Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Jan 8;65(Pt 2):m134. doi: 10.1107/S1600536808043596

Poly[(3-nitro­benzoato)(μ3-1,2,4-triazolato)cobalt(II)]

Xu-Liang Qi a,*
PMCID: PMC2968154  PMID: 21581750

Abstract

In the title compound, [Co(C2H2N3)(C7H4NO4)]n, the CoII atom is five-coordinated by three triazolate ligands and one bidentate 3-nitro­benzoate anion in a distorted trigonal-bipyramidal geometry. The triazolate ligand bridges the CoII atoms, generating a two-dimensional net parallel to the ab plane, in which both the CoII atom and the triazolate ligand act as three-connected nodes. Two weak inter­molecular C—H⋯O hydrogen bonds connect the nets.

Related literature

For metal–triazole complexes, see: Park et al. (2006); Yang et al. (2008); Zhai et al. (2007). For Co—O and Co—N bond lengths, see: Zhang et al. (2008).graphic file with name e-65-0m134-scheme1.jpg

Experimental

Crystal data

  • [Co(C2H2N3)(C7H4NO4)]

  • M r = 293.11

  • Orthorhombic, Inline graphic

  • a = 9.2419 (18) Å

  • b = 10.377 (2) Å

  • c = 22.597 (5) Å

  • V = 2167.1 (8) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.60 mm−1

  • T = 296 (2) K

  • 0.14 × 0.12 × 0.12 mm

Data collection

  • Bruker SMART 1K CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004) T min = 0.802, T max = 0.826

  • 19233 measured reflections

  • 2477 independent reflections

  • 2245 reflections with I > 2σ(I)

  • R int = 0.029

Refinement

  • R[F 2 > 2σ(F 2)] = 0.023

  • wR(F 2) = 0.059

  • S = 1.04

  • 2477 reflections

  • 163 parameters

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.28 e Å−3

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808043596/is2370sup1.cif

e-65-0m134-sup1.cif (16.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808043596/is2370Isup2.hkl

e-65-0m134-Isup2.hkl (121.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Co1—O1 2.3314 (12)
Co1—O2 2.0008 (12)
Co1—N1 2.0232 (12)
Co1—N2i 2.0118 (12)
Co1—N3ii 2.0385 (12)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O2iii 0.93 2.54 3.250 (3) 134
C8—H8⋯O4iv 0.93 2.46 3.372 (2) 169

Symmetry codes: (iii) Inline graphic; (iv) Inline graphic.

supplementary crystallographic information

Comment

Recently, more and more attention is paid on the coordination chemistry about trz ligand or analogy ligand (Park et al., 2006; Yang et al., 2008; Zhai et al., 2007), driven by their intriguing topological matrix and potential applications.

The asymmetric unit of I is shown in Fig. 1. The CoII atom is five-coordinated by two L (3-nitrobenzoate anion) O atoms, three trz N atoms to give rise to a distorted trigonal-bipyramidal geometry. The Co—O/N bond lengths of 2.0008 (12)–2.3314 (12)Å (Table 1) are in the normal range (Zhang et al., 2008). The trz and L ligand adopt bridging and bidentate coordinated modes, respectively. As shown in Fig. 2a, the CoII atoms are combined together by trz ligands to generate a two-dimensional net parallel to the ab plane with the L ligands ligated on the two-dimensional net up and down. From a topological point of view, if considering the trz ligands and cobalt ions as three-connected nodes. Moreover, besides the presence of two weak intermolecular C—H···O hydrogen bonds, see Table 2, there is not other obvious supramolecular interactions between two-dimensional nets,

Experimental

CoCl2 (1.0 mmol), 3-nitrobenzoic acid (1 mmol) and triazole (1 mmol) were dissolved in water (10 ml). The solution was heated in a 25 ml Teflonlined reaction vessel at 433 K for ca 3 days and then cooled to room temperature. Purple crystals of the title compound were obtained in a yield of 78%.

Refinement

All H atoms were positioned geometrically and refined using a riding model with C—H = 0.93 Å and with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

An ORTEP view of the asymmetric unit with 50% thermal ellipsoids for non-H atoms [symmetry codes: (A) -x + 1/2, y - 1/2, z; (B) x + 1/2, -y + 3/2, -z + 1].

Fig. 2.

Fig. 2.

a) View of the two-dimensional net onto the ab plane, formed by cobalt ions and trz ligands; b) View of the two-dimensional net built on three-connected trz and cobalt nodes.

Crystal data

[Co(C2H2N3)(C7H4NO4)] F(000) = 1176
Mr = 293.11 Dx = 1.797 Mg m3
Orthorhombic, Pbca Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2ab Cell parameters from 15896 reflections
a = 9.2419 (18) Å θ = 3.1–27.5°
b = 10.377 (2) Å µ = 1.60 mm1
c = 22.597 (5) Å T = 296 K
V = 2167.1 (8) Å3 Block, purple
Z = 8 0.14 × 0.12 × 0.12 mm

Data collection

Bruker SMART 1K CCD area-detector diffractometer 2477 independent reflections
Radiation source: sealed tube 2245 reflections with I > 2σ(I)
graphite Rint = 0.029
Detector resolution: 8.192 pixels mm-1 θmax = 27.5°, θmin = 3.1°
ω scans h = −12→11
Absorption correction: multi-scan (SADABS; Sheldrick, 2004) k = −13→12
Tmin = 0.802, Tmax = 0.826 l = −29→29
19233 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.059 H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0278P)2 + 1.1998P] where P = (Fo2 + 2Fc2)/3
2477 reflections (Δ/σ)max = 0.001
163 parameters Δρmax = 0.33 e Å3
0 restraints Δρmin = −0.28 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.0918 (2) 0.62096 (17) 0.17212 (8) 0.0358 (4)
C2 −0.0058 (2) 0.7078 (2) 0.14920 (8) 0.0470 (5)
H2 −0.0198 0.7141 0.1085 0.056*
C3 −0.0823 (3) 0.7853 (2) 0.18746 (9) 0.0522 (6)
H3 −0.1473 0.8457 0.1728 0.063*
C4 −0.0620 (2) 0.77306 (18) 0.24798 (8) 0.0406 (4)
H4 −0.1157 0.8240 0.2738 0.049*
C5 0.1165 (2) 0.60861 (16) 0.23241 (7) 0.0322 (4)
H5 0.1843 0.5503 0.2468 0.039*
C6 0.03721 (19) 0.68583 (16) 0.27043 (7) 0.0295 (3)
C7 0.05354 (18) 0.67429 (16) 0.33614 (7) 0.0290 (3)
C8 0.32376 (16) 0.75394 (14) 0.51070 (7) 0.0253 (3)
H8 0.3425 0.6826 0.5344 0.030*
C9 0.22994 (17) 0.87843 (13) 0.44808 (6) 0.0231 (3)
H9 0.1693 0.9118 0.4190 0.028*
Co1 0.08538 (2) 0.615646 (17) 0.442261 (8) 0.01829 (7)
N1 0.21652 (13) 0.75890 (11) 0.47077 (5) 0.0227 (2)
N2 0.39953 (13) 0.86141 (12) 0.51260 (5) 0.0225 (3)
N3 0.33828 (13) 0.94272 (11) 0.47154 (5) 0.0209 (2)
N4 0.1706 (2) 0.53740 (17) 0.13114 (7) 0.0459 (4)
O1 −0.00457 (13) 0.75383 (12) 0.36970 (5) 0.0367 (3)
O2 0.12664 (15) 0.58069 (12) 0.35684 (5) 0.0351 (3)
O3 0.2746 (2) 0.47839 (18) 0.14938 (7) 0.0683 (5)
O4 0.1257 (2) 0.53020 (16) 0.08006 (6) 0.0627 (4)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0517 (11) 0.0329 (9) 0.0228 (8) −0.0083 (7) 0.0032 (7) −0.0016 (6)
C2 0.0745 (14) 0.0453 (11) 0.0211 (8) −0.0027 (10) −0.0091 (8) 0.0050 (8)
C3 0.0778 (16) 0.0444 (12) 0.0345 (10) 0.0148 (10) −0.0150 (9) 0.0058 (9)
C4 0.0592 (11) 0.0331 (9) 0.0295 (9) 0.0079 (8) −0.0040 (8) 0.0000 (7)
C5 0.0422 (9) 0.0299 (8) 0.0246 (8) −0.0020 (7) −0.0011 (7) 0.0013 (6)
C6 0.0418 (9) 0.0261 (8) 0.0208 (7) −0.0037 (7) −0.0026 (6) 0.0022 (6)
C7 0.0371 (8) 0.0284 (8) 0.0214 (7) −0.0058 (6) −0.0020 (6) 0.0014 (6)
C8 0.0290 (7) 0.0196 (7) 0.0274 (7) −0.0033 (6) −0.0042 (6) 0.0061 (6)
C9 0.0269 (7) 0.0190 (7) 0.0234 (7) −0.0015 (5) −0.0031 (5) 0.0034 (5)
Co1 0.02203 (12) 0.01445 (11) 0.01838 (11) −0.00039 (6) 0.00086 (7) 0.00145 (7)
N1 0.0263 (6) 0.0181 (6) 0.0238 (6) −0.0032 (5) −0.0026 (5) 0.0025 (5)
N2 0.0247 (6) 0.0185 (6) 0.0243 (6) −0.0015 (5) −0.0038 (5) 0.0050 (5)
N3 0.0246 (6) 0.0163 (6) 0.0217 (6) −0.0005 (4) −0.0008 (4) 0.0039 (5)
N4 0.0611 (11) 0.0437 (9) 0.0330 (8) −0.0104 (8) 0.0139 (7) −0.0058 (7)
O1 0.0453 (7) 0.0413 (7) 0.0234 (6) 0.0066 (6) −0.0001 (5) −0.0033 (5)
O2 0.0541 (7) 0.0304 (6) 0.0207 (5) 0.0052 (6) −0.0027 (5) 0.0020 (5)
O3 0.0667 (11) 0.0791 (12) 0.0590 (10) 0.0140 (10) 0.0135 (8) −0.0168 (9)
O4 0.1046 (13) 0.0585 (10) 0.0249 (7) −0.0100 (9) 0.0117 (8) −0.0095 (7)

Geometric parameters (Å, °)

C1—C2 1.376 (3) C8—N2 1.3175 (19)
C1—C5 1.388 (2) C8—N1 1.3414 (19)
C1—N4 1.463 (2) C8—H8 0.9300
C2—C3 1.376 (3) C9—N3 1.3149 (19)
C2—H2 0.9300 C9—N1 1.3478 (18)
C3—C4 1.386 (3) C9—H9 0.9300
C3—H3 0.9300 Co1—O1 2.3314 (12)
C4—C6 1.385 (2) Co1—O2 2.0008 (12)
C4—H4 0.9300 Co1—N1 2.0232 (12)
C5—C6 1.385 (2) Co1—N2i 2.0118 (12)
C5—H5 0.9300 Co1—N3ii 2.0385 (12)
C6—C7 1.497 (2) N2—N3 1.3759 (16)
C7—O1 1.243 (2) N4—O3 1.212 (2)
C7—O2 1.272 (2) N4—O4 1.229 (2)
C2—C1—C5 122.56 (17) N1—C9—H9 123.7
C2—C1—N4 118.45 (17) O2—Co1—N2i 132.33 (5)
C5—C1—N4 118.98 (17) O2—Co1—N1 109.04 (5)
C1—C2—C3 118.87 (17) N2i—Co1—N1 105.25 (5)
C1—C2—H2 120.6 O2—Co1—N3ii 95.03 (5)
C3—C2—H2 120.6 N2i—Co1—N3ii 103.60 (5)
C2—C3—C4 119.79 (19) N1—Co1—N3ii 109.64 (5)
C2—C3—H3 120.1 O2—Co1—O1 60.06 (5)
C4—C3—H3 120.1 N2i—Co1—O1 88.82 (5)
C6—C4—C3 120.72 (18) N1—Co1—O1 89.18 (5)
C6—C4—H4 119.6 N3ii—Co1—O1 153.26 (5)
C3—C4—H4 119.6 C8—N1—C9 102.90 (12)
C6—C5—C1 117.93 (16) C8—N1—Co1 128.95 (10)
C6—C5—H5 121.0 C9—N1—Co1 127.60 (10)
C1—C5—H5 121.0 C8—N2—N3 106.17 (12)
C4—C6—C5 120.10 (15) C8—N2—Co1iii 124.78 (10)
C4—C6—C7 118.83 (15) N3—N2—Co1iii 128.36 (9)
C5—C6—C7 121.04 (15) C9—N3—N2 105.91 (11)
O1—C7—O2 120.80 (14) C9—N3—Co1iv 125.40 (10)
O1—C7—C6 120.56 (15) N2—N3—Co1iv 128.05 (9)
O2—C7—C6 118.63 (15) O3—N4—O4 123.81 (19)
N2—C8—N1 112.47 (13) O3—N4—C1 118.64 (17)
N2—C8—H8 123.8 O4—N4—C1 117.55 (19)
N1—C8—H8 123.8 C7—O1—Co1 82.34 (10)
N3—C9—N1 112.56 (13) C7—O2—Co1 96.61 (10)
N3—C9—H9 123.7
C5—C1—C2—C3 −0.2 (3) C7—Co1—N1—C9 25.56 (14)
N4—C1—C2—C3 178.90 (19) N1—C8—N2—N3 0.24 (17)
C1—C2—C3—C4 −1.2 (3) N1—C8—N2—Co1iii −170.88 (10)
C2—C3—C4—C6 1.7 (3) N1—C9—N3—N2 −0.56 (17)
C2—C1—C5—C6 1.2 (3) N1—C9—N3—Co1iv 170.84 (10)
N4—C1—C5—C6 −177.94 (16) C8—N2—N3—C9 0.19 (16)
C3—C4—C6—C5 −0.7 (3) Co1iii—N2—N3—C9 170.89 (10)
C3—C4—C6—C7 −178.94 (19) C8—N2—N3—Co1iv −170.91 (10)
C1—C5—C6—C4 −0.7 (3) Co1iii—N2—N3—Co1iv −0.21 (18)
C1—C5—C6—C7 177.51 (16) C2—C1—N4—O3 166.47 (19)
C4—C6—C7—O1 −10.4 (2) C5—C1—N4—O3 −14.4 (3)
C5—C6—C7—O1 171.35 (16) C2—C1—N4—O4 −14.4 (3)
C4—C6—C7—O2 168.80 (16) C5—C1—N4—O4 164.78 (17)
C5—C6—C7—O2 −9.4 (2) O2—C7—O1—Co1 −4.03 (15)
N2—C8—N1—C9 −0.55 (17) C6—C7—O1—Co1 175.16 (15)
N2—C8—N1—Co1 171.29 (10) O2—Co1—O1—C7 2.54 (10)
N3—C9—N1—C8 0.68 (17) N2i—Co1—O1—C7 −139.56 (10)
N3—C9—N1—Co1 −171.31 (10) N1—Co1—O1—C7 115.17 (10)
O2—Co1—N1—C8 −113.76 (13) N3ii—Co1—O1—C7 −20.77 (16)
N2i—Co1—N1—C8 99.90 (13) O1—C7—O2—Co1 4.68 (18)
N3ii—Co1—N1—C8 −10.96 (14) C6—C7—O2—Co1 −174.52 (13)
O1—Co1—N1—C8 −171.55 (13) N2i—Co1—O2—C7 53.70 (13)
O2—Co1—N1—C9 56.19 (14) N1—Co1—O2—C7 −79.98 (11)
N2i—Co1—N1—C9 −90.15 (13) N3ii—Co1—O2—C7 167.23 (10)
N3ii—Co1—N1—C9 158.99 (12) O1—Co1—O2—C7 −2.47 (9)
O1—Co1—N1—C9 −1.60 (13)

Symmetry codes: (i) x−1/2, −y+3/2, −z+1; (ii) −x+1/2, y−1/2, z; (iii) x+1/2, −y+3/2, −z+1; (iv) −x+1/2, y+1/2, z.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C3—H3···O2v 0.93 2.54 3.250 (3) 134
C8—H8···O4vi 0.93 2.46 3.372 (2) 169

Symmetry codes: (v) −x, y+1/2, −z+1/2; (vi) −x+1/2, −y+1, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2370).

References

  1. Bruker (2001). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Park, H., Moureau, D. M. & Parise, J. B. (2006). Chem. Mater.18, 525–531.
  3. Sheldrick, G. M. (2004). SADABS University of Göttingen, Germany.
  4. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  5. Yang, E.-C., Liu, Z.-Y., Wang, X.-G., Batten, S. R. & Zhao, X.-J. (2008). CrystEngComm, 10, 1140–1143.
  6. Zhai, Q.-G., Lu, C.-Z., Wu, X.-Y. & Batten, S. R. (2007). Cryst. Growth Des.7, 2332–2342.
  7. Zhang, J., Chew, E., Chen, S.-M., Pham, J. T. H. & Bu, X.-H. (2008). Inorg. Chem.47, 3495–3497. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808043596/is2370sup1.cif

e-65-0m134-sup1.cif (16.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808043596/is2370Isup2.hkl

e-65-0m134-Isup2.hkl (121.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES