Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Jan 8;65(Pt 2):m148. doi: 10.1107/S1600536808044206

Bis(pyridine-3-carboxylic acid-κN)silver(I) perchlorate

Xiao-Yan Nie a, Qian-Zhu Li a,*
PMCID: PMC2968163  PMID: 21581761

Abstract

In the title compound, [Ag(C6H5NO2)2]ClO4, the AgI atom shows an almost linear coordination geometry, defined by two N atoms from two pyridine-3-carboxylic acid ligands. The complex cations are linked by hydrogen bonds between the carboxyl groups into a chain. The chains are further connected through C—H⋯O hydrogen bonds and a weak Ag⋯O inter­action [2.757 (8) Å] into a layer. Another Ag⋯O inter­action [2.899 (2) Å] and a C—H⋯O hydrogen bond connect the layers into a three-dimensional network.

Related literature

For general background on coordination polymers and open-framework materials, see: James (2003); Serre et al. (2004); Yaghi et al. (1998, 2003). For related structures, see: Evans & Lin (2001); Luo et al. (2004).graphic file with name e-65-0m148-scheme1.jpg

Experimental

Crystal data

  • [Ag(C6H5NO2)2]ClO4

  • M r = 453.54

  • Monoclinic, Inline graphic

  • a = 8.0139 (4) Å

  • b = 26.3288 (15) Å

  • c = 7.6891 (4) Å

  • β = 110.728 (1)°

  • V = 1517.36 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.55 mm−1

  • T = 273 (2) K

  • 0.29 × 0.25 × 0.21 mm

Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.649, T max = 0.731

  • 7763 measured reflections

  • 2729 independent reflections

  • 2150 reflections with I > 2σ(I)

  • R int = 0.029

Refinement

  • R[F 2 > 2σ(F 2)] = 0.043

  • wR(F 2) = 0.123

  • S = 0.87

  • 2729 reflections

  • 219 parameters

  • H-atom parameters constrained

  • Δρmax = 1.26 e Å−3

  • Δρmin = −0.57 e Å−3

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808044206/hy2176sup1.cif

e-65-0m148-sup1.cif (15.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808044206/hy2176Isup2.hkl

e-65-0m148-Isup2.hkl (134KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected geometric parameters (Å, °).

Ag1—N1 2.178 (4)
Ag1—N2 2.185 (4)
N1—Ag1—N2 165.65 (15)

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯O5i 0.93 2.51 3.244 (8) 136
C4—H4⋯O7ii 0.93 2.52 3.266 (8) 139
C6—H6⋯O7 0.93 2.52 3.248 (8) 136
C7—H7⋯O8i 0.93 2.49 3.287 (9) 144
C12—H12⋯O7 0.93 2.38 3.228 (9) 152
O2—H2⋯O4iii 0.82 1.84 2.649 (5) 169
O3—H3⋯O1iv 0.82 1.87 2.689 (5) 175

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

The authors kindly acknowledge Bijie University for supporting this work.

supplementary crystallographic information

Comment

The use of multifunctional organic linker molecules in the preparation of coordination polymers and open-framework materials has led to the development of a rich field of chemistry owing to the potential applications of these materials in catalysis, separation, gas storage and molecular recognition (James, 2003; Serre et al., 2004; Yaghi et al., 1998, 2003). In our investigations we used nicotinic acid ligands for the preparation of new coordination polymers, because it can act as a multidentate ligand with versatile binding and coordination modes (Evans & Lin, 2001; Luo et al., 2004). In this paper, we report the crystal structure of the title compound, a new AgI complex obtained by the reaction of nicotinic acid, AgNO3 and perchloric acid in water.

As shown in Fig. 1, the title compound consists of a [Ag(C6H5NO2)2]+ cation and a perchlorate anion. The AgI atom exhibits a linear coordination geometry, defined by two N atoms from two pyridine-3-carboxylic acid ligands (Table 1). The complex cations are linked by hydrogen bonds between the carboxyl groups into a chain (Table 2). The chains are further connected by C—H···O hydrogen bonds involving C1, C6, C7 and C12 atoms and the perchlorate anions, and by a weak Ag1···O5(x-1, y, z) interaction [2.757 (8) Å] into a layer (Fig. 2). Another Ag1···O1(x, 3/2-y, z-1/2) interaction [2.899 (2) Å] and a C4—H4···O7(x, 3/2-y, 1/2+z) hydrogen bond connect the layers into a three-dimensional network.

Experimental

A mixture of AgNO3 (0.169 g, 1 mmol), perchloric acid (0.12 ml), nicotinic acid (0.123 g, 1 mmol) and H2O (10 ml) was placed in a 23 ml Teflon-lined reactor, which was heated to 433 K for 3 d and then cooled to room temperature at a rate of 10 K h-1. The crystals obtained were washed with water and dried in air.

Refinement

H atoms on C atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C). H atoms on O atoms were located in difference Fourier maps and were fixed with O—H = 0.82 Å and Uiso(H) = 1.5Ueq(O). The highest residual electron density was found 1.31 Å from atom O7 and the deepest hole 0.46 Å from atom O7.

Figures

Fig. 1.

Fig. 1.

The structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level.

Fig. 2.

Fig. 2.

The layer in the title compound. Hydrogen bonds and weak Ag···O interactions are shown as dashed lines.

Crystal data

[Ag(C6H5NO2)2]ClO4 F(000) = 896
Mr = 453.54 Dx = 1.985 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 5837 reflections
a = 8.0139 (4) Å θ = 2.8–27.9°
b = 26.3288 (15) Å µ = 1.55 mm1
c = 7.6891 (4) Å T = 273 K
β = 110.728 (1)° Block, colourless
V = 1517.36 (14) Å3 0.29 × 0.25 × 0.21 mm
Z = 4

Data collection

Bruker APEXII CCD diffractometer 2729 independent reflections
Radiation source: fine-focus sealed tube 2150 reflections with I > 2σ(I)
graphite Rint = 0.029
φ and ω scans θmax = 25.2°, θmin = 1.6°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −8→9
Tmin = 0.649, Tmax = 0.731 k = −29→31
7763 measured reflections l = −9→8

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.123 H-atom parameters constrained
S = 0.87 w = 1/[σ2(Fo2) + (0.0736P)2 + 4.5241P] where P = (Fo2 + 2Fc2)/3
2729 reflections (Δ/σ)max = 0.001
219 parameters Δρmax = 1.26 e Å3
0 restraints Δρmin = −0.57 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Ag1 0.40344 (6) 0.612387 (13) 0.34075 (6) 0.05534 (19)
C1 0.3293 (6) 0.72596 (17) 0.4083 (7) 0.0438 (11)
H1 0.2115 0.7150 0.3691 0.053*
Cl1 0.97387 (18) 0.61558 (5) 0.3633 (2) 0.0544 (3)
N1 0.4208 (5) 0.53278 (14) 0.2719 (6) 0.0457 (9)
O1 0.2535 (4) 0.86018 (12) 0.4508 (5) 0.0488 (8)
C2 0.3650 (6) 0.77700 (16) 0.4460 (6) 0.0367 (10)
N2 0.4580 (5) 0.69166 (14) 0.4261 (6) 0.0437 (9)
O2 0.0616 (5) 0.79535 (13) 0.3776 (6) 0.0596 (10)
H2 −0.0120 0.8184 0.3499 0.089*
C3 0.2204 (6) 0.81428 (17) 0.4237 (7) 0.0425 (11)
O3 0.0023 (4) 0.43163 (13) 0.1274 (6) 0.0541 (9)
H3 −0.0738 0.4093 0.0982 0.081*
C4 0.5421 (6) 0.79317 (18) 0.5073 (7) 0.0466 (11)
H4 0.5706 0.8271 0.5356 0.056*
O4 0.1889 (5) 0.36546 (12) 0.1767 (5) 0.0519 (9)
C5 0.6742 (6) 0.75790 (19) 0.5251 (7) 0.0488 (12)
H5 0.7932 0.7678 0.5642 0.059*
O5 1.0454 (10) 0.6352 (3) 0.2338 (8) 0.147 (3)
C6 0.6276 (6) 0.70794 (18) 0.4842 (7) 0.0455 (11)
H6 0.7176 0.6843 0.4974 0.055*
O6 1.0605 (13) 0.6412 (4) 0.5267 (9) 0.174 (4)
C7 0.2868 (6) 0.49924 (17) 0.2338 (7) 0.0409 (10)
H7 0.1745 0.5107 0.2256 0.049*
O7 0.7884 (7) 0.6209 (2) 0.2885 (11) 0.117 (2)
C8 0.3093 (6) 0.44812 (16) 0.2063 (6) 0.0372 (10)
O8 1.0104 (10) 0.5643 (3) 0.3779 (16) 0.187 (4)
C9 0.1598 (6) 0.41126 (17) 0.1687 (7) 0.0409 (10)
C10 0.4758 (7) 0.43088 (19) 0.2185 (8) 0.0500 (12)
H10 0.4948 0.3966 0.2025 0.060*
C11 0.6130 (7) 0.4653 (2) 0.2546 (8) 0.0567 (14)
H11 0.7258 0.4547 0.2613 0.068*
C12 0.5813 (7) 0.5153 (2) 0.2807 (8) 0.0534 (13)
H12 0.6751 0.5383 0.3056 0.064*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ag1 0.0591 (3) 0.0284 (2) 0.0765 (3) 0.00062 (16) 0.0214 (2) −0.00512 (17)
C1 0.039 (2) 0.035 (2) 0.055 (3) −0.0009 (19) 0.014 (2) −0.005 (2)
Cl1 0.0416 (7) 0.0587 (8) 0.0659 (8) 0.0030 (6) 0.0228 (6) 0.0001 (6)
N1 0.044 (2) 0.033 (2) 0.060 (3) −0.0025 (17) 0.0185 (19) −0.0041 (18)
O1 0.0469 (19) 0.0275 (17) 0.067 (2) −0.0023 (14) 0.0137 (17) 0.0003 (15)
C2 0.041 (2) 0.030 (2) 0.040 (2) −0.0015 (18) 0.0161 (19) −0.0009 (18)
N2 0.044 (2) 0.032 (2) 0.054 (2) 0.0018 (17) 0.0163 (18) −0.0036 (17)
O2 0.043 (2) 0.0321 (18) 0.100 (3) 0.0010 (15) 0.020 (2) −0.0021 (18)
C3 0.044 (3) 0.034 (2) 0.050 (3) −0.003 (2) 0.017 (2) −0.002 (2)
O3 0.0402 (19) 0.0365 (18) 0.084 (3) −0.0042 (15) 0.0195 (18) −0.0055 (18)
C4 0.047 (3) 0.035 (2) 0.054 (3) −0.005 (2) 0.014 (2) 0.000 (2)
O4 0.049 (2) 0.0302 (18) 0.074 (2) 0.0013 (15) 0.0181 (17) 0.0021 (16)
C5 0.038 (3) 0.042 (3) 0.065 (3) −0.002 (2) 0.016 (2) −0.002 (2)
O5 0.133 (5) 0.226 (9) 0.086 (4) −0.095 (6) 0.043 (4) −0.031 (5)
C6 0.042 (3) 0.043 (3) 0.051 (3) 0.006 (2) 0.016 (2) 0.000 (2)
O6 0.219 (9) 0.219 (9) 0.081 (4) −0.109 (8) 0.050 (5) −0.050 (5)
C7 0.036 (2) 0.033 (2) 0.051 (3) 0.0015 (18) 0.012 (2) −0.0008 (19)
O7 0.061 (3) 0.086 (4) 0.210 (7) 0.007 (3) 0.055 (4) 0.005 (4)
C8 0.038 (2) 0.032 (2) 0.041 (2) 0.0006 (18) 0.0116 (19) −0.0027 (18)
O8 0.118 (6) 0.104 (5) 0.323 (12) 0.054 (4) 0.057 (7) −0.004 (7)
C9 0.042 (3) 0.031 (2) 0.047 (3) 0.0009 (19) 0.013 (2) −0.0031 (19)
C10 0.052 (3) 0.034 (3) 0.064 (3) 0.004 (2) 0.021 (2) −0.008 (2)
C11 0.044 (3) 0.051 (3) 0.079 (4) 0.001 (2) 0.027 (3) −0.010 (3)
C12 0.043 (3) 0.045 (3) 0.075 (4) −0.005 (2) 0.024 (3) −0.004 (3)

Geometric parameters (Å, °)

Ag1—N1 2.178 (4) O2—H2 0.8200
Ag1—N2 2.185 (4) O3—C9 1.303 (6)
Ag1—O1i 2.899 (2) O3—H3 0.8200
Ag1—O5ii 2.757 (8) C4—C5 1.378 (7)
C1—N2 1.341 (6) C4—H4 0.9300
C1—C2 1.383 (6) O4—C9 1.226 (6)
C1—H1 0.9300 C5—C6 1.373 (7)
Cl1—O8 1.378 (7) C5—H5 0.9300
Cl1—O6 1.378 (6) C6—H6 0.9300
Cl1—O7 1.398 (6) C7—C8 1.384 (6)
Cl1—O5 1.411 (6) C7—H7 0.9300
N1—C7 1.341 (6) C8—C10 1.381 (7)
N1—C12 1.345 (6) C8—C9 1.489 (6)
O1—C3 1.239 (5) C10—C11 1.375 (7)
C2—C4 1.394 (6) C10—H10 0.9300
C2—C3 1.482 (6) C11—C12 1.370 (7)
N2—C6 1.342 (6) C11—H11 0.9300
O2—C3 1.294 (6) C12—H12 0.9300
N1—Ag1—N2 165.65 (15) C2—C4—H4 120.6
N2—C1—C2 122.6 (4) C6—C5—C4 119.1 (5)
N2—C1—H1 118.7 C6—C5—H5 120.5
C2—C1—H1 118.7 C4—C5—H5 120.5
O8—Cl1—O6 112.4 (6) N2—C6—C5 122.9 (4)
O8—Cl1—O7 107.2 (4) N2—C6—H6 118.5
O6—Cl1—O7 116.4 (6) C5—C6—H6 118.5
O8—Cl1—O5 106.8 (6) N1—C7—C8 122.4 (4)
O6—Cl1—O5 105.3 (4) N1—C7—H7 118.8
O7—Cl1—O5 108.1 (5) C8—C7—H7 118.8
C7—N1—C12 117.6 (4) C10—C8—C7 119.0 (4)
C7—N1—Ag1 124.9 (3) C10—C8—C9 119.4 (4)
C12—N1—Ag1 117.3 (3) C7—C8—C9 121.6 (4)
C1—C2—C4 118.5 (4) O4—C9—O3 124.6 (4)
C1—C2—C3 121.6 (4) O4—C9—C8 120.4 (4)
C4—C2—C3 119.9 (4) O3—C9—C8 115.0 (4)
C1—N2—C6 118.1 (4) C11—C10—C8 118.8 (5)
C1—N2—Ag1 123.2 (3) C11—C10—H10 120.6
C6—N2—Ag1 118.5 (3) C8—C10—H10 120.6
C3—O2—H2 109.5 C12—C11—C10 119.1 (5)
O1—C3—O2 123.6 (4) C12—C11—H11 120.4
O1—C3—C2 120.9 (4) C10—C11—H11 120.4
O2—C3—C2 115.4 (4) N1—C12—C11 123.0 (5)
C9—O3—H3 109.5 N1—C12—H12 118.5
C5—C4—C2 118.8 (4) C11—C12—H12 118.5
C5—C4—H4 120.6

Symmetry codes: (i) x, −y+3/2, z−1/2; (ii) x−1, y, z.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C1—H1···O5ii 0.93 2.51 3.244 (8) 136
C4—H4···O7iii 0.93 2.52 3.266 (8) 139
C6—H6···O7 0.93 2.52 3.248 (8) 136
C7—H7···O8ii 0.93 2.49 3.287 (9) 144
C12—H12···O7 0.93 2.38 3.228 (9) 152
O2—H2···O4iv 0.82 1.84 2.649 (5) 169
O3—H3···O1v 0.82 1.87 2.689 (5) 175

Symmetry codes: (ii) x−1, y, z; (iii) x, −y+3/2, z+1/2; (iv) −x, y+1/2, −z+1/2; (v) −x, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2176).

References

  1. Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Evans, O. R. & Lin, W. B. (2001). Chem. Mater.13, 3009–3017.
  3. James, S. L. (2003). Chem. Soc. Rev.32, 276–288.
  4. Luo, J. H., Jiang, F. L., Wang, R. H., Han, L., Lin, Z. Z., Cao, R. & Hong, M. C. (2004). J. Mol. Struct.707, 211–216.
  5. Serre, C., Millange, F., Thouvenot, C., Gardant, N., Pelle, F. & Ferey, G. (2004). J. Mater. Chem.14, 1540–1543.
  6. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Yaghi, O. M., Li, H. L., Davis, C., Richardson, D. & Groy, T. L. (1998). Acc. Chem. Res.31, 474–484.
  9. Yaghi, O. M., O’Keeffe, M., Ockwig, N. W., Chae, H. K., Eddaoudi, M. & Kim, J. (2003). Nature (London), 423, 705–714. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808044206/hy2176sup1.cif

e-65-0m148-sup1.cif (15.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808044206/hy2176Isup2.hkl

e-65-0m148-Isup2.hkl (134KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES