Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Jan 17;65(Pt 2):m203–m204. doi: 10.1107/S1600536809001159

Bis[(E)-1-(3,4-dichloro­benzyl­idene­amino)-4-methyl­pyridinium] bis­(maleonitrile­dithiol­ato)nickelate(II)

Jian-Lan Liu a, Bing-Qian Yao a, Qi Liu a, Shao-Ming Zhang a,*
PMCID: PMC2968142  PMID: 21581801

Abstract

The asymmetric unit of the title compound, (C13H11Cl2N2)2[Ni(C4N2S2)2], contains one-half of a centrosymmetric [Ni(mnt)2] anion (where mnt is maleonitrile­dithiol­ate or 1,2-dicyano-1,2-ethyl­enedithiol­ate) and an (E)-1-(3,4-dichloro­benzyl­ideneamino)-4-methyl­pyridinium cation. In the anion, the coordination around the Ni atom is a distorted square. In the cation, the aromatic rings are oriented at a dihedral angle of 7.81 (3)°. In the crystal structure, inter­molecular C—H⋯N hydrogen bonds link the cations and anions. π–π Contacts between the nickel dithiol­ene and pyridine rings and between the benzene and pyridine rings, [centroid–centroid distances = 3.682 (3) and 3.643 (3) Å, respectively] may further stabilize the structure.

Related literature

For general background, see: Robertson & Cronin (2002); Cassoux et al. (1991). For bond-length data, see: Allen et al. (1987).graphic file with name e-65-0m203-scheme1.jpg

Experimental

Crystal data

  • (C13H11Cl2N2)2[Ni(C4N2S2)2]

  • M r = 871.37

  • Monoclinic, Inline graphic

  • a = 10.7054 (10) Å

  • b = 13.8664 (13) Å

  • c = 12.5043 (12) Å

  • β = 95.803 (1)°

  • V = 1846.7 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.08 mm−1

  • T = 296 (2) K

  • 0.30 × 0.20 × 0.10 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000) T min = 0.729, T max = 0.895

  • 15877 measured reflections

  • 4273 independent reflections

  • 3611 reflections with I > 2σ(I)

  • R int = 0.023

Refinement

  • R[F 2 > 2σ(F 2)] = 0.033

  • wR(F 2) = 0.089

  • S = 1.08

  • 4273 reflections

  • 232 parameters

  • H-atom parameters constrained

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.37 e Å−3

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809001159/hk2608sup1.cif

e-65-0m203-sup1.cif (17.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809001159/hk2608Isup2.hkl

e-65-0m203-Isup2.hkl (209.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected geometric parameters (Å, °).

Ni1—S1 2.1622 (5)
Ni1—S2 2.1838 (5)
S1—Ni1—S2i 88.128 (19)
S1—Ni1—S2 91.872 (19)

Symmetry code: (i) Inline graphic.

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5A⋯N2ii 0.93 2.51 3.413 (3) 163

Symmetry code: (ii) Inline graphic.

Acknowledgments

The authors thank the Science and Technology Department of Jiangsu Province and the Natural Science Foundation of China for financial support (grant No. 10774076).

supplementary crystallographic information

Comment

Square-planar M[dithiolene]2 complexes have attracted extensive interests in the areas of conducting and magnetic materials, dyes, non-linear optics and catalysis (Robertson et al., 2002; Cassoux et al., 1991). We report herein the crystal structure of the title compound.

The asymmetric unit of the title compound (Fig. 1) contains one-half of centrosymmetric [Ni(mnt)2] (where mnt is maleonitriledithiolate) anion and a (E)-1-(3,4-di-chlorobenzylideneamino)-4-methylpyridinium cation. In the anion, the coordination around the Ni atom is a distorted square (Table 1). The bond lengths (Allen et al., 1987) and angles are within normal ranges. Rings A (Ni1/S1/S2/C2/C3), B (N3/C5-C9) and C (C12-C17) are, of course, planar and they are oriented at dihedral angles of A/B = 16.69 (3)°, A/C = 13.47 (3)° and B/C = 7.81 (3)°.

In the crystal structure, intermolecular C-H···N hydrogen bonds (Table 2) link the cations and anions (Fig. 2), in which they may be effective in the stabilization of the structure. The π-π contacts between the nickel dithiolene and the pyridine rings and the benzene and the pyridine rings, Cg1—Cg3i and Cg3—Cg4ii [symmetry codes: (i) 1/2 + x, 1/2 - y, 1/2 + z; (ii) 1 - x, 1 - y, -z, where Cg1, Cg3 and Cg4 are centroids of the rings A (Ni1/S1/S2/C2/C3), B (N3/C5-C9) and C (C12-C17), respectively] may further stabilize the structure, with centroid-centroid distances of 3.682 (3) Å and 3.643 (3) Å.

Experimental

For the preparation of the title compound, disodium maleonitriledithiolate (458 mg, 2.46 mmol) and nickel chloride hexahydrate (230 mg, 0.96 mmol) were mixed by stirring in EtOH (20 ml) at room temperature. Subsequently, a solution of (E)-1-(3,4-di-chlorobenzylideneamino)-4-methylpyridinium iodide (2143 mg, 2.46 mmol) in EtOH (10 ml) was added to the mixture, and the red precipitate immediately formed was filtered off, and washed with EtOH. The crude product was recrystallized in acetone (20 ml) to give black crystals. Crystals suitable for X-ray analysis were obtained by diffusing diethyl ether into the solution of the title compound in acetone for 8 d. FT-IR data (KBr pellets, cm-1): 2189 (s), 2920 (s),1631(s), 1485 (s), 1272 (s).

Refinement

H atoms were positioned geometrically, with C-H = 0.93 and 0.96 Å for aromatic and methyl H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x = 1.5 for methyl H and x = 1.2 for aromatic H atoms.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level [symmetry code (A): 1 - x, -y, 1 - z].

Fig. 2.

Fig. 2.

A partial packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.

Crystal data

(C13H11Cl2N2)2[Ni(C4N2S2)2] F(000) = 884
Mr = 871.37 Dx = 1.567 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 3049 reflections
a = 10.7054 (10) Å θ = 2.1–22.4°
b = 13.8664 (13) Å µ = 1.08 mm1
c = 12.5043 (12) Å T = 296 K
β = 95.803 (1)° Block, black
V = 1846.7 (3) Å3 0.30 × 0.20 × 0.10 mm
Z = 2

Data collection

Bruker SMART CCD area-detector diffractometer 4273 independent reflections
Radiation source: fine-focus sealed tube 3611 reflections with I > 2σ(I)
graphite Rint = 0.023
φ and ω scans θmax = 27.6°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Bruker, 2000) h = −13→13
Tmin = 0.729, Tmax = 0.895 k = −18→18
15877 measured reflections l = −13→16

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.089 H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.044P)2 + 0.5603P] where P = (Fo2 + 2Fc2)/3
4273 reflections (Δ/σ)max = 0.001
232 parameters Δρmax = 0.44 e Å3
0 restraints Δρmin = −0.37 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Ni1 0.5000 0.0000 0.5000 0.03598 (10)
Cl1 0.39412 (8) 0.83968 (4) 0.09607 (5) 0.0739 (2)
Cl2 0.39194 (7) 0.91419 (4) −0.14262 (5) 0.07117 (18)
S1 0.48602 (6) 0.12888 (4) 0.40218 (4) 0.05280 (15)
S2 0.48684 (5) 0.08311 (3) 0.64679 (4) 0.04583 (13)
N1 0.4615 (3) 0.38988 (15) 0.41030 (19) 0.0831 (7)
N2 0.4392 (2) 0.33492 (14) 0.73857 (16) 0.0663 (5)
N3 0.32151 (14) 0.36297 (10) 0.05354 (12) 0.0393 (3)
N4 0.34563 (15) 0.46221 (11) 0.03826 (13) 0.0449 (4)
C1 0.4621 (2) 0.31630 (15) 0.45077 (17) 0.0549 (5)
C2 0.46864 (18) 0.22060 (13) 0.49411 (16) 0.0446 (4)
C3 0.46740 (17) 0.20093 (13) 0.60048 (15) 0.0407 (4)
C4 0.45178 (19) 0.27570 (14) 0.67685 (16) 0.0477 (4)
C5 0.3192 (2) 0.29411 (15) −0.02278 (18) 0.0543 (5)
H5A 0.3343 0.3101 −0.0925 0.065*
C6 0.2946 (2) 0.20068 (15) 0.0028 (2) 0.0584 (5)
H6A 0.2919 0.1537 −0.0505 0.070*
C7 0.27374 (19) 0.17458 (14) 0.10617 (19) 0.0517 (5)
C8 0.2804 (2) 0.24667 (15) 0.18250 (18) 0.0543 (5)
H8A 0.2682 0.2316 0.2532 0.065*
C9 0.3045 (2) 0.34025 (14) 0.15582 (16) 0.0487 (4)
H9A 0.3092 0.3880 0.2083 0.058*
C10 0.2459 (3) 0.07236 (16) 0.1355 (3) 0.0768 (8)
H10A 0.2449 0.0323 0.0728 0.115*
H10B 0.1656 0.0695 0.1631 0.115*
H10C 0.3096 0.0499 0.1893 0.115*
C11 0.32672 (19) 0.49507 (13) −0.05590 (17) 0.0471 (4)
H11A 0.3002 0.4544 −0.1129 0.056*
C12 0.34690 (17) 0.59789 (13) −0.07481 (16) 0.0428 (4)
C13 0.35970 (18) 0.66292 (14) 0.00916 (16) 0.0457 (4)
H13A 0.3585 0.6412 0.0794 0.055*
C14 0.37433 (18) 0.76020 (14) −0.01073 (16) 0.0461 (4)
C15 0.37612 (18) 0.79287 (14) −0.11577 (17) 0.0473 (4)
C16 0.3660 (2) 0.72771 (16) −0.19945 (17) 0.0573 (5)
H16A 0.3692 0.7493 −0.2695 0.069*
C17 0.3511 (2) 0.63062 (16) −0.18005 (17) 0.0553 (5)
H17A 0.3440 0.5871 −0.2369 0.066*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ni1 0.04103 (18) 0.02949 (16) 0.03748 (18) −0.00120 (12) 0.00426 (12) 0.00094 (12)
Cl1 0.1235 (6) 0.0405 (3) 0.0601 (3) 0.0083 (3) 0.0212 (3) −0.0033 (2)
Cl2 0.0980 (5) 0.0409 (3) 0.0771 (4) −0.0025 (3) 0.0212 (3) 0.0183 (3)
S1 0.0855 (4) 0.0343 (2) 0.0391 (3) 0.0037 (2) 0.0086 (2) 0.00337 (18)
S2 0.0636 (3) 0.0350 (2) 0.0393 (2) −0.0017 (2) 0.0074 (2) −0.00029 (18)
N1 0.129 (2) 0.0424 (11) 0.0774 (15) 0.0156 (12) 0.0078 (14) 0.0102 (10)
N2 0.0909 (15) 0.0513 (11) 0.0586 (11) 0.0040 (10) 0.0163 (10) −0.0105 (9)
N3 0.0427 (8) 0.0299 (7) 0.0456 (8) 0.0002 (6) 0.0058 (6) 0.0016 (6)
N4 0.0546 (9) 0.0300 (7) 0.0506 (9) −0.0035 (6) 0.0072 (7) 0.0025 (6)
C1 0.0731 (14) 0.0395 (10) 0.0513 (12) 0.0092 (9) 0.0023 (10) −0.0002 (9)
C2 0.0484 (10) 0.0343 (9) 0.0507 (11) 0.0029 (7) 0.0038 (8) 0.0006 (8)
C3 0.0410 (9) 0.0337 (8) 0.0474 (10) 0.0007 (7) 0.0037 (7) −0.0032 (7)
C4 0.0551 (11) 0.0401 (10) 0.0486 (11) 0.0005 (8) 0.0083 (9) −0.0012 (8)
C5 0.0720 (14) 0.0424 (10) 0.0497 (11) −0.0014 (9) 0.0127 (10) −0.0057 (9)
C6 0.0685 (14) 0.0383 (10) 0.0690 (14) −0.0025 (9) 0.0088 (11) −0.0111 (10)
C7 0.0439 (10) 0.0328 (9) 0.0779 (15) 0.0005 (7) 0.0040 (10) 0.0047 (9)
C8 0.0662 (13) 0.0413 (10) 0.0564 (12) 0.0021 (9) 0.0112 (10) 0.0100 (9)
C9 0.0619 (12) 0.0366 (9) 0.0478 (11) 0.0017 (8) 0.0063 (9) 0.0018 (8)
C10 0.0816 (17) 0.0339 (11) 0.115 (2) −0.0054 (10) 0.0105 (16) 0.0099 (12)
C11 0.0536 (11) 0.0383 (10) 0.0484 (11) −0.0039 (8) 0.0008 (8) 0.0031 (8)
C12 0.0422 (9) 0.0382 (9) 0.0475 (10) −0.0019 (7) 0.0020 (8) 0.0079 (8)
C13 0.0533 (11) 0.0405 (10) 0.0443 (10) 0.0052 (8) 0.0106 (8) 0.0083 (8)
C14 0.0498 (11) 0.0395 (9) 0.0500 (11) 0.0041 (8) 0.0104 (8) 0.0021 (8)
C15 0.0481 (10) 0.0377 (9) 0.0567 (11) −0.0013 (8) 0.0075 (9) 0.0123 (8)
C16 0.0741 (14) 0.0539 (12) 0.0439 (11) −0.0081 (10) 0.0063 (10) 0.0151 (9)
C17 0.0728 (14) 0.0482 (11) 0.0441 (11) −0.0076 (10) 0.0020 (10) 0.0040 (9)

Geometric parameters (Å, °)

Ni1—S1 2.1622 (5) C6—H6A 0.9300
Ni1—S1i 2.1622 (5) C7—C8 1.379 (3)
Ni1—S2i 2.1838 (5) C7—C10 1.501 (3)
Ni1—S2 2.1838 (5) C8—C9 1.371 (3)
Cl1—C14 1.728 (2) C8—H8A 0.9300
Cl2—C15 1.7272 (19) C9—H9A 0.9300
S1—C2 1.737 (2) C10—H10A 0.9600
S2—C3 1.7388 (19) C10—H10B 0.9600
N1—C1 1.139 (3) C10—H10C 0.9600
N2—C4 1.144 (3) C11—C12 1.465 (2)
N3—C9 1.347 (3) C11—H11A 0.9300
N3—C5 1.349 (2) C12—C13 1.380 (3)
N3—N4 1.417 (2) C12—C17 1.397 (3)
N4—C11 1.260 (3) C13—C14 1.383 (3)
C1—C2 1.432 (3) C13—H13A 0.9300
C2—C3 1.359 (3) C14—C15 1.391 (3)
C3—C4 1.431 (3) C15—C16 1.378 (3)
C5—C6 1.366 (3) C16—C17 1.380 (3)
C5—H5A 0.9300 C16—H16A 0.9300
C6—C7 1.383 (3) C17—H17A 0.9300
S1—Ni1—S1i 180.0 C7—C8—H8A 119.5
S1—Ni1—S2i 88.128 (19) N3—C9—C8 119.95 (19)
S1i—Ni1—S2i 91.873 (19) N3—C9—H9A 120.0
S1—Ni1—S2 91.872 (19) C8—C9—H9A 120.0
S1i—Ni1—S2 88.128 (19) C7—C10—H10A 109.5
S2i—Ni1—S2 180.0 C7—C10—H10B 109.5
C2—S1—Ni1 103.69 (7) H10A—C10—H10B 109.5
C3—S2—Ni1 103.39 (6) C7—C10—H10C 109.5
C9—N3—C5 120.77 (17) H10A—C10—H10C 109.5
C9—N3—N4 113.53 (15) H10B—C10—H10C 109.5
C5—N3—N4 125.66 (16) N4—C11—C12 119.38 (18)
C11—N4—N3 117.59 (16) N4—C11—H11A 120.3
N1—C1—C2 175.0 (3) C12—C11—H11A 120.3
C3—C2—C1 123.45 (18) C13—C12—C17 119.61 (18)
C3—C2—S1 120.87 (14) C13—C12—C11 121.19 (18)
C1—C2—S1 115.62 (15) C17—C12—C11 119.19 (19)
C2—C3—C4 121.41 (17) C12—C13—C14 120.30 (18)
C2—C3—S2 120.11 (14) C12—C13—H13A 119.8
C4—C3—S2 118.47 (14) C14—C13—H13A 119.8
N2—C4—C3 179.4 (2) C13—C14—C15 119.98 (19)
N3—C5—C6 119.8 (2) C13—C14—Cl1 119.36 (16)
N3—C5—H5A 120.1 C15—C14—Cl1 120.64 (15)
C6—C5—H5A 120.1 C16—C15—C14 119.72 (18)
C5—C6—C7 121.3 (2) C16—C15—Cl2 119.51 (16)
C5—C6—H6A 119.3 C14—C15—Cl2 120.77 (16)
C7—C6—H6A 119.3 C15—C16—C17 120.50 (19)
C8—C7—C6 117.12 (18) C15—C16—H16A 119.8
C8—C7—C10 120.9 (2) C17—C16—H16A 119.8
C6—C7—C10 122.0 (2) C16—C17—C12 119.9 (2)
C9—C8—C7 121.0 (2) C16—C17—H17A 120.1
C9—C8—H8A 119.5 C12—C17—H17A 120.1

Symmetry codes: (i) −x+1, −y, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C5—H5A···N2ii 0.93 2.51 3.413 (3) 163

Symmetry codes: (ii) x, y, z−1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2608).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Bruker (2000). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Cassoux, P., Valade, L., Kobayashi, H., Kobayashi, A., Clark, R. A. & Underhill, A. E. (1991). Coord. Chem. Rev.110, 115–160.
  4. Robertson, N. & Cronin, L. (2002). Coord. Chem. Rev 227, 93–127.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809001159/hk2608sup1.cif

e-65-0m203-sup1.cif (17.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809001159/hk2608Isup2.hkl

e-65-0m203-Isup2.hkl (209.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES