Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Jan 28;65(Pt 2):o394–o395. doi: 10.1107/S1600536809002839

3-(2,6-Dioxopiperidin-3-yl)-3-aza­bicyclo­[3.2.0]heptane-2,4-dione

Yousef M Hijji a, Ellis Benjamin b, Earl Benjamin b, Ray J Butcher c,*, Jerry P Jasinski d
PMCID: PMC2968123  PMID: 21581989

Abstract

The title mol­ecule, C11H12N2O4, consists of a 3-aza­bicyclo­[3.2.0]heptane group containing a nearly planar cyclo­butane ring (r.m.s. deviation of fitted atoms is 0.0609 Å), fused to a pyrrolidine ring, bonded to a 2,6-dioxopiperidine ring at the 3-position. The angle between the mean planes of the cyclo­butane and fused pyrrolidine ring is 67.6 (6)°. The dihedral angles between the mean planes of the pyrrolidine and cyclo­butane rings and the dioxopiperidine ring are 73.9 (2) and 62.4 (4)°, respectively. The pyrrolidine and dioxopiperidine rings are twisted about the 3-yl group [torsion angles = −55.0 (1) and 115.0 (1)°] in a nearly perpendicular manner. Crystal packing is influenced by extensive inter­molecular C—H⋯O and N—H⋯O inter­actions between all four carbonyl O atoms and H atoms from the cyclo­butane and dioxopiperidine rings, as well as between the N atom and an H atom from the cyclo­butane ring. In addition, weak π-ring interactions also occur between H atoms from the cyclobutane ring and the five-membered pyrrolidine ring. As a result, mol­ecules are linked into infinite chains diagonally along the [101] plane of the unit cell in an alternate inverted pattern.

Related literature

For related structures, see: Muller & Man (2008); Yamamoto et al. (2008); Zeldis (2008). For related literature, see: Carson et al. (2004); Werbel et al. (1968); Cremer & Pople (1975); Schmidt & Polik (2007).graphic file with name e-65-0o394-scheme1.jpg

Experimental

Crystal data

  • C11H12N2O4

  • M r = 236.23

  • Monoclinic, Inline graphic

  • a = 10.7332 (7) Å

  • b = 9.9358 (5) Å

  • c = 11.0753 (7) Å

  • β = 116.201 (8)°

  • V = 1059.75 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 200 (2) K

  • 0.57 × 0.34 × 0.19 mm

Data collection

  • Oxford Diffraction Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007) T min = 0.866, T max = 0.975

  • 10798 measured reflections

  • 3496 independent reflections

  • 2193 reflections with I > 2σ(I)

  • R int = 0.025

Refinement

  • R[F 2 > 2σ(F 2)] = 0.039

  • wR(F 2) = 0.108

  • S = 0.99

  • 3496 reflections

  • 154 parameters

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.25 e Å−3

Data collection: CrysAlisPro (Oxford Diffraction, 2007); cell refinement: CrysAlisPro; data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809002839/cs2103sup1.cif

e-65-0o394-sup1.cif (17.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809002839/cs2103Isup2.hkl

e-65-0o394-Isup2.hkl (171.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2B⋯O3i 0.88 2.06 2.9426 (12) 175
C5—H5A⋯O4ii 1.00 2.52 3.4424 (15) 153
C10—H10B⋯O2iii 0.99 2.56 3.4228 (14) 146
C11—H11B⋯O3ii 0.99 2.53 3.5026 (13) 167
C11—H11B⋯O1ii 0.99 2.53 3.1072 (14) 117
C3—H3A⋯O4iv 0.99 2.52 3.2577 (15) 131

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

RJB acknowledges the NSF MRI program (grant No. CHE-0619278) for funds to purchase an X-ray diffractometer.

supplementary crystallographic information

Comment

The synthesis and biological evaluation of the title compound, 3-(2,6-dioxopiperidine-3-yl)-3-azabicyclo[3.2.0]heptane-2,4-dione and its analogues is of interest to synthetic medicinal chemists. Specifically, piperidine 2,6-dione derivatives, including those of phthalimide, are important anti-angiogenic and immunomodulative agents used for the treatment of many diseases including multiple myeloma, (Muller & Man, 2008; Yamamoto et al., 2008; Zeldis, 2008), Chron's disease (Carson et al., 2004), and leprosy (Werbel et al., 1968). The title molecule, C11H12N2O4, a piperidine 2,6-dione derivative, consists of an azabicyclo[3.2.0]heptane group containing a nearly planar cyclobutane ring, fused to a pyrrolidine ring, bonded to a 2,6-dioxopiperidine ring at the 3 position. The six-membered dioxopiperidine ring (N2–C8–C7–C11–C10–C9) is a slightly distorted envelope, with Cremer & Pople (1975) puckering parameters Q, θ and φ of 0.5187 (12) Å, 56.12 (13)° and 176.55 (16)°, respectively. The 5-membered pyrrolidine group (N1/C2–C6) has also a slightly distorted envelope conformation with puckering parameters Q(2)and φ(2) of 0.0940 (13) Å, 82.9 (7)° respectively. For an ideal envelope θ has a value of 0 or 180° and θ(2) has a value of 72. The angle between the mean planes of the cyclobutane and fused pyrrolidine ring is 67.6 (6)° (Fig. 1). The mean planes of the pyrrolidine and cyclobutane rings make an angle of 73.9 (2)° and 62.4 (4)° with the dihedral angle of the dioxopiperidine ring, respectively. The pyrrolidine and dioxopiperidine rings are twisted about the 3-yl group [torsion angles = -55.0 (1)° (C1—N1—C7—C8) and 115.0 (1)° (C6—N1—C7—C8)] in a nearly perpendicular manner.

Crystal packing is influenced by extensive intermolecular C–H···O hydrogen bonding between all four carbonyl oxygen atoms [O1, O2, O3, O4] and hydrogen atoms from the cyclobutane (H3A & H5A) and dioxopiperidine rings (H10B & H11B) as well as by N–H···O intermolecular interactions. As a result the molecules are linked into infinite chains diagonally along the [101] plane of the unit cell in an alternate inverted pattern (Fig. 2). In addition, weak C-H··· π-ring interactions also occur between hydrogen atoms from the cyclobutane ring [H3B] and the 5-membered pyrrolidine ring [C3–H3B···Cg2; H3B···Cg2 = 2.50 Å, C3–H3B···Cg2 = 64°, C3···Cg2–H3B = 2.2475 (13) Å, x,y,z, where Cg2 = center of gravity of the N1/C1/C2/C5/C6 ring].

After a MOPAC AMI calculation [Austin Model 1 approximation together with the Hartree-Fock closed-shell (restricted) wavefunction was used and minimizations were terminnated at an r.m.s. gradient of less than 0.01 kJ mol-1 Å-1] with WebMO Pro (Schmidt & Polik, 2007), the mean planes of the cyclopropane and pyrrolidine rings became completely planar in the local minimized structure and the dihedral angle between these rings became 64.3 (8)°. The angle between the mean planes of the pyrrolidine and cyclobutane rings and the dihedral angle of the dioxopiperidine ring became 73.9 (2)° and 62.4 (4)°, respectively. The twist of the pyrrolidine and dioxopiperidine rings about the 3-yl group became more perpendicuar to each other after this geometry minimization [torsion angles = -68.6 (6)° (C1—N1—C7—C8) and 100.4 (1)° (C6—N1—C7—C8)]. Thus it is apparent that the extensive hydrogen bonding and π-ring intermolecular interactions significantly influence crystal packing for this molecule.

Experimental

The title compound was synthesized as follows: cis-1,2-cyclobutane dicarboxylic acid anhydride (0.1 g, 0.79 mmol), glutamic acid (0.12 g, 0.79 mmol), DMAP (0.02 g, 0.16 mmol), and ammonium chloride (NH4Cl) (0.04 g, 0.916 mmol) were mixed thoroughly in a CEM-sealed vial with a magnetic stirrer. The mixture was heated for 10 min at 423 K in a CEM Discover microwave powered at 150 W. It was then cooled rapidly to 313 K and dissolved in 15 ml of (1:1) ethyl acetate: acetone. The organic layer was washed with 2x (10 ml) distilled water and dried over sodium sulfate (anhydrous). The organic layer was concentrated under vacuum and precipitated with hexanes (30 ml) affording a white solid, recrystallized from methanol, (0.10 g, 54%). mp 476–478 K; 1H NMR (400 MHz, DMSO-d6), δ (p.p.m.): 11.06 (s, 1 H, NH), 4.95 (dd, 1 H, 12.5, 5.5 Hz), 2.84 (m, 2 H), 2.52 (m, 4 H,), 2.02 (m, 2 H), 1.92 (m, 2 H); 13C NMR (100 MHz, DMSO-d6) δ (p.p.m.): 179.0(C=O), 172.7(C=O), 169.4(C=O), 49.1(CH), 37.9(CH), 37.7(CH), 30.7(CH), 22.3(CH2), 22.0(CH2), 21.0(CH2); MS m/z 236 (M+) 208, 151, 106, 112, 96, 83, 55, 41; IR (nujol) (νmax, cm-1): 3207.48, 1702.55, 1729.09, 1771.79 (C=O).

Refinement

The H atoms were placed in their calculated positions and then refined using the riding model with C(N)—H = 0.88 to 1.00 Å, and with Uiso(H) = 1.18–1.21Ueq(C,N).

Figures

Fig. 1.

Fig. 1.

The molecular structure of C11H12N2O4, showing the atom numbering scheme and 50% probability displacement ellipsoids.

Fig. 2.

Fig. 2.

The molecular packing for C11H12N2O4 viewed down the b axis. Dashed lines indicate C–H···O and N–H···O intermolecular hydrogen bonds.

Crystal data

C11H12N2O4 F(000) = 496
Mr = 236.23 Dx = 1.481 Mg m3
Monoclinic, P21/a Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yab Cell parameters from 4629 reflections
a = 10.7332 (7) Å θ = 4.9–32.6°
b = 9.9358 (5) Å µ = 0.11 mm1
c = 11.0753 (7) Å T = 200 K
β = 116.201 (8)° Prism, colorless
V = 1059.75 (13) Å3 0.57 × 0.34 × 0.19 mm
Z = 4

Data collection

Oxford Diffraction Gemini diffractometer 3496 independent reflections
Radiation source: fine-focus sealed tube 2193 reflections with I > 2σ(I)
graphite Rint = 0.025
Detector resolution: 10.5081 pixels mm-1 θmax = 32.5°, θmin = 4.9°
φ and ω scans h = −14→16
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007) k = −14→13
Tmin = 0.866, Tmax = 0.975 l = −15→15
10798 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108 H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.0607P)2] where P = (Fo2 + 2Fc2)/3
3496 reflections (Δ/σ)max < 0.001
154 parameters Δρmax = 0.28 e Å3
0 restraints Δρmin = −0.25 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.32277 (8) 0.13630 (8) 0.42230 (7) 0.0271 (2)
O2 0.04309 (9) 0.50429 (9) 0.26752 (8) 0.0372 (2)
O3 0.02024 (7) 0.12103 (8) 0.39189 (7) 0.02458 (19)
O4 0.16813 (8) 0.16581 (9) 0.83857 (8) 0.0350 (2)
N1 0.18201 (8) 0.32243 (9) 0.37104 (8) 0.0196 (2)
N2 0.10433 (9) 0.14479 (9) 0.61681 (8) 0.0222 (2)
H2B 0.0683 0.0660 0.6195 0.027*
C1 0.25634 (10) 0.22276 (11) 0.34235 (10) 0.0211 (2)
C2 0.23146 (11) 0.24120 (12) 0.19918 (11) 0.0258 (3)
H2A 0.3154 0.2315 0.1827 0.031*
C3 0.09860 (12) 0.16602 (13) 0.09668 (11) 0.0340 (3)
H3A 0.1154 0.1076 0.0330 0.041*
H3B 0.0487 0.1164 0.1396 0.041*
C4 0.03228 (13) 0.30239 (14) 0.03642 (11) 0.0357 (3)
H4A −0.0594 0.3172 0.0355 0.043*
H4B 0.0281 0.3205 −0.0532 0.043*
C5 0.15349 (12) 0.37539 (12) 0.15340 (11) 0.0278 (3)
H5A 0.2019 0.4464 0.1259 0.033*
C6 0.11702 (11) 0.41346 (11) 0.26561 (10) 0.0240 (2)
C7 0.15765 (10) 0.31947 (11) 0.49000 (10) 0.0190 (2)
H7A 0.0905 0.3931 0.4805 0.023*
C8 0.08854 (9) 0.18701 (11) 0.49330 (10) 0.0188 (2)
C9 0.17118 (10) 0.21274 (12) 0.73885 (10) 0.0234 (2)
C10 0.24295 (11) 0.34041 (11) 0.73556 (10) 0.0249 (2)
H10A 0.3260 0.3520 0.8228 0.030*
H10B 0.1799 0.4172 0.7239 0.030*
C11 0.28713 (10) 0.34228 (11) 0.62276 (10) 0.0220 (2)
H11A 0.3561 0.2704 0.6369 0.026*
H11B 0.3300 0.4300 0.6209 0.026*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0272 (4) 0.0236 (4) 0.0302 (4) 0.0056 (3) 0.0125 (3) 0.0028 (3)
O2 0.0488 (5) 0.0302 (5) 0.0331 (4) 0.0158 (4) 0.0185 (4) 0.0085 (4)
O3 0.0235 (4) 0.0233 (4) 0.0256 (4) −0.0044 (3) 0.0096 (3) −0.0028 (3)
O4 0.0448 (5) 0.0383 (5) 0.0276 (4) −0.0018 (4) 0.0211 (4) 0.0041 (4)
N1 0.0226 (4) 0.0176 (5) 0.0209 (4) 0.0009 (3) 0.0117 (3) 0.0022 (4)
N2 0.0252 (4) 0.0186 (5) 0.0252 (4) −0.0048 (3) 0.0134 (4) 0.0012 (4)
C1 0.0196 (5) 0.0198 (5) 0.0263 (5) −0.0028 (4) 0.0124 (4) −0.0009 (4)
C2 0.0295 (6) 0.0251 (6) 0.0279 (5) −0.0016 (4) 0.0174 (5) −0.0016 (5)
C3 0.0441 (7) 0.0330 (7) 0.0254 (6) −0.0064 (5) 0.0158 (5) −0.0041 (5)
C4 0.0385 (7) 0.0436 (8) 0.0218 (5) 0.0015 (6) 0.0103 (5) 0.0005 (5)
C5 0.0347 (6) 0.0256 (6) 0.0255 (5) −0.0027 (5) 0.0155 (5) 0.0034 (5)
C6 0.0265 (5) 0.0203 (6) 0.0238 (5) −0.0007 (4) 0.0098 (4) 0.0032 (4)
C7 0.0203 (5) 0.0170 (5) 0.0217 (5) 0.0004 (4) 0.0110 (4) 0.0008 (4)
C8 0.0156 (4) 0.0195 (5) 0.0224 (5) 0.0016 (4) 0.0093 (4) 0.0013 (4)
C9 0.0226 (5) 0.0247 (6) 0.0248 (5) 0.0025 (4) 0.0122 (4) 0.0012 (5)
C10 0.0294 (5) 0.0217 (6) 0.0225 (5) −0.0019 (4) 0.0105 (4) −0.0023 (4)
C11 0.0215 (5) 0.0193 (5) 0.0248 (5) −0.0030 (4) 0.0099 (4) −0.0014 (4)

Geometric parameters (Å, °)

O1—C1 1.2136 (13) C3—H3B 0.9900
O2—C6 1.2080 (13) C4—C5 1.5520 (16)
O3—C8 1.2253 (12) C4—H4A 0.9900
O4—C9 1.2125 (13) C4—H4B 0.9900
N1—C1 1.3936 (14) C5—C6 1.5069 (16)
N1—C6 1.3959 (13) C5—H5A 1.0000
N1—C7 1.4523 (13) C7—C8 1.5191 (15)
N2—C8 1.3679 (13) C7—C11 1.5298 (13)
N2—C9 1.3933 (13) C7—H7A 1.0000
N2—H2B 0.8800 C9—C10 1.4929 (16)
C1—C2 1.4984 (15) C10—C11 1.5195 (15)
C2—C5 1.5364 (17) C10—H10A 0.9900
C2—C3 1.5654 (15) C10—H10B 0.9900
C2—H2A 1.0000 C11—H11A 0.9900
C3—C4 1.5390 (18) C11—H11B 0.9900
C3—H3A 0.9900
C1—N1—C6 113.25 (9) C6—C5—H5A 115.6
C1—N1—C7 122.88 (8) C2—C5—H5A 115.6
C6—N1—C7 123.25 (9) C4—C5—H5A 115.6
C8—N2—C9 127.22 (9) O2—C6—N1 123.98 (10)
C8—N2—H2B 116.4 O2—C6—C5 127.86 (10)
C9—N2—H2B 116.4 N1—C6—C5 108.14 (9)
O1—C1—N1 123.21 (9) N1—C7—C8 108.95 (8)
O1—C1—C2 129.16 (10) N1—C7—C11 114.71 (8)
N1—C1—C2 107.57 (9) C8—C7—C11 110.57 (8)
C1—C2—C5 105.78 (9) N1—C7—H7A 107.4
C1—C2—C3 112.87 (9) C8—C7—H7A 107.4
C5—C2—C3 89.18 (8) C11—C7—H7A 107.4
C1—C2—H2A 115.3 O3—C8—N2 120.82 (10)
C5—C2—H2A 115.3 O3—C8—C7 122.84 (9)
C3—C2—H2A 115.3 N2—C8—C7 116.33 (9)
C4—C3—C2 89.61 (9) O4—C9—N2 119.20 (10)
C4—C3—H3A 113.7 O4—C9—C10 124.80 (10)
C2—C3—H3A 113.7 N2—C9—C10 116.00 (9)
C4—C3—H3B 113.7 C9—C10—C11 112.47 (9)
C2—C3—H3B 113.7 C9—C10—H10A 109.1
H3A—C3—H3B 111.0 C11—C10—H10A 109.1
C3—C4—C5 89.58 (8) C9—C10—H10B 109.1
C3—C4—H4A 113.7 C11—C10—H10B 109.1
C5—C4—H4A 113.7 H10A—C10—H10B 107.8
C3—C4—H4B 113.7 C10—C11—C7 107.91 (9)
C5—C4—H4B 113.7 C10—C11—H11A 110.1
H4A—C4—H4B 111.0 C7—C11—H11A 110.1
C6—C5—C2 104.34 (9) C10—C11—H11B 110.1
C6—C5—C4 112.24 (10) C7—C11—H11B 110.1
C2—C5—C4 90.21 (9) H11A—C11—H11B 108.4
C6—N1—C1—O1 178.13 (10) C2—C5—C6—O2 −171.68 (11)
C7—N1—C1—O1 −10.65 (15) C4—C5—C6—O2 −75.45 (15)
C6—N1—C1—C2 −4.49 (11) C2—C5—C6—N1 7.10 (11)
C7—N1—C1—C2 166.72 (9) C4—C5—C6—N1 103.32 (11)
O1—C1—C2—C5 −174.12 (11) C1—N1—C7—C8 −55.34 (12)
N1—C1—C2—C5 8.72 (11) C6—N1—C7—C8 115.01 (10)
O1—C1—C2—C3 89.96 (14) C1—N1—C7—C11 69.19 (12)
N1—C1—C2—C3 −87.20 (11) C6—N1—C7—C11 −120.47 (10)
C1—C2—C3—C4 115.83 (10) C9—N2—C8—O3 −175.72 (9)
C5—C2—C3—C4 9.02 (9) C9—N2—C8—C7 3.25 (15)
C2—C3—C4—C5 −8.93 (9) N1—C7—C8—O3 −24.63 (13)
C1—C2—C5—C6 −9.47 (11) C11—C7—C8—O3 −151.56 (9)
C3—C2—C5—C6 104.11 (9) N1—C7—C8—N2 156.42 (9)
C1—C2—C5—C4 −122.52 (9) C11—C7—C8—N2 29.49 (12)
C3—C2—C5—C4 −8.94 (9) C8—N2—C9—O4 174.97 (10)
C3—C4—C5—C6 −96.51 (11) C8—N2—C9—C10 −5.28 (15)
C3—C4—C5—C2 9.10 (9) O4—C9—C10—C11 153.52 (11)
C1—N1—C6—O2 177.01 (10) N2—C9—C10—C11 −26.21 (13)
C7—N1—C6—O2 5.83 (16) C9—C10—C11—C7 56.95 (12)
C1—N1—C6—C5 −1.83 (11) N1—C7—C11—C10 178.27 (9)
C7—N1—C6—C5 −173.01 (9) C8—C7—C11—C10 −58.05 (11)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N2—H2B···O3i 0.88 2.06 2.9426 (12) 175
C5—H5A···O4ii 1.00 2.52 3.4424 (15) 153
C10—H10B···O2iii 0.99 2.56 3.4228 (14) 146
C11—H11B···O3ii 0.99 2.53 3.5026 (13) 167
C11—H11B···O1ii 0.99 2.53 3.1072 (14) 117
C3—H3A···O4iv 0.99 2.52 3.2577 (15) 131

Symmetry codes: (i) −x, −y, −z+1; (ii) −x+1/2, y+1/2, −z+1; (iii) −x, −y+1, −z+1; (iv) x, y, z−1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CS2103).

References

  1. Carson, K. G., Jaffee, B. D. & Harriman, G. C. B. (2004). Annu. Rep. Med. Chem.39, 149–158.
  2. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  3. Muller, G. W. & Man, H.-W. (2008). PCT Int. Appl. PIXXD2 WO 2008039489 A2 20080403.
  4. Oxford Diffraction (2007). CrysAlis Pro and CrysAlis RED Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.
  5. Schmidt, J. R. & Polik, W. F. (2007). WebMO Pro WebMO, LLC, Holland, Michigan, USA, 2007. http://www.webmo.net
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Werbel, L. M., Elslager, E. F., Fisher, M. W., Gavrilis, Z. B. & Phillips, A. A. (1968). J. Med. Chem.11, 411–419. [DOI] [PubMed]
  8. Yamamoto, T., Shibata, N., Takashima, M., Nakamura, S., Toru, T., Matsunaga, N. & Hara, H. (2008). Org. Biomol. Chem.6, 1540–1543. [DOI] [PubMed]
  9. Zeldis, J. B. (2008). PCT Int. Appl. PIXXD2. WO 2008019065, A1 20080214, CAN 148:230111, AN 2008:191687.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809002839/cs2103sup1.cif

e-65-0o394-sup1.cif (17.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809002839/cs2103Isup2.hkl

e-65-0o394-Isup2.hkl (171.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES