Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Jan 28;65(Pt 2):o413. doi: 10.1107/S1600536809002153

(3RS)-S-[1-(3-Chloro­phen­yl)-2-oxopyr­rolidin-3-yl]-N,N′-dimethyl­thio­uronium bromide

Jiří Hanusek a,*, Miloš Sedlák a, Pavel Drabina a, Aleš Ružička b
PMCID: PMC2968153  PMID: 21582004

Abstract

The title mol­ecule, C13H17ClN3OS+·Br, consists of benzene and pyrrolidine rings and an S–C(NHCH3)2 group. The central C—N bond lengths in the S–C(NHCH3)2 fragment indicate partial double-bond character. Mol­ecules are inter­connected into chains by N—H⋯Br hydrogen bonds and the chains are linked into pairs by weak C—H⋯Br hydrogen bonds.

Related literature

For the reactivity of the title compound, see: Hanusek et al. (2004); Sedlák et al. (2002, 2003). For a related structure, see: Hanusek et al. (2009).graphic file with name e-65-0o413-scheme1.jpg

Experimental

Crystal data

  • C13H17ClN3OS+·Br

  • M r = 378.72

  • Monoclinic, Inline graphic

  • a = 14.9409 (9) Å

  • b = 7.7050 (5) Å

  • c = 13.9141 (15) Å

  • β = 100.758 (7)°

  • V = 1573.6 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.91 mm−1

  • T = 150 (2) K

  • 0.41 × 0.40 × 0.22 mm

Data collection

  • Bruker–Nonius KappaCCD diffractometer

  • Absorption correction: gaussian integration (Coppens, 1970) T min = 0.401, T max = 0.658

  • 11628 measured reflections

  • 3455 independent reflections

  • 2671 reflections with I > 2σ(I)

  • R int = 0.060

Refinement

  • R[F 2 > 2σ(F 2)] = 0.048

  • wR(F 2) = 0.114

  • S = 1.22

  • 3455 reflections

  • 189 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.74 e Å−3

  • Δρmin = −0.82 e Å−3

Data collection: COLLECT (Hooft, 1998) and DENZO (Otwinowski and Minor, 1997); cell refinement: COLLECT and DENZO; data reduction: COLLECT and DENZO; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809002153/fb2123sup1.cif

e-65-0o413-sup1.cif (17.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809002153/fb2123Isup2.hkl

e-65-0o413-Isup2.hkl (166KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C5–C10 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯Br1i 0.80 (5) 2.56 (5) 3.314 (4) 159 (5)
N2—H2⋯Br1 0.81 (5) 2.51 (5) 3.303 (4) 170 (5)
C6—H6⋯O1 0.95 2.38 2.899 (5) 114
C8—H8⋯Br1ii 0.95 2.87 3.662 (5) 142
C2—H2ACg1iii 0.99 2.69 3.628 (4) 159

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

The authors thank the Ministry of Education, Youth and Sports of the Czech Republic for financial support of this work within the framework of research project MSM 0021627501.

supplementary crystallographic information

Comment

In our previous papers we have discussed the reactivity of the title structure (Sedlák et al., 2002, 2003; Hanusek et al., 2004). In continuation of the above mentioned studies, the related crystal structures of the title compound (Scheme 1, Figs. 1 and 2) as well as of the non-methylated analogue (Hanusek et al., 2009) have been determined and the influence of the N-methyl substituents on the crystal structure has been examined.

The respective important distances for the title compound and its non-methylated analogue are 1.770 (4) and 1.749 (4) Å for S1–C11; (1.307 (5), 1.309 (5) Å) and (1.312 (5), 1.296 (5) Å) for C11–N2 and C11–N3. The respective twist angles about the N1–C5 bonds in the title compound and its non-methylated analogue are 28.8 (2) and 7.8 (1)°.

The interplanar angles between the S—C(NHR)2 group and the heterocyclic rings are almost the same in the title compound and its non-methylated analogue (71.3 (1) and 66.7 (1)°). In the S–C(NHCH3)2 fragment of the title compound, the C-N bond-lengths of N2-C11 and N3-C11 (1.309 (5), 1.307 (5) Å, respectively) indicate a partly double bond character.

All the isothiouronium cations that have been studied in the solid state take part in the hydrogen bonding with different anions. (These anions comprise Cl- as well as complex organic anions.) Also in the title compound and its non-methylated analogue such interactions are present. In the title structure, there is a motif N2–H2···Br1···H1–N1 that links the molecules into the infinite chains parallel to the b axis (Fig. 2, Tab. 1). Moreover, the pairs of these chains are interconnected by additional C–H···Br contacts to give columns parallel to the b axis. These pairs of the chains are linked by the virtue of two-fold screw axes. There is also a weak C–H···π-electron interaction with π-electrons of the chlorophenyl ring (Tab. 1).

Experimental

The title compound was synthesized according to Hanusek et al. (2004) from saturated acetone solutions of the racemic 3-bromo-1-(3-chlorophenyl)pyrrolidin-2-one and N,N'-dimethylthiourea. Single crystals (blocks) suitable for analysis were grown directly from the reaction mixture. Their average size was 0.3×0.3×0.2 mm

Refinement

All the hydrogens were discernible in the difference electron density map, nevertheless they were situated into the idealized positions. Except for for the H(N) that are involved in the hydrogen bonding and therefore their coordinates were refined without constraints or restraints the rest of the hydrogens were refined riding on their parent C: C–H = 0.95, O.98, 0.99, 1.00 Å for the aryl, methyl, methylene and methine hydrogens, respectively. Uiso(H)=1.2Ueq(C/N) for the H(N), methylene and methine H atoms, while Uiso(H)=1.5Ueq for methyl hydrogens.

Figures

Fig. 1.

Fig. 1.

View of the title molecule. The displacement ellipsoids are shown at the 50% probability level. The hydrogens are shown as circles with arbitrary radius.

Fig. 2.

Fig. 2.

Motif showing the hydrogen bonding in the title structure. Symmetry code for Br1 b: x, 1-y, z.

Crystal data

C13H17ClN3OS+·Br F(000) = 768
Mr = 378.72 Dx = 1.599 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 11663 reflections
a = 14.9409 (9) Å θ = 1–27.5°
b = 7.7050 (5) Å µ = 2.91 mm1
c = 13.9141 (15) Å T = 150 K
β = 100.758 (7)° Block, colourless
V = 1573.6 (2) Å3 0.41 × 0.40 × 0.22 mm
Z = 4

Data collection

Bruker–Nonius KappaCCD diffractometer 3455 independent reflections
Radiation source: fine-focus sealed tube 2671 reflections with I > 2σ(I)
graphite Rint = 0.060
Detector resolution: 9.091 pixels mm-1 θmax = 27.5°, θmin = 2.8°
φ and ω scans h = −19→16
Absorption correction: gaussian integration (Coppens, 1970) k = −8→9
Tmin = 0.401, Tmax = 0.658 l = −17→18
11628 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048 Hydrogen site location: difference Fourier map
wR(F2) = 0.114 H atoms treated by a mixture of independent and constrained refinement
S = 1.22 w = 1/[σ2(Fo2) + (0.0325P)2 + 3.4975P] where P = (Fo2 + 2Fc2)/3
3455 reflections (Δ/σ)max < 0.001
189 parameters Δρmax = 0.74 e Å3
0 restraints Δρmin = −0.82 e Å3
60 constraints

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 0.08338 (3) 0.66896 (5) 0.14195 (3) 0.02613 (13)
S1 0.16212 (7) 0.32645 (15) 0.36335 (7) 0.0259 (2)
Cl1 0.62396 (8) −0.16871 (15) 0.42796 (8) 0.0356 (3)
N3 0.1148 (2) 0.0146 (5) 0.2861 (3) 0.0225 (7)
H3 0.095 (3) −0.053 (7) 0.245 (3) 0.027*
O1 0.3250 (2) 0.1248 (4) 0.3000 (2) 0.0340 (7)
C1 0.3345 (3) 0.2769 (5) 0.3210 (3) 0.0219 (8)
N1 0.4148 (2) 0.3623 (4) 0.3524 (2) 0.0221 (7)
N2 0.0914 (2) 0.2457 (5) 0.1804 (3) 0.0244 (7)
H2 0.094 (3) 0.350 (7) 0.178 (4) 0.029*
C11 0.1189 (2) 0.1804 (5) 0.2677 (3) 0.0207 (8)
C6 0.5171 (3) 0.1131 (5) 0.3865 (3) 0.0211 (8)
H6 0.4680 0.0399 0.3948 0.025*
C7 0.6049 (3) 0.0507 (5) 0.3989 (3) 0.0246 (9)
C10 0.5754 (3) 0.3920 (6) 0.3476 (3) 0.0261 (9)
H10 0.5652 0.5102 0.3293 0.031*
C13 0.1428 (3) −0.0649 (6) 0.3822 (3) 0.0338 (11)
H13A 0.2066 −0.0358 0.4080 0.051*
H13B 0.1362 −0.1912 0.3763 0.051*
H13C 0.1044 −0.0211 0.4267 0.051*
C9 0.6624 (3) 0.3230 (6) 0.3608 (3) 0.0278 (9)
H9 0.7118 0.3945 0.3513 0.033*
C4 0.2588 (3) 0.4101 (6) 0.3153 (3) 0.0244 (9)
H4 0.2380 0.4459 0.2456 0.029*
C2 0.4027 (3) 0.5482 (5) 0.3675 (3) 0.0253 (9)
H2A 0.4168 0.6166 0.3119 0.030*
H2B 0.4421 0.5883 0.4286 0.030*
C5 0.5029 (3) 0.2873 (5) 0.3613 (3) 0.0214 (8)
C12 0.0567 (3) 0.1404 (6) 0.0946 (3) 0.0341 (11)
H12A 0.1048 0.0626 0.0814 0.051*
H12B 0.0372 0.2163 0.0381 0.051*
H12C 0.0048 0.0716 0.1067 0.051*
C3 0.3028 (3) 0.5640 (6) 0.3739 (4) 0.0333 (10)
H3A 0.2770 0.6748 0.3451 0.040*
H3B 0.2943 0.5575 0.4427 0.040*
C8 0.6784 (3) 0.1510 (6) 0.3878 (3) 0.0269 (9)
H8 0.7382 0.1040 0.3983 0.032*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.0262 (2) 0.0177 (2) 0.0348 (2) 0.00117 (17) 0.00640 (16) 0.00120 (18)
S1 0.0265 (5) 0.0298 (6) 0.0225 (5) 0.0025 (4) 0.0072 (4) −0.0046 (4)
Cl1 0.0406 (6) 0.0266 (6) 0.0408 (6) 0.0100 (5) 0.0110 (5) 0.0056 (5)
N3 0.0272 (18) 0.0174 (17) 0.0243 (17) 0.0039 (14) 0.0076 (14) 0.0040 (14)
O1 0.0263 (16) 0.0280 (17) 0.0495 (19) −0.0037 (12) 0.0118 (14) −0.0165 (15)
C1 0.020 (2) 0.024 (2) 0.0221 (19) 0.0002 (16) 0.0055 (15) −0.0043 (17)
N1 0.0251 (17) 0.0195 (18) 0.0217 (16) −0.0013 (14) 0.0049 (13) −0.0019 (14)
N2 0.0302 (19) 0.0190 (18) 0.0231 (17) −0.0002 (15) 0.0030 (14) 0.0019 (16)
C11 0.0189 (18) 0.023 (2) 0.0203 (18) 0.0039 (16) 0.0055 (14) −0.0034 (17)
C6 0.025 (2) 0.0185 (19) 0.0207 (19) −0.0008 (15) 0.0072 (15) −0.0007 (16)
C7 0.032 (2) 0.022 (2) 0.0211 (19) 0.0008 (17) 0.0084 (17) −0.0003 (17)
C10 0.028 (2) 0.025 (2) 0.025 (2) −0.0053 (17) 0.0041 (16) 0.0003 (18)
C13 0.040 (3) 0.031 (3) 0.031 (2) 0.013 (2) 0.011 (2) 0.014 (2)
C9 0.027 (2) 0.032 (2) 0.024 (2) −0.0101 (19) 0.0045 (16) −0.0005 (19)
C4 0.024 (2) 0.026 (2) 0.023 (2) −0.0019 (17) 0.0037 (16) −0.0023 (18)
C2 0.030 (2) 0.018 (2) 0.025 (2) 0.0010 (16) −0.0010 (17) 0.0004 (17)
C5 0.023 (2) 0.024 (2) 0.0176 (18) −0.0012 (15) 0.0054 (15) −0.0028 (16)
C12 0.048 (3) 0.028 (3) 0.023 (2) −0.003 (2) −0.0016 (19) −0.0004 (19)
C3 0.031 (2) 0.027 (2) 0.041 (3) 0.0028 (18) 0.0038 (19) −0.012 (2)
C8 0.024 (2) 0.038 (3) 0.0196 (19) 0.0029 (18) 0.0055 (15) −0.0030 (19)

Geometric parameters (Å, °)

S1—C11 1.770 (4) C10—C5 1.391 (6)
S1—C4 1.819 (4) C10—H10 0.9500
Cl1—C7 1.749 (4) C13—H13A 0.9800
N3—C11 1.307 (5) C13—H13B 0.9800
N3—C13 1.459 (5) C13—H13C 0.9800
N3—H3 0.80 (5) C9—C8 1.385 (6)
O1—C1 1.210 (5) C9—H9 0.9500
C1—N1 1.367 (5) C4—C3 1.518 (6)
C1—C4 1.518 (6) C4—H4 1.0000
N1—C5 1.421 (5) C2—C3 1.516 (6)
N1—C2 1.464 (5) C2—H2A 0.9900
N2—C11 1.309 (5) C2—H2B 0.9900
N2—C12 1.456 (5) C12—H12A 0.9800
N2—H2 0.81 (5) C12—H12B 0.9800
C6—C7 1.377 (6) C12—H12C 0.9800
C6—C5 1.394 (6) C3—H3A 0.9900
C6—H6 0.9500 C3—H3B 0.9900
C7—C8 1.375 (6) C8—H8 0.9500
C10—C9 1.385 (6)
C11—S1—C4 98.74 (18) C10—C9—H9 119.6
C11—N3—C13 125.0 (4) C8—C9—H9 119.6
C11—N3—H3 122 (4) C3—C4—C1 104.8 (3)
C13—N3—H3 113 (4) C3—C4—S1 111.9 (3)
O1—C1—N1 126.8 (4) C1—C4—S1 112.1 (3)
O1—C1—C4 126.1 (4) C3—C4—H4 109.3
N1—C1—C4 107.0 (3) C1—C4—H4 109.3
C1—N1—C5 125.1 (3) S1—C4—H4 109.3
C1—N1—C2 113.0 (3) N1—C2—C3 103.7 (3)
C5—N1—C2 121.5 (3) N1—C2—H2A 111.0
C11—N2—C12 123.3 (4) C3—C2—H2A 111.0
C11—N2—H2 114 (4) N1—C2—H2B 111.0
C12—N2—H2 122 (4) C3—C2—H2B 111.0
N3—C11—N2 122.6 (4) H2A—C2—H2B 109.0
N3—C11—S1 119.9 (3) C10—C5—C6 120.4 (4)
N2—C11—S1 117.4 (3) C10—C5—N1 118.9 (4)
C7—C6—C5 117.7 (4) C6—C5—N1 120.6 (4)
C7—C6—H6 121.1 N2—C12—H12A 109.5
C5—C6—H6 121.1 N2—C12—H12B 109.5
C8—C7—C6 123.4 (4) H12A—C12—H12B 109.5
C8—C7—Cl1 118.1 (3) N2—C12—H12C 109.5
C6—C7—Cl1 118.5 (3) H12A—C12—H12C 109.5
C9—C10—C5 119.6 (4) H12B—C12—H12C 109.5
C9—C10—H10 120.2 C2—C3—C4 103.8 (3)
C5—C10—H10 120.2 C2—C3—H3A 111.0
N3—C13—H13A 109.5 C4—C3—H3A 111.0
N3—C13—H13B 109.5 C2—C3—H3B 111.0
H13A—C13—H13B 109.5 C4—C3—H3B 111.0
N3—C13—H13C 109.5 H3A—C3—H3B 109.0
H13A—C13—H13C 109.5 C7—C8—C9 117.9 (4)
H13B—C13—H13C 109.5 C7—C8—H8 121.1
C10—C9—C8 120.9 (4) C9—C8—H8 121.1

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N3—H3···Br1i 0.80 (5) 2.56 (5) 3.314 (4) 159 (5)
N2—H2···Br1 0.81 (5) 2.51 (5) 3.303 (4) 170 (5)
C6—H6···O1 0.95 2.38 2.899 (5) 114
C8—H8···Br1ii 0.95 2.87 3.662 (5) 142
C2—H2A···Cg1iii 0.99 2.69 3.628 (4) 159

Symmetry codes: (i) x, y−1, z; (ii) −x+1, y−1/2, −z+1/2; (iii) −x+1, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FB2123).

References

  1. Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst.27, 435.
  2. Coppens, P. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 255–270. Copenhagen: Munksgaard.
  3. Hanusek, J., Hejtmánková, L., Štěrba, V. & Sedlák, M. (2004). Org. Biomol. Chem.2, 1756–1763. [DOI] [PubMed]
  4. Hanusek, J., Sedlák, M., Drabina, P. & Ružička, A. (2009). Acta Cryst. E65, o411–o412. [DOI] [PMC free article] [PubMed]
  5. Hooft, R. W. (1998). COLLECT Nonius BV, Delft, The Netherlands.
  6. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  7. Sedlák, M., Hanusek, J., Hejtmánková, L. & Kašparová, P. (2003). Org. Biomol. Chem.1, 1204–1209. [DOI] [PubMed]
  8. Sedlák, M., Hejtmánková, L., Hanusek, J. & Macháček, V. (2002). J. Heterocycl. Chem.39, 1105–1107.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809002153/fb2123sup1.cif

e-65-0o413-sup1.cif (17.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809002153/fb2123Isup2.hkl

e-65-0o413-Isup2.hkl (166KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES