Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Jan 14;65(Pt 2):m184–m185. doi: 10.1107/S1600536809000889

catena-Poly[[[aqua­(1,10-phenan­throline)cadmium(II)]-μ-benzene-1,4-dicarboxyl­ato] benzene-1,4-dicarboxylic acid hemisolvate]

Zhuanzhuan Wang a, Weihe Han a, Zhihong Liu a,*
PMCID: PMC2968137  PMID: 21581788

Abstract

A new cadmium(II) coordination polymer, {[Cd(C8H4O4)(C12H8N2)(H2O)]·0.5C8H6O4}n, has been synthesized under hydro­thermal conditions. The asymmetric unit contains one CdII atom, one benzene-1,4-dicarboxyl­ate anion, one 1,10-phenanthroline ligand, one coordinated water mol­ecule and half of an uncoordinated benzene-1,4-dicaboxylic acid solvent mol­ecule. The CdII atom is in the centre of a monocapped distorted octa­hedron made up of four O atoms of two chelating benzene-1,4-dicarboxyl­ate anions, one water O atom and two 1,10-phenanthroline N atoms. The metal centres are connected via bis-chelating benzene-1,4-dicarboxyl­ate anions into a zigzag chain structure along [001]. These chains are further connected by O—H⋯O hydrogen bonds between the water mol­ecules and adjacent carboxyl­ate O atoms. Additional O—H⋯O hydrogen bonding between the uncoordinated benzene-1,4-dicaboxylic acid mol­ecules along [010] consolidates the structure.

Related literature

For background to coordination polymers, see: Liang et al. (2002); McGarrah et al. (2001); Moulton et al. (2002); Wu et al. (2007). Zheng et al. (2004). For related structures, see: Shi et al. (2004); Wang et al. (2004).graphic file with name e-65-0m184-scheme1.jpg

Experimental

Crystal data

  • [Cd(C8H4O4)(C12H8N2)(H2O)]·0.5C8H6O4

  • M r = 557.80

  • Monoclinic, Inline graphic

  • a = 26.108 (2) Å

  • b = 9.6928 (10) Å

  • c = 21.161 (2) Å

  • β = 126.494 (2)°

  • V = 4304.9 (7) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.07 mm−1

  • T = 298 (2) K

  • 0.42 × 0.18 × 0.02 mm

Data collection

  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004) T min = 0.663, T max = 0.984

  • 10895 measured reflections

  • 3793 independent reflections

  • 3061 reflections with I > 2σ(I)

  • R int = 0.021

Refinement

  • R[F 2 > 2σ(F 2)] = 0.025

  • wR(F 2) = 0.062

  • S = 1.07

  • 3793 reflections

  • 309 parameters

  • H-atom parameters constrained

  • Δρmax = 0.57 e Å−3

  • Δρmin = −0.28 e Å−3

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809000889/wm2211sup1.cif

e-65-0m184-sup1.cif (25.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809000889/wm2211Isup2.hkl

e-65-0m184-Isup2.hkl (186KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Cd1—O1 2.284 (3)
Cd1—O3 2.357 (2)
Cd1—N2 2.358 (2)
Cd1—N1 2.362 (2)
Cd1—O7 2.375 (2)
Cd1—O4 2.377 (2)
Cd1—O2 2.601 (3)

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5⋯O6i 0.82 1.92 2.728 (3) 167
O7—H7A⋯O2ii 0.85 1.88 2.665 (3) 154
O7—H7B⋯O4ii 0.85 2.28 3.019 (3) 146

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

supplementary crystallographic information

Comment

Carboxylic acid coordination polymers have an important position in coordination chemistry due to their interesting topologies and their potential applications in functional materials (Wu et al., 2007). The coordination ability of the 1,10-phenanthroline ligand stems from its chelate effect which frequently results in the formation of low-dimensional coordination polymers because of its terminal-group effect (Moulton et al., 2002). In this work, we report a new cadmium coordination polymer with a one-dimensional zigzag chain, {[Cd(C8H4O4)(C12H8N2)(H2O)]2(C8H6O4)}n, (I), that was synthesized from benzene-1,4-dicarboxylic acid, 1,10-phenanthroline and cadmium nitrate under hydrothermal conditions.

Each [Cd(C8H4O4)(C12H8N2)(H2O)]2(C8H6O4)] unit is composed of two Cd2+ ions, two 1,10-phenanthroline ligands, two benzene-1,4-dicarboxylate anions, two coordinated water molecules, and one uncoordinated neutral benzene-1,4-dicaboxylic acid solvent molecule. The Cd2+ ion in the complex is seven-coordinated with four oxygen atoms (O1, O2, O3 and O4) of two chelating bidentate carboxyl groups from two deprotonated benzene-1,4-dicaboxylic acid ligands, one O atom (O7) of a water molecule, and two nitrogen atoms (N1 and N2) from the chelating 1,10-phenanthroline ligand (Fig. 1). The Cd—O bond distances are between 2.284 (2) Å and 2.601 (2) Å, while the Cd—N bond distances are 2.358 (2) Å and 2.362 (2) Å, which all are in agreement with those of other reported Cd—O and Cd—N bond lengths (Wang et al., 2004; Shi et al., 2004). One Cd2+ ion connects two benzene-1,4-dicarboxylate ligands, and one benzene-1,4-dicarboxylic acid ligand also connects two Cd2+ ions, leading to a zigzag chain along [001], as shown in Fig. 2. These chains are further connected through O—H···O hydrogen bonding interactions between the water molecules and the oxygen atoms of the coordinated carboxyl groups of benzene-1,4-dicarboxylate ligands in neighboring chains to give an extended supramolecular two-dimensional layer structure, as illustrated in Fig. 3. Additional O—H···O hydrogen bonding between the uncoordinated benzene-1,4-dicaboxylic acid molecules along [010] consolidates the structure.

Experimental

All regents used in the synthesis were of analytic grade and were used without further purification. A mixture of Cd(NO3)2.6H2O (0.3085 g), 1,10-phenanthroline (0.099 g), benzene-1,4-dicarboxylic acid (0.083 g) and water (20 mL) was sealed in a 40 mL stainless steel reactor with a Teflon inlay after adjustment of the pH to 7 by addition of a dilute NaOH solution. The autoclave was heated to 448 K for 6 d, and then cooled to room temperature. Colorless hexagonal-prismatic crystals were obtained. Elemental analysis, calculated: C, 51.68, H, 3.07, N 5.02; found: C, 50.87, H, 3.22, N 4.96.

The title compoud was further characterized by FT-IR spectroscopy (recorded over the 400 to 4000 cm-1 region on a Nicolet NEXUS 670 spectrometer with KBr pellets at room temperature); by thermogravimetric analysis (TGA) (performed on a Universal V4.1D TA-SDT Q600 thermal analyzer in N2 atmosphere with a heating rate of 10 °/min) and by its luminescent properties of the solid state under room temperature.

The FT-IR spectrum of the title compound exhibited the following absorption bands that were assigned referring to literature (Liang et al., 2002). A broad band at 3199 cm-1 corresponds to the O-H stretching vibration of the coordinated water molecule. The peak at 1682 cm-1 is attributed to the C=O stretching vibration of the carboxylate group, and the peak at 1380 cm-1 is due to the C-O stretching vibration of carboxylate group. A typical TG curve is shown in Figure 4. It shows that this compound has two steps of mass loss between 55 and 635 °C. The first step is completed at 376 °C, accompanied with 18.05 % mass loss, which is in good agreement with the theoretical mass loss of 18.12 %, corresponding to the evaporation of two water molecules and an uncoordinated neutral 1,4-benzenedecaboxylic acid molecule. In the second step, the mass loss is 70.31 % from 376 to 635 °C, which corresponds to the decomposition of two 1,10-phenanthroline and two deprotonated 1,4-benzenedecaboxylic acid ligands and can be compared with the calculated value of 70.37 %. After the two steps of mass loss, the mass fraction of the residue is 11.44 %, which is in agreement with the calculated mass summation of the remaining CdO (11.51 %). Previous studies have shown that coordination polymers containing zinc and cadmium ions exhibit photoluminescent properties (McGarrah et al., 2001). As shown in Figure 5, upon excitation of the solid sample at 370 nm, it exhibited strong cyan fluorescent emission bands at 504 nm. It is probably due to the (π*-π) transitions changing into the (π*-n) transitions after forming the coordination polymer (Zheng et al., 2004).

Refinement

H atoms were positioned in calculated positions (O–H = 0.82 Å and 0.82 Å, C–H = 0.93 Å) and were refined using the riding model approximation with Uiso(H) = 1.2Ueq of the parent atom.

Figures

Fig. 1.

Fig. 1.

The asymmetric unit in the structure of compound (I). Displacement ellipsoids are drawn at the 30% probability level.

Fig. 2.

Fig. 2.

A view of a one-dimensional zigzag chain in the structure of compound (I). The uncoordinated 1,4-benzenedecaboxylic acid solvent molecules were omitted for clarity.

Fig. 3.

Fig. 3.

The layered structure of compound (I), constructed by H-bonding.

Fig. 4.

Fig. 4.

The TG-curve of the thermal decomposition of the title compound (I).

Fig. 5.

Fig. 5.

Solid-state emission spectra of the title complex (I) at room temperature.

Crystal data

[Cd(C8H4O4)(C12H8N2)(H2O)]·0.5C8H6O4 F(000) = 2232
Mr = 557.80 Dx = 1.721 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yc Cell parameters from 5356 reflections
a = 26.108 (2) Å θ = 2.4–27.4°
b = 9.6928 (10) Å µ = 1.07 mm1
c = 21.161 (2) Å T = 298 K
β = 126.494 (2)° Prism, colourless
V = 4304.9 (7) Å3 0.42 × 0.18 × 0.02 mm
Z = 8

Data collection

Bruker SMART CCD diffractometer 3793 independent reflections
Radiation source: fine-focus sealed tube 3061 reflections with I > 2σ(I)
graphite Rint = 0.021
φ and ω scans θmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Sheldrick, 2004) h = −30→30
Tmin = 0.663, Tmax = 0.984 k = −11→10
10895 measured reflections l = −18→25

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.062 H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0233P)2 + 5.6765P] where P = (Fo2 + 2Fc2)/3
3793 reflections (Δ/σ)max = 0.001
309 parameters Δρmax = 0.57 e Å3
0 restraints Δρmin = −0.28 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Cd1 0.163966 (9) 0.80224 (2) 0.186508 (12) 0.03638 (8)
N1 0.05395 (11) 0.8470 (2) 0.11727 (14) 0.0355 (5)
N2 0.10891 (11) 0.5924 (2) 0.15983 (14) 0.0415 (6)
O1 0.18828 (13) 0.8727 (3) 0.30445 (14) 0.0762 (8)
O2 0.23664 (13) 0.6773 (4) 0.32126 (16) 0.0928 (10)
O3 0.14899 (10) 0.7998 (2) 0.06513 (12) 0.0509 (6)
O4 0.24360 (10) 0.7435 (2) 0.16977 (12) 0.0502 (6)
O5 0.05219 (11) 1.1134 (2) 0.28343 (16) 0.0729 (8)
H5 0.0460 1.1969 0.2794 0.109* 0.50
O6 0.05277 (11) 0.3946 (2) 0.28845 (15) 0.0701 (7)
H6 0.0467 0.3111 0.2840 0.105* 0.50
O7 0.18243 (10) 1.0437 (2) 0.19469 (12) 0.0504 (6)
H7A 0.2076 1.0625 0.1829 0.061*
H7B 0.1988 1.0725 0.2410 0.061*
C1 0.22048 (16) 0.7708 (4) 0.3456 (2) 0.0569 (10)
C2 0.23658 (13) 0.7594 (3) 0.42642 (17) 0.0382 (7)
C3 0.23231 (15) 0.8742 (3) 0.46128 (19) 0.0478 (8)
H3 0.2202 0.9585 0.4351 0.057*
C4 0.25404 (15) 0.6350 (3) 0.46504 (19) 0.0477 (8)
H4 0.2567 0.5570 0.4415 0.057*
C5 0.20622 (14) 0.7676 (3) 0.09733 (18) 0.0373 (7)
C6 0.22902 (13) 0.7568 (3) 0.04736 (17) 0.0332 (6)
C7 0.18645 (13) 0.7628 (3) −0.03373 (18) 0.0425 (7)
H7 0.1432 0.7718 −0.0571 0.051*
C8 0.29305 (14) 0.7441 (3) 0.08069 (18) 0.0428 (7)
H8 0.3226 0.7403 0.1351 0.051*
C9 0.0000 1.0513 (4) 0.2500 0.0443 (11)
C10 0.0000 0.8973 (4) 0.2500 0.0390 (10)
C11 0.05674 (14) 0.8252 (3) 0.28751 (19) 0.0479 (8)
H11 0.0951 0.8730 0.3127 0.058*
C12 0.05684 (15) 0.6829 (3) 0.2878 (2) 0.0500 (8)
H12 0.0952 0.6352 0.3134 0.060*
C13 0.0000 0.6107 (4) 0.2500 0.0400 (10)
C14 0.0000 0.4565 (5) 0.2500 0.0452 (11)
C15 0.02751 (15) 0.9707 (3) 0.09881 (19) 0.0470 (8)
H15 0.0539 1.0478 0.1175 0.056*
C16 −0.03804 (15) 0.9903 (4) 0.0527 (2) 0.0538 (9)
H16 −0.0549 1.0790 0.0409 0.065*
C17 −0.07692 (15) 0.8796 (4) 0.0251 (2) 0.0547 (9)
H17 −0.1209 0.8918 −0.0067 0.066*
C18 −0.05130 (14) 0.7468 (3) 0.04402 (19) 0.0452 (8)
C19 0.01571 (13) 0.7355 (3) 0.09130 (16) 0.0344 (6)
C20 0.04452 (14) 0.6005 (3) 0.11358 (17) 0.0390 (7)
C21 0.00562 (16) 0.4833 (3) 0.0881 (2) 0.0520 (8)
C22 0.0362 (2) 0.3557 (4) 0.1137 (3) 0.0774 (12)
H22 0.0120 0.2754 0.0981 0.093*
C23 0.1001 (2) 0.3473 (4) 0.1607 (3) 0.0796 (13)
H23 0.1204 0.2622 0.1781 0.096*
C24 0.13532 (18) 0.4689 (4) 0.1827 (2) 0.0626 (10)
H24 0.1795 0.4628 0.2152 0.075*
C25 −0.08894 (16) 0.6240 (4) 0.0181 (2) 0.0647 (10)
H25 −0.1331 0.6313 −0.0142 0.078*
C26 −0.06213 (18) 0.4987 (4) 0.0391 (2) 0.0692 (11)
H26 −0.0879 0.4207 0.0217 0.083*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cd1 0.03152 (12) 0.04161 (13) 0.03571 (13) 0.00181 (10) 0.01983 (10) 0.00116 (11)
N1 0.0354 (13) 0.0350 (13) 0.0368 (14) 0.0012 (11) 0.0219 (12) 0.0022 (11)
N2 0.0383 (14) 0.0368 (14) 0.0448 (15) 0.0046 (11) 0.0223 (13) −0.0005 (12)
O1 0.085 (2) 0.091 (2) 0.0430 (15) −0.0133 (17) 0.0329 (15) 0.0057 (15)
O2 0.0747 (19) 0.157 (3) 0.0568 (17) 0.0122 (19) 0.0443 (16) −0.0235 (19)
O3 0.0394 (12) 0.0742 (15) 0.0446 (12) 0.0144 (11) 0.0280 (11) 0.0073 (12)
O4 0.0433 (12) 0.0731 (15) 0.0366 (13) 0.0063 (11) 0.0251 (11) 0.0046 (11)
O5 0.0487 (14) 0.0436 (15) 0.101 (2) −0.0060 (12) 0.0307 (15) −0.0069 (14)
O6 0.0583 (16) 0.0435 (14) 0.0852 (19) 0.0088 (12) 0.0300 (15) −0.0008 (14)
O7 0.0564 (13) 0.0473 (13) 0.0485 (13) −0.0114 (11) 0.0317 (12) −0.0060 (11)
C1 0.0359 (18) 0.091 (3) 0.044 (2) −0.0160 (19) 0.0237 (17) −0.012 (2)
C2 0.0297 (15) 0.0521 (18) 0.0326 (16) −0.0034 (13) 0.0185 (14) −0.0059 (15)
C3 0.0518 (19) 0.0381 (18) 0.0470 (19) 0.0049 (15) 0.0260 (17) 0.0044 (15)
C4 0.0513 (19) 0.0443 (19) 0.049 (2) 0.0033 (15) 0.0302 (17) −0.0118 (17)
C5 0.0387 (17) 0.0345 (16) 0.0414 (18) 0.0001 (13) 0.0253 (15) 0.0002 (13)
C6 0.0339 (15) 0.0303 (14) 0.0367 (16) −0.0003 (12) 0.0217 (14) −0.0008 (13)
C7 0.0277 (15) 0.059 (2) 0.0396 (18) 0.0030 (14) 0.0196 (14) 0.0025 (15)
C8 0.0337 (16) 0.0604 (19) 0.0299 (16) 0.0016 (14) 0.0166 (14) −0.0007 (15)
C9 0.046 (3) 0.042 (3) 0.040 (3) 0.000 0.023 (2) 0.000
C10 0.042 (2) 0.040 (2) 0.034 (2) 0.000 0.023 (2) 0.000
C11 0.0376 (17) 0.044 (2) 0.055 (2) −0.0039 (14) 0.0236 (16) −0.0058 (16)
C12 0.0386 (18) 0.046 (2) 0.057 (2) 0.0050 (15) 0.0235 (17) 0.0006 (16)
C13 0.043 (2) 0.039 (3) 0.038 (2) 0.000 0.024 (2) 0.000
C14 0.048 (3) 0.044 (3) 0.041 (3) 0.000 0.025 (2) 0.000
C15 0.0451 (19) 0.0393 (18) 0.058 (2) 0.0037 (14) 0.0311 (17) 0.0069 (16)
C16 0.0446 (19) 0.047 (2) 0.066 (2) 0.0145 (16) 0.0312 (19) 0.0146 (18)
C17 0.0318 (17) 0.072 (3) 0.053 (2) 0.0116 (17) 0.0216 (16) 0.0107 (19)
C18 0.0329 (16) 0.0537 (19) 0.0446 (19) −0.0028 (14) 0.0207 (15) −0.0013 (16)
C19 0.0344 (15) 0.0394 (17) 0.0301 (15) −0.0020 (13) 0.0195 (13) −0.0014 (13)
C20 0.0405 (17) 0.0398 (17) 0.0377 (17) −0.0029 (13) 0.0238 (15) −0.0045 (14)
C21 0.054 (2) 0.044 (2) 0.057 (2) −0.0094 (16) 0.0331 (19) −0.0105 (17)
C22 0.084 (3) 0.039 (2) 0.105 (4) −0.011 (2) 0.054 (3) −0.013 (2)
C23 0.085 (3) 0.034 (2) 0.110 (4) 0.007 (2) 0.052 (3) 0.001 (2)
C24 0.058 (2) 0.045 (2) 0.072 (3) 0.0138 (18) 0.031 (2) 0.0034 (19)
C25 0.0352 (19) 0.077 (3) 0.065 (2) −0.0120 (19) 0.0211 (18) −0.009 (2)
C26 0.056 (2) 0.062 (3) 0.082 (3) −0.027 (2) 0.037 (2) −0.020 (2)

Geometric parameters (Å, °)

Cd1—O1 2.284 (3) C8—C7ii 1.382 (4)
Cd1—O3 2.357 (2) C8—H8 0.9300
Cd1—N2 2.358 (2) C9—O5iii 1.254 (3)
Cd1—N1 2.362 (2) C9—C10 1.493 (6)
Cd1—O7 2.375 (2) C10—C11iii 1.384 (4)
Cd1—O4 2.377 (2) C10—C11 1.384 (4)
Cd1—O2 2.601 (3) C11—C12 1.379 (4)
N1—C15 1.321 (4) C11—H11 0.9300
N1—C19 1.347 (4) C12—C13 1.385 (4)
N2—C24 1.321 (4) C12—H12 0.9300
N2—C20 1.354 (4) C13—C12iii 1.385 (4)
O1—C1 1.253 (4) C13—C14 1.494 (6)
O2—C1 1.235 (4) C14—O6iii 1.260 (3)
O3—C5 1.258 (3) C15—C16 1.390 (4)
O4—C5 1.256 (3) C15—H15 0.9300
O5—C9 1.254 (3) C16—C17 1.348 (5)
O5—H5 0.8200 C16—H16 0.9300
O6—C14 1.260 (3) C17—C18 1.395 (5)
O6—H6 0.8200 C17—H17 0.9300
O7—H7A 0.8501 C18—C19 1.411 (4)
O7—H7B 0.8499 C18—C25 1.429 (5)
C1—C2 1.503 (5) C19—C20 1.442 (4)
C2—C4 1.374 (4) C20—C21 1.400 (4)
C2—C3 1.376 (4) C21—C22 1.395 (5)
C3—C4i 1.380 (5) C21—C26 1.430 (5)
C3—H3 0.9300 C22—C23 1.345 (5)
C4—C3i 1.380 (5) C22—H22 0.9300
C4—H4 0.9300 C23—C24 1.393 (5)
C5—C6 1.494 (4) C23—H23 0.9300
C6—C8 1.380 (4) C24—H24 0.9300
C6—C7 1.384 (4) C25—C26 1.339 (5)
C7—C8ii 1.382 (4) C25—H25 0.9300
C7—H7 0.9300 C26—H26 0.9300
O1—Cd1—O3 162.20 (9) C6—C8—C7ii 120.4 (3)
O1—Cd1—N2 104.69 (9) C6—C8—H8 119.8
O3—Cd1—N2 92.75 (8) C7ii—C8—H8 119.8
O1—Cd1—N1 93.90 (9) O5—C9—O5iii 122.6 (4)
O3—Cd1—N1 88.48 (7) O5—C9—C10 118.7 (2)
N2—Cd1—N1 70.53 (8) O5iii—C9—C10 118.7 (2)
O1—Cd1—O7 73.32 (9) C11iii—C10—C11 119.3 (4)
O3—Cd1—O7 89.10 (8) C11iii—C10—C9 120.3 (2)
N2—Cd1—O7 159.42 (8) C11—C10—C9 120.3 (2)
N1—Cd1—O7 89.04 (8) C12—C11—C10 120.4 (3)
O1—Cd1—O4 122.37 (9) C12—C11—H11 119.8
O3—Cd1—O4 55.12 (7) C10—C11—H11 119.8
N2—Cd1—O4 102.73 (8) C11—C12—C13 120.3 (3)
N1—Cd1—O4 143.17 (8) C11—C12—H12 119.9
O7—Cd1—O4 95.13 (8) C13—C12—H12 119.9
O1—Cd1—O2 52.68 (10) C12—C13—C12iii 119.3 (4)
O3—Cd1—O2 136.90 (8) C12—C13—C14 120.3 (2)
N2—Cd1—O2 78.69 (10) C12iii—C13—C14 120.3 (2)
N1—Cd1—O2 126.21 (9) O6iii—C14—O6 123.1 (4)
O7—Cd1—O2 113.27 (9) O6iii—C14—C13 118.5 (2)
O4—Cd1—O2 85.37 (8) O6—C14—C13 118.5 (2)
C15—N1—C19 118.5 (2) N1—C15—C16 122.7 (3)
C15—N1—Cd1 125.38 (19) N1—C15—H15 118.6
C19—N1—Cd1 115.99 (18) C16—C15—H15 118.6
C24—N2—C20 118.1 (3) C17—C16—C15 119.4 (3)
C24—N2—Cd1 125.7 (2) C17—C16—H16 120.3
C20—N2—Cd1 116.18 (19) C15—C16—H16 120.3
C1—O1—Cd1 99.2 (2) C16—C17—C18 120.1 (3)
C1—O2—Cd1 84.7 (2) C16—C17—H17 120.0
C5—O3—Cd1 92.19 (18) C18—C17—H17 120.0
C5—O4—Cd1 91.35 (17) C17—C18—C19 117.1 (3)
C9—O5—H5 109.5 C17—C18—C25 123.7 (3)
C14—O6—H6 109.5 C19—C18—C25 119.1 (3)
Cd1—O7—H7A 110.4 N1—C19—C18 122.2 (3)
Cd1—O7—H7B 110.4 N1—C19—C20 118.6 (2)
H7A—O7—H7B 108.7 C18—C19—C20 119.2 (3)
O2—C1—O1 122.9 (4) N2—C20—C21 122.4 (3)
O2—C1—C2 119.2 (4) N2—C20—C19 118.1 (3)
O1—C1—C2 117.8 (3) C21—C20—C19 119.5 (3)
C4—C2—C3 119.7 (3) C22—C21—C20 117.0 (3)
C4—C2—C1 120.7 (3) C22—C21—C26 123.3 (3)
C3—C2—C1 119.6 (3) C20—C21—C26 119.7 (3)
C2—C3—C4i 120.3 (3) C23—C22—C21 120.8 (4)
C2—C3—H3 119.9 C23—C22—H22 119.6
C4i—C3—H3 119.9 C21—C22—H22 119.6
C2—C4—C3i 120.0 (3) C22—C23—C24 118.6 (4)
C2—C4—H4 120.0 C22—C23—H23 120.7
C3i—C4—H4 120.0 C24—C23—H23 120.7
O4—C5—O3 121.2 (3) N2—C24—C23 123.2 (3)
O4—C5—C6 120.2 (3) N2—C24—H24 118.4
O3—C5—C6 118.6 (3) C23—C24—H24 118.4
C8—C6—C7 118.2 (3) C26—C25—C18 121.6 (3)
C8—C6—C5 121.1 (3) C26—C25—H25 119.2
C7—C6—C5 120.7 (3) C18—C25—H25 119.2
C8ii—C7—C6 121.4 (3) C25—C26—C21 120.8 (3)
C8ii—C7—H7 119.3 C25—C26—H26 119.6
C6—C7—H7 119.3 C21—C26—H26 119.6
O1—Cd1—N1—C15 73.5 (3) Cd1—O4—C5—C6 176.8 (2)
O3—Cd1—N1—C15 −88.8 (3) Cd1—O3—C5—O4 4.1 (3)
N2—Cd1—N1—C15 177.7 (3) Cd1—O3—C5—C6 −176.7 (2)
O7—Cd1—N1—C15 0.3 (3) O4—C5—C6—C8 −11.4 (4)
O4—Cd1—N1—C15 −97.0 (3) O3—C5—C6—C8 169.4 (3)
O2—Cd1—N1—C15 118.8 (2) O4—C5—C6—C7 170.3 (3)
O1—Cd1—N1—C19 −110.4 (2) O3—C5—C6—C7 −8.9 (4)
O3—Cd1—N1—C19 87.2 (2) C8—C6—C7—C8ii 0.3 (5)
N2—Cd1—N1—C19 −6.22 (19) C5—C6—C7—C8ii 178.6 (3)
O7—Cd1—N1—C19 176.4 (2) C7—C6—C8—C7ii −0.3 (5)
O4—Cd1—N1—C19 79.1 (2) C5—C6—C8—C7ii −178.6 (3)
O2—Cd1—N1—C19 −65.1 (2) O5—C9—C10—C11iii −178.8 (2)
O1—Cd1—N2—C24 −88.3 (3) O5iii—C9—C10—C11iii 1.2 (2)
O3—Cd1—N2—C24 95.3 (3) O5—C9—C10—C11 1.2 (2)
N1—Cd1—N2—C24 −177.3 (3) O5iii—C9—C10—C11 −178.8 (2)
O7—Cd1—N2—C24 −169.9 (3) C11iii—C10—C11—C12 −0.2 (2)
O4—Cd1—N2—C24 40.5 (3) C9—C10—C11—C12 179.8 (2)
O2—Cd1—N2—C24 −42.1 (3) C10—C11—C12—C13 0.4 (5)
O1—Cd1—N2—C20 95.2 (2) C11—C12—C13—C12iii −0.2 (2)
O3—Cd1—N2—C20 −81.1 (2) C11—C12—C13—C14 179.8 (2)
N1—Cd1—N2—C20 6.3 (2) C12—C13—C14—O6iii −176.3 (2)
O7—Cd1—N2—C20 13.6 (4) C12iii—C13—C14—O6iii 3.7 (2)
O4—Cd1—N2—C20 −136.0 (2) C12—C13—C14—O6 3.7 (2)
O2—Cd1—N2—C20 141.5 (2) C12iii—C13—C14—O6 −176.3 (2)
O3—Cd1—O1—C1 −133.0 (3) C19—N1—C15—C16 −1.1 (5)
N2—Cd1—O1—C1 58.9 (2) Cd1—N1—C15—C16 174.8 (2)
N1—Cd1—O1—C1 129.8 (2) N1—C15—C16—C17 −0.1 (5)
O7—Cd1—O1—C1 −142.3 (2) C15—C16—C17—C18 1.1 (5)
O4—Cd1—O1—C1 −56.9 (2) C16—C17—C18—C19 −1.0 (5)
O2—Cd1—O1—C1 −4.0 (2) C16—C17—C18—C25 179.3 (3)
O1—Cd1—O2—C1 4.0 (2) C15—N1—C19—C18 1.3 (4)
O3—Cd1—O2—C1 163.68 (19) Cd1—N1—C19—C18 −175.1 (2)
N2—Cd1—O2—C1 −114.5 (2) C15—N1—C19—C20 −177.9 (3)
N1—Cd1—O2—C1 −59.1 (3) Cd1—N1—C19—C20 5.7 (3)
O7—Cd1—O2—C1 47.9 (2) C17—C18—C19—N1 −0.2 (5)
O4—Cd1—O2—C1 141.5 (2) C25—C18—C19—N1 179.5 (3)
O1—Cd1—O3—C5 85.7 (3) C17—C18—C19—C20 179.0 (3)
N2—Cd1—O3—C5 −105.85 (18) C25—C18—C19—C20 −1.3 (5)
N1—Cd1—O3—C5 −176.28 (18) C24—N2—C20—C21 −1.6 (5)
O7—Cd1—O3—C5 94.65 (18) Cd1—N2—C20—C21 175.1 (2)
O4—Cd1—O3—C5 −2.24 (16) C24—N2—C20—C19 177.4 (3)
O2—Cd1—O3—C5 −29.5 (2) Cd1—N2—C20—C19 −5.9 (3)
O1—Cd1—O4—C5 −156.55 (18) N1—C19—C20—N2 0.1 (4)
O3—Cd1—O4—C5 2.24 (16) C18—C19—C20—N2 −179.1 (3)
N2—Cd1—O4—C5 86.65 (18) N1—C19—C20—C21 179.2 (3)
N1—Cd1—O4—C5 12.2 (2) C18—C19—C20—C21 −0.1 (4)
O7—Cd1—O4—C5 −83.06 (18) N2—C20—C21—C22 1.2 (5)
O2—Cd1—O4—C5 163.94 (19) C19—C20—C21—C22 −177.8 (3)
Cd1—O2—C1—O1 −7.0 (3) N2—C20—C21—C26 −179.9 (3)
Cd1—O2—C1—C2 169.4 (3) C19—C20—C21—C26 1.1 (5)
Cd1—O1—C1—O2 8.0 (4) C20—C21—C22—C23 −0.1 (6)
Cd1—O1—C1—C2 −168.4 (2) C26—C21—C22—C23 −179.0 (4)
O2—C1—C2—C4 −16.4 (5) C21—C22—C23—C24 −0.5 (7)
O1—C1—C2—C4 160.2 (3) C20—N2—C24—C23 0.9 (6)
O2—C1—C2—C3 165.2 (3) Cd1—N2—C24—C23 −175.4 (3)
O1—C1—C2—C3 −18.3 (4) C22—C23—C24—N2 0.1 (7)
C4—C2—C3—C4i 0.5 (5) C17—C18—C25—C26 −178.6 (4)
C1—C2—C3—C4i 179.0 (3) C19—C18—C25—C26 1.7 (6)
C3—C2—C4—C3i −0.5 (5) C18—C25—C26—C21 −0.6 (6)
C1—C2—C4—C3i −179.0 (3) C22—C21—C26—C25 178.0 (4)
Cd1—O4—C5—O3 −4.0 (3) C20—C21—C26—C25 −0.8 (6)

Symmetry codes: (i) −x+1/2, −y+3/2, −z+1; (ii) −x+1/2, −y+3/2, −z; (iii) −x, y, −z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O5—H5···O6iv 0.82 1.92 2.728 (3) 167
O7—H7A···O2v 0.85 1.88 2.665 (3) 154
O7—H7B···O4v 0.85 2.28 3.019 (3) 146

Symmetry codes: (iv) x, y+1, z; (v) −x+1/2, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2211).

References

  1. Bruker (2001). SAINT and SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Liang, Y. C., Hong, M. C., Liu, J. C. & Cao, R. (2002). Inorg. Chim. Acta, 328, 152-158.
  3. McGarrah, J. E., Kim, Y.-J., Hissler, M. & Eisenberg, R. (2001). Inorg. Chem.40, 4510-4511. [DOI] [PubMed]
  4. Moulton, B., Lu, J., Hajndl, R., Hariharan, S. & Zaworotko, M. J. (2002). Angew. Chem. Int. Ed.41, 2821-2824. [DOI] [PubMed]
  5. Sheldrick, G. M. (2004). SADABS University of Göttingen, Germany.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Shi, X., Zhu, G. S., Fang, Q. R., Wu, G., Tian, G., Wang, R. W., Zhang, D. L., Xue, M. & Qiu, S. L. (2004). Eur. J. Inorg. Chem. pp. 185-191.
  8. Wang, X. L., Qin, C., Wang, E. B., Xu, L., Su, M. & Hu, C. W. (2004). Angew. Chem. Int. Ed.43, 5036-5040. [DOI] [PubMed]
  9. Wu, G., Wang, Y., Wang, X. F. Kawaguchi, H. & Sun, W. Y. (2007). J. Chem. Cryst.37, 199-205.
  10. Zheng, S. L., Yang, J. H., Yu, X. L., Chen, X. M. & Wong, W. T. (2004). Inorg. Chem.43, 830-836. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809000889/wm2211sup1.cif

e-65-0m184-sup1.cif (25.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809000889/wm2211Isup2.hkl

e-65-0m184-Isup2.hkl (186KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES