3) 0.8403 (2) 0.0677 (9)
H21 1.0048 1.2198 0.8403 0.081*
C22 1.1192 (3) 1.1659 (3) 0.9317 (2) 0.0452 (6)
C23 1.1931 (3) 1.0704 (3) 0.9268 (2) 0.0532 (7)
H23 1.2390 1.0752 0.9883 0.064*
C24 1.2033 (3) 0.9667 (3) 0.8350 (2) 0.0533 (7)
H24 1.2558 0.9019 0.8342 0.064*
C25 1.1111 (3) 1.2836 (3) 1.0308 (2) 0.0591 (8)
C26 0.9702 (4) 1.3046 (5) 1.0365 (3) 0.0903 (13)
H26A 0.9665 1.3779 1.0993 0.135*
H26B 0.9085 1.2186 1.0334 0.135*
H26C 0.9472 1.3306 0.9804 0.135*
C27 1.2089 (5) 1.4190 (4) 1.0328 (4) 0.1013 (15)
H27A 1.2976 1.4066 1.0315 0.152*
H27B 1.2037 1.4947 1.0937 0.152*
H27C 1.1868 1.4408 0.9745 0.152*
C28 1.1443 (4) 1.2485 (5) 1.1241 (3) 0.0840 (11)
H28A 1.2353 1.2435 1.1266 0.126*
H28B 1.0870 1.1594 1.1196 0.126*
H28C 1.1315 1.3204 1.1846 0.126*
O1 0.4055 (2) 0.4294 (3) 0.80195 (18) 0.0717 (6)
O2 0.3740 (2) 0.6898 (3) 0.86948 (17) 0.0741 (7)
O3 0.5058 (3) 0.8868 (3) 0.8002 (2) 0.0870 (8)
O4 0.5832 (3) 0.1696 (3) 0.4946 (3) 0.0969 (10)
H4A 0.499 (2) 0.144 (6) 0.501 (4) 0.145*
H4B 0.623 (5) 0.107 (5) 0.501 (4) 0.145*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.0556 (2) 0.0784 (2) 0.0980 (3) 0.02072 (16) 0.01227 (17) 0.0592 (2)
N1 0.0361 (11) 0.0451 (11) 0.0394 (12) 0.0158 (9) 0.0067 (9) 0.0176 (9)
N2 0.0412 (12) 0.0386 (11) 0.0437 (12) 0.0106 (9) 0.0121 (9) 0.0156 (9)
C1 0.0482 (15) 0.0452 (14) 0.0470 (15) 0.0210 (12) 0.0139 (12) 0.0208 (12)
C2 0.0364 (12) 0.0393 (12) 0.0342 (13) 0.0132 (10) 0.0078 (10) 0.0117 (10)
C3 0.0378 (14) 0.0634 (17) 0.0469 (16) 0.0149 (13) 0.0004 (12) 0.0169 (13)
C4 0.0558 (18) 0.073 (2) 0.067 (2) 0.0308 (16) −0.0007 (15) 0.0315 (16)
C5 0.067 (2) 0.0494 (16) 0.0648 (19) 0.0205 (15) 0.0037 (15) 0.0284 (14)
C6 0.0463 (15) 0.0391 (13) 0.0477 (15) 0.0082 (11) 0.0045 (12) 0.0148 (11)
C7 0.0348 (12) 0.0396 (12) 0.0330 (12) 0.0147 (10) 0.0060 (10) 0.0119 (10)
C8 0.0360 (13) 0.0599 (16) 0.0433 (15) 0.0190 (12) 0.0027 (11) 0.0173 (12)
C9 0.0329 (13) 0.0567 (15) 0.0432 (14) 0.0176 (12) 0.0004 (11) 0.0155 (12)
C10 0.0366 (13) 0.0535 (15) 0.0483 (16) 0.0120 (12) 0.0020 (11) 0.0195 (12)
C11 0.0363 (14) 0.0673 (18) 0.0546 (17) 0.0098 (13) 0.0039 (12) 0.0260 (14)
C12 0.0355 (14) 0.079 (2) 0.0471 (16) 0.0209 (14) 0.0077 (12) 0.0187 (14)
C13 0.0541 (17) 0.0633 (18) 0.0550 (17) 0.0314 (15) 0.0114 (14) 0.0175 (14)
C14 0.0493 (16) 0.0589 (17) 0.0537 (17) 0.0222 (13) 0.0107 (13) 0.0260 (13)
C15 0.091 (3) 0.081 (3) 0.099 (3) 0.006 (2) 0.019 (2) 0.054 (2)
C16 0.078 (3) 0.170 (5) 0.054 (2) 0.022 (3) 0.013 (2) 0.016 (3)
C17 0.195 (6) 0.063 (2) 0.112 (4) 0.055 (3) 0.059 (4) 0.030 (2)
C18 0.0514 (16) 0.0446 (15) 0.0592 (18) 0.0025 (12) 0.0187 (14) 0.0175 (13)
C19 0.0452 (14) 0.0382 (13) 0.0515 (16) 0.0060 (11) 0.0132 (12) 0.0184 (11)
C20 0.097 (3) 0.0610 (19) 0.0488 (18) 0.0340 (18) −0.0027 (17) 0.0174 (14)
C21 0.097 (3) 0.0613 (19) 0.0550 (19) 0.0438 (19) 0.0010 (18) 0.0179 (15)
C22 0.0462 (15) 0.0448 (14) 0.0458 (15) 0.0110 (12) 0.0085 (12) 0.0176 (12)
C23 0.0498 (16) 0.0567 (17) 0.0518 (17) 0.0147 (13) −0.0032 (13) 0.0170 (13)
C24 0.0456 (15) 0.0498 (15) 0.0653 (19) 0.0185 (13) 0.0051 (14) 0.0170 (14)
C25 0.0622 (19) 0.0573 (17) 0.0523 (18) 0.0180 (15) 0.0122 (15) 0.0103 (14)
C26 0.091 (3) 0.113 (3) 0.072 (3) 0.056 (3) 0.024 (2) 0.018 (2)
C27 0.127 (4) 0.053 (2) 0.093 (3) 0.002 (2) 0.024 (3) 0.000 (2)
C28 0.087 (3) 0.112 (3) 0.0454 (19) 0.032 (2) 0.0076 (18) 0.0146 (19)
O1 0.0604 (14) 0.0848 (16) 0.0758 (16) 0.0089 (12) 0.0203 (12) 0.0416 (13)
O2 0.0492 (12) 0.1158 (19) 0.0554 (14) 0.0316 (13) 0.0177 (10) 0.0202 (13)
O3 0.111 (2) 0.0785 (16) 0.0900 (19) 0.0592 (16) 0.0421 (16) 0.0286 (14)
O4 0.0533 (14) 0.0568 (14) 0.174 (3) 0.0082 (12) −0.0014 (18) 0.0367 (17)

Geometric parameters (Å, °)

N1—C1 1.329 (3) C16—H16A 0.9599
N1—C7 1.389 (3) C16—H16B 0.9599
N1—C8 1.478 (3) C16—H16C 0.9599
N2—C1 1.325 (3) C17—O3 1.407 (5)
N2—C2 1.391 (3) C17—H17A 0.9599
N2—C18 1.481 (3) C17—H17B 0.9599
C1—H1 0.9600 C17—H17C 0.9599
C2—C3 1.382 (4) C18—C19 1.507 (4)
C2—C7 1.393 (3) C18—H18A 0.9600
C3—C4 1.380 (4) C18—H18B 0.9600
C3—H3 0.9600 C19—C20 1.370 (4)
C4—C5 1.394 (5) C19—C24 1.372 (4)
C4—H4 0.9600 C20—C21 1.389 (4)
C5—C6 1.368 (4) C20—H20 0.9600
C5—H5 0.9600 C21—C22 1.388 (4)
C6—C7 1.390 (3) C21—H21 0.9600
C6—H6 0.9600 C22—C23 1.380 (4)
C8—C9 1.513 (4) C22—C25 1.532 (4)
C8—H8A 0.9600 C23—C24 1.399 (4)
C8—H8B 0.9600 C23—H23 0.9600
C9—C10 1.383 (4) C24—H24 0.9600
C9—C14 1.386 (4) C25—C27 1.526 (5)
C10—C11 1.390 (4) C25—C26 1.529 (5)
C10—H10 0.9600 C25—C28 1.530 (5)
C11—O1 1.369 (3) C26—H26A 0.9599
C11—C12 1.385 (4) C26—H26B 0.9599
C12—O2 1.380 (3) C26—H26C 0.9599
C12—C13 1.385 (4) C27—H27A 0.9599
C13—O3 1.374 (4) C27—H27B 0.9599
C13—C14 1.392 (4) C27—H27C 0.9599
C14—H14 0.9600 C28—H28A 0.9599
C15—O1 1.422 (5) C28—H28B 0.9599
C15—H15A 0.9599 C28—H28C 0.9599
C15—H15B 0.9599 O4—H4A 0.87 (2)
C15—H15C 0.9599 O4—H4B 0.88 (5)
C16—O2 1.394 (5)
C1—N1—C7 108.2 (2) H16A—C16—H16C 109.5
C1—N1—C8 125.0 (2) H16B—C16—H16C 109.5
C7—N1—C8 126.6 (2) O3—C17—H17A 109.5
C1—N2—C2 108.4 (2) O3—C17—H17B 109.5
C1—N2—C18 124.9 (2) H17A—C17—H17B 109.5
C2—N2—C18 126.6 (2) O3—C17—H17C 109.5
N2—C1—N1 110.5 (2) H17A—C17—H17C 109.5
N2—C1—H1 124.8 H17B—C17—H17C 109.5
N1—C1—H1 124.8 N2—C18—C19 111.7 (2)
C3—C2—N2 132.0 (2) N2—C18—H18A 109.3
C3—C2—C7 121.6 (2) C19—C18—H18A 109.3
N2—C2—C7 106.3 (2) N2—C18—H18B 109.3
C4—C3—C2 116.5 (3) C19—C18—H18B 109.3
C4—C3—H3 121.7 H18A—C18—H18B 107.9
C2—C3—H3 121.7 C20—C19—C24 118.7 (3)
C3—C4—C5 121.6 (3) C20—C19—C18 119.6 (3)
C3—C4—H4 119.2 C24—C19—C18 121.7 (3)
C5—C4—H4 119.2 C19—C20—C21 120.7 (3)
C6—C5—C4 122.1 (3) C19—C20—H20 119.7
C6—C5—H5 118.9 C21—C20—H20 119.7
C4—C5—H5 118.9 C22—C21—C20 121.9 (3)
C5—C6—C7 116.5 (3) C22—C21—H21 119.1
C5—C6—H6 121.8 C20—C21—H21 119.1
C7—C6—H6 121.8 C23—C22—C21 116.4 (3)
N1—C7—C6 131.8 (2) C23—C22—C25 122.7 (3)
N1—C7—C2 106.6 (2) C21—C22—C25 120.8 (3)
C6—C7—C2 121.6 (2) C22—C23—C24 121.9 (3)
N1—C8—C9 111.2 (2) C22—C23—H23 119.1
N1—C8—H8A 109.4 C24—C23—H23 119.1
C9—C8—H8A 109.4 C19—C24—C23 120.4 (3)
N1—C8—H8B 109.4 C19—C24—H24 119.8
C9—C8—H8B 109.4 C23—C24—H24 119.8
H8A—C8—H8B 108.0 C27—C25—C26 109.6 (3)
C10—C9—C14 120.8 (2) C27—C25—C28 110.0 (3)
C10—C9—C8 120.6 (2) C26—C25—C28 107.1 (3)
C14—C9—C8 118.6 (2) C27—C25—C22 108.2 (3)
C9—C10—C11 119.5 (3) C26—C25—C22 110.5 (3)
C9—C10—H10 120.3 C28—C25—C22 111.5 (3)
C11—C10—H10 120.3 C25—C26—H26A 109.5
O1—C11—C12 114.9 (3) C25—C26—H26B 109.5
O1—C11—C10 124.7 (3) H26A—C26—H26B 109.5
C12—C11—C10 120.4 (3) C25—C26—H26C 109.5
O2—C12—C11 120.2 (3) H26A—C26—H26C 109.5
O2—C12—C13 120.0 (3) H26B—C26—H26C 109.5
C11—C12—C13 119.6 (3) C25—C27—H27A 109.5
O3—C13—C12 115.3 (3) C25—C27—H27B 109.5
O3—C13—C14 124.1 (3) H27A—C27—H27B 109.5
C12—C13—C14 120.6 (3) C25—C27—H27C 109.5
C9—C14—C13 119.1 (3) H27A—C27—H27C 109.5
C9—C14—H14 120.5 H27B—C27—H27C 109.5
C13—C14—H14 120.5 C25—C28—H28A 109.5
O1—C15—H15A 109.5 C25—C28—H28B 109.5
O1—C15—H15B 109.5 H28A—C28—H28B 109.5
H15A—C15—H15B 109.5 C25—C28—H28C 109.5
O1—C15—H15C 109.5 H28A—C28—H28C 109.5
H15A—C15—H15C 109.5 H28B—C28—H28C 109.5
H15B—C15—H15C 109.5 C11—O1—C15 117.4 (3)
O2—C16—H16A 109.5 C12—O2—C16 116.4 (3)
O2—C16—H16B 109.5 C13—O3—C17 117.6 (3)
H16A—C16—H16B 109.5 H4A—O4—H4B 110 (5)
O2—C16—H16C 109.5
C2—N2—C1—N1 −0.4 (3) O2—C12—C13—O3 6.4 (4)
C18—N2—C1—N1 −177.7 (2) C11—C12—C13—O3 −179.1 (3)
C7—N1—C1—N2 0.1 (3) O2—C12—C13—C14 −173.2 (3)
C8—N1—C1—N2 175.6 (2) C11—C12—C13—C14 1.4 (5)
C1—N2—C2—C3 179.0 (3) C10—C9—C14—C13 −0.4 (4)
C18—N2—C2—C3 −3.8 (4) C8—C9—C14—C13 −179.7 (3)
C1—N2—C2—C7 0.6 (3) O3—C13—C14—C9 179.9 (3)
C18—N2—C2—C7 177.8 (2) C12—C13—C14—C9 −0.5 (4)
N2—C2—C3—C4 −177.6 (3) C1—N2—C18—C19 81.3 (3)
C7—C2—C3—C4 0.5 (4) C2—N2—C18—C19 −95.5 (3)
C2—C3—C4—C5 −0.3 (4) N2—C18—C19—C20 −86.2 (3)
C3—C4—C5—C6 −0.1 (5) N2—C18—C19—C24 93.5 (3)
C4—C5—C6—C7 0.2 (4) C24—C19—C20—C21 −0.5 (5)
C1—N1—C7—C6 −178.2 (3) C18—C19—C20—C21 179.1 (3)
C8—N1—C7—C6 6.3 (4) C19—C20—C21—C22 −0.3 (6)
C1—N1—C7—C2 0.3 (3) C20—C21—C22—C23 0.8 (5)
C8—N1—C7—C2 −175.2 (2) C20—C21—C22—C25 177.9 (3)
C5—C6—C7—N1 178.4 (3) C21—C22—C23—C24 −0.6 (4)
C5—C6—C7—C2 0.0 (4) C25—C22—C23—C24 −177.7 (3)
C3—C2—C7—N1 −179.1 (2) C20—C19—C24—C23 0.7 (4)
N2—C2—C7—N1 −0.5 (2) C18—C19—C24—C23 −178.9 (3)
C3—C2—C7—C6 −0.4 (4) C22—C23—C24—C19 −0.1 (4)
N2—C2—C7—C6 178.2 (2) C23—C22—C25—C27 98.5 (4)
C1—N1—C8—C9 −90.8 (3) C21—C22—C25—C27 −78.4 (4)
C7—N1—C8—C9 84.0 (3) C23—C22—C25—C26 −141.5 (3)
N1—C8—C9—C10 −100.3 (3) C21—C22—C25—C26 41.6 (4)
N1—C8—C9—C14 78.9 (3) C23—C22—C25—C28 −22.5 (4)
C14—C9—C10—C11 0.5 (4) C21—C22—C25—C28 160.6 (3)
C8—C9—C10—C11 179.7 (2) C12—C11—O1—C15 −175.0 (3)
C9—C10—C11—O1 −179.8 (3) C10—C11—O1—C15 5.2 (5)
C9—C10—C11—C12 0.3 (4) C11—C12—O2—C16 92.8 (4)
O1—C11—C12—O2 −6.6 (4) C13—C12—O2—C16 −92.7 (4)
C10—C11—C12—O2 173.3 (3) C12—C13—O3—C17 175.0 (4)
O1—C11—C12—C13 178.9 (3) C14—C13—O3—C17 −5.5 (6)
C10—C11—C12—C13 −1.2 (4)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O4—H4A···Br1i 0.87 (3) 2.54 (3) 3.393 (3) 169 (5)
O4—H4B···Br1ii 0.88 (5) 2.52 (5) 3.399 (3) 176 (5)
C1—H1···Br1 0.96 2.65 3.587 (3) 165
C3—H3···O2iii 0.96 2.57 3.294 (4) 132
C6—H6···O4 0.96 2.38 3.305 (5) 161
C10—H10···O4 0.96 2.59 3.463 (5) 152
C14—H14···Br1 0.96 2.88 3.823 (3) 167
C18—H18A···Br1iv 0.96 2.82 3.718 (3) 155

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x, y−1, z; (iii) x+1, y, z; (iv) −x+2, −y+2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2459).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Arduengo, A. J. & Krafczyc, R. (1998). Chem. Ztg.32, 6–14.
  3. Arslan, H., VanDerveer, D., Yaşar, S., Özdemir, İ. & Çetinkaya, B. (2009). Acta Cryst. E65, o121–o122. [DOI] [PMC free article] [PubMed]
  4. Herrmann, W. A. (2002). Angew. Chem. Int. Ed.41, 1290–1309.
  5. Herrmann, W. A., Elison, M., Fischer, J., Köcher, C. & Artus, G. R. J. (1995). Angew. Chem. Int. Ed. Engl.34, 2371–2374.
  6. Herrmann, W. A., Reisinger, C. P. & Spiegler, M. (1998). J. Organomet. Chem.557, 93–96.
  7. Jacobson, R. (1998). REQAB. Molecular Structure Corporation, The Woodlands, Texas,USA.
  8. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst.39, 453–457.
  9. Navarro, O., Marion, N., Oonishi, Y., Kelly, R. A. & Nolan, S. P. (2006). J. Org. Chem.71, 685–692. [DOI] [PubMed]
  10. Rigaku/MSC (2001). CrystalClear Rigaku/MSC, The Woodlands, Texas, USA.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Yaşar, S., Özdemir, I., Çetinkaya, B., Renaud, J. L. & Bruneau, L. (2008). Eur. J. Org. Chem.12, 2142–2149.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I. DOI: 10.1107/S1600536808043250/hg2459sup1.cif

e-65-0o208-sup1.cif (25.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808043250/hg2459Isup2.hkl

e-65-0o208-Isup2.hkl (238KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES