Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Jan 31;65(Pt 2):o414–o415. doi: 10.1107/S1600536809002876

(1S)-1,2-O-Benzyl­idene-α-d-glucurono-6,3-lactone

Sarah F Jenkinson a,*, Daniel Best a, Alexander C Weymouth-Wilson b, Robert A Clarkson b, George W J Fleet a, David J Watkin c
PMCID: PMC2968165  PMID: 21582005

Abstract

X-ray crystallographic analysis has established that the major product from the protection of d-glucoronolactone with benzaldehyde is (1S)-1,2-O-benzyl­idene-α-d-glucurono-6,3-lactone, C13H12O6, rather than the R epimer. The crystal structure exists as O—H⋯O hydrogen-bonded chains of mol­ecules lying parallel to the a axis. The absolute configuration was determined by the use of d-glucuronolactone as the starting material.

Related literature

For related literature on the synthesis of protected d-glucuronolactone, see: Sheldrick et al. (1983); Macher et al. (1979); Shah (1969). For literature related to the use of acetonide-protected d-glucuronolactone as an inter­mediate in the synthesis of (a) other sugars, see: Bleriot et al. (1997); Dax et al. (1991); Ke et al. (2003); Masaguer et al. (1997); (b) imino sugars, see: Dax et al. (1990); (c) sugar amino acids, see: Bashyal et al. (1986, 1987); (d) many other bioactive targets, see: Kitahara et al. (1974); Austin et al. (1987); Witty et al. (1990); Shing & Tsui (1992); Yoda et al. (2002). For the original NMR studies on benzylidene-protected glucorono­lactone, see Csuk et al. (1984).graphic file with name e-65-0o414-scheme1.jpg

Experimental

Crystal data

  • C13H12O6

  • M r = 264.23

  • Monoclinic, Inline graphic

  • a = 5.6329 (1) Å

  • b = 7.8943 (2) Å

  • c = 13.3182 (3) Å

  • β = 99.9545 (9)°

  • V = 583.32 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 150 K

  • 0.60 × 0.50 × 0.30 mm

Data collection

  • Nonius KappaCCD area-detector diffractometer

  • Absorption correction: multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997) T min = 0.88, T max = 0.96

  • 8275 measured reflections

  • 1418 independent reflections

  • 1341 reflections with I > 2σ(I)

  • R int = 0.022

Refinement

  • R[F 2 > 2σ(F 2)] = 0.027

  • wR(F 2) = 0.068

  • S = 0.96

  • 1418 reflections

  • 172 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.18 e Å−3

Data collection: COLLECT (Nonius, 2001); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809002876/lh2760sup1.cif

e-65-0o414-sup1.cif (15.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809002876/lh2760Isup2.hkl

e-65-0o414-Isup2.hkl (71.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O7—H71⋯O1i 0.86 1.97 2.811 (3) 165

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors thank the Oxford University Crystallography Service for use of the instruments.

supplementary crystallographic information

Comment

D-Glucuronolactone 3 (Fig. 1), the only cheaply availably uronic acid, reacts with acetone in the presence of an acid catalyst to form the acetonide 4 (Sheldrick et al., 1983). With only a single unprotected hydroxyl group, the lactone 4 provides convenient access to C-5 of D-glucose and has long been used as a versatile intermediate for the synthesis of other sugars (Bleriot et al., 1997; Dax et al., 1991; Ke et al., 2003; Masaguer et al., 1997), imino sugars (Dax et al., 1990), sugar amino acids (Bashyal et al., 1986, 1987) and many other bioactive targets (Kitahara et al., 1974; Austin et al., 1987; Witty et al., 1990; Shing & Tsui, 1992; Yoda et al., 2002). Reaction of 3 with benzaldehyde in the presence of zinc chloride gives a high yield of the benzylidene protected lactones in which the epimers are formed in a ratio of approximately 5:1 (Macher et al., 1979; Shah, 1969). The configuration of the benzylidene acetal has previously been investigated by NMR experiments which suggest that 1, which is the major product, has the 1,2(S)-configuration (Csuk et al., 1984). The crystallographic analysis confirms that this assignment is correct and that the major product is 1. Although as yet there have been no examples of the use of the benzylidene acetals 1 and 2 as synthetic intermediates, it is likely there will be cases where the use of a benzylidene group, which can be removed by hydrogenation, will have a significant advantage over the acetonide 4, where strong acid must be used to remove the protecting group.

The title compound (Fig. 2) exists as alternating layers of hydrogen bonded chains of molecules lying parallel to the a-axis (Fig. 3, Fig. 4). Only classical hydrogen bonding has been considered. The absolute configuration was determined by the use of D-glucuronolactone as the starting material.

Experimental

The title compound was recrystallized by vapour diffusion from a mixture of ethyl acetate and cyclohexane: m.p. 419.5–421.5 K; [α]D20 +67 (c, 1.0 in acetone) (Macher et al., 1979).

Refinement

In the absence of significant anomalous scattering, Friedel pairs were merged and the absolute configuration was assigned from the starting material.

The H atoms were all located in a difference map, but those attached to C atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H in the range 0.93–0.98, O—H = 0.82 Å) and Uiso(H) (in the range 1.2–1.5 times Ueq of the parent atom), after which the positions were refined with riding constraints.

Figures

Fig. 1.

Fig. 1.

Synthetic scheme

Fig. 2.

Fig. 2.

The title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitary radius.

Fig. 3.

Fig. 3.

Packing diagram of the title compound projected along the b-axis. Hydrogen bonding is indicated by dotted lines.

Fig. 4.

Fig. 4.

Packing diagram showing alternating layers of hydrogen bonded chains of molecules.

Crystal data

C13H12O6 F(000) = 276
Mr = 264.23 Dx = 1.504 Mg m3
Monoclinic, P21 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2yb Cell parameters from 1368 reflections
a = 5.6329 (1) Å θ = 5–27°
b = 7.8943 (2) Å µ = 0.12 mm1
c = 13.3182 (3) Å T = 150 K
β = 99.9545 (9)° Plate, colourless
V = 583.32 (2) Å3 0.60 × 0.50 × 0.30 mm
Z = 2

Data collection

Nonius KappaCCD area-detector diffractometer 1341 reflections with I > 2σ(I)
graphite Rint = 0.022
ω scans θmax = 27.5°, θmin = 5.2°
Absorption correction: multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997) h = −7→7
Tmin = 0.88, Tmax = 0.96 k = −10→10
8275 measured reflections l = −17→17
1418 independent reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.027 H-atom parameters constrained
wR(F2) = 0.068 Method = modified Sheldrick w = 1/[σ2(F2) + (0.04P)2 + 0.13P], where P = [max(Fo2,0) + 2Fc2]/3
S = 0.96 (Δ/σ)max = 0.009
1418 reflections Δρmax = 0.20 e Å3
172 parameters Δρmin = −0.18 e Å3
1 restraint

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 1.1555 (2) 0.28908 (18) 1.09521 (9) 0.0317
C2 1.0013 (3) 0.2487 (3) 1.02461 (12) 0.0257
O3 1.04981 (19) 0.2312 (2) 0.92986 (9) 0.0296
C4 0.8321 (3) 0.1868 (2) 0.85789 (12) 0.0263
C5 0.6246 (3) 0.2272 (2) 0.91452 (12) 0.0246
C6 0.7382 (3) 0.2089 (2) 1.02587 (12) 0.0259
O7 0.6540 (2) 0.3147 (2) 1.09703 (9) 0.0334
O8 0.5720 (2) 0.40215 (18) 0.89088 (9) 0.0285
C9 0.6089 (3) 0.4347 (2) 0.79011 (12) 0.0265
C10 0.8011 (3) 0.3081 (2) 0.76761 (12) 0.0267
O11 0.6942 (2) 0.2266 (2) 0.67619 (9) 0.0323
C12 0.4413 (3) 0.2413 (2) 0.66815 (12) 0.0269
O13 0.4052 (2) 0.40025 (19) 0.71549 (9) 0.0307
C14 0.3210 (3) 0.2382 (2) 0.55862 (12) 0.0266
C15 0.1004 (3) 0.1573 (3) 0.53152 (14) 0.0320
C16 −0.0149 (3) 0.1563 (3) 0.43042 (15) 0.0379
C17 0.0921 (3) 0.2338 (3) 0.35636 (14) 0.0374
C18 0.3143 (3) 0.3125 (3) 0.38315 (14) 0.0368
C19 0.4288 (3) 0.3166 (3) 0.48437 (14) 0.0321
H41 0.8338 0.0667 0.8363 0.0325*
H51 0.4805 0.1554 0.8912 0.0314*
H61 0.7293 0.0846 1.0439 0.0312*
H91 0.6542 0.5570 0.7843 0.0323*
H101 0.9551 0.3623 0.7612 0.0324*
H121 0.3793 0.1500 0.7071 0.0326*
H151 0.0235 0.1040 0.5830 0.0404*
H161 −0.1724 0.1016 0.4108 0.0448*
H171 0.0114 0.2344 0.2852 0.0453*
H181 0.3876 0.3631 0.3302 0.0450*
H191 0.5853 0.3725 0.5058 0.0382*
H71 0.5030 0.2905 1.0901 0.0522*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0237 (6) 0.0355 (8) 0.0344 (6) 0.0018 (5) 0.0009 (5) −0.0001 (5)
C2 0.0234 (7) 0.0216 (7) 0.0319 (8) 0.0030 (7) 0.0044 (6) 0.0031 (7)
O3 0.0193 (5) 0.0384 (7) 0.0316 (6) 0.0026 (5) 0.0051 (4) 0.0001 (6)
C4 0.0213 (7) 0.0265 (8) 0.0306 (8) 0.0011 (6) 0.0036 (6) −0.0021 (7)
C5 0.0209 (7) 0.0227 (8) 0.0306 (8) −0.0016 (7) 0.0058 (6) −0.0001 (7)
C6 0.0233 (7) 0.0256 (9) 0.0295 (8) −0.0013 (7) 0.0059 (6) 0.0014 (7)
O7 0.0262 (6) 0.0428 (8) 0.0325 (6) −0.0009 (6) 0.0088 (5) −0.0056 (6)
O8 0.0309 (6) 0.0268 (6) 0.0286 (6) 0.0060 (6) 0.0077 (5) 0.0009 (5)
C9 0.0291 (8) 0.0228 (8) 0.0276 (8) 0.0000 (7) 0.0050 (6) −0.0006 (6)
C10 0.0226 (7) 0.0295 (9) 0.0286 (8) −0.0018 (7) 0.0064 (6) −0.0018 (7)
O11 0.0252 (5) 0.0416 (7) 0.0302 (6) 0.0068 (6) 0.0047 (4) −0.0076 (6)
C12 0.0251 (7) 0.0240 (8) 0.0319 (8) 0.0009 (7) 0.0061 (6) −0.0012 (7)
O13 0.0285 (6) 0.0316 (7) 0.0305 (6) 0.0082 (6) 0.0010 (5) −0.0051 (5)
C14 0.0267 (7) 0.0231 (8) 0.0302 (8) 0.0019 (7) 0.0056 (6) −0.0024 (7)
C15 0.0291 (8) 0.0301 (9) 0.0380 (9) −0.0033 (8) 0.0095 (7) −0.0071 (8)
C16 0.0298 (9) 0.0393 (11) 0.0432 (11) −0.0038 (8) 0.0021 (8) −0.0154 (9)
C17 0.0419 (10) 0.0367 (10) 0.0319 (8) 0.0061 (9) 0.0014 (7) −0.0079 (9)
C18 0.0423 (10) 0.0343 (10) 0.0344 (9) 0.0016 (9) 0.0083 (8) 0.0017 (8)
C19 0.0314 (8) 0.0291 (9) 0.0363 (9) −0.0040 (8) 0.0068 (7) 0.0011 (8)

Geometric parameters (Å, °)

O1—C2 1.207 (2) C10—O11 1.416 (2)
C2—O3 1.344 (2) C10—H101 0.984
C2—C6 1.518 (2) O11—C12 1.4148 (19)
O3—C4 1.4628 (19) C12—O13 1.435 (2)
C4—C5 1.530 (2) C12—C14 1.499 (2)
C4—C10 1.524 (2) C12—H121 0.987
C4—H41 0.991 C14—C15 1.388 (2)
C5—C6 1.517 (2) C14—C19 1.392 (3)
C5—O8 1.436 (2) C15—C16 1.390 (3)
C5—H51 0.995 C15—H151 0.969
C6—O7 1.406 (2) C16—C17 1.384 (3)
C6—H61 1.014 C16—H161 0.981
O7—H71 0.861 C17—C18 1.388 (3)
O8—C9 1.417 (2) C17—H171 0.977
C9—C10 1.540 (2) C18—C19 1.390 (3)
C9—O13 1.4088 (19) C18—H181 0.963
C9—H91 1.005 C19—H191 0.983
O1—C2—O3 121.52 (15) C9—C10—O11 104.69 (13)
O1—C2—C6 128.19 (15) C4—C10—O11 111.49 (15)
O3—C2—C6 110.28 (13) C9—C10—H101 113.3
C2—O3—C4 110.88 (12) C4—C10—H101 111.0
O3—C4—C5 104.62 (13) O11—C10—H101 111.9
O3—C4—C10 109.58 (14) C10—O11—C12 107.49 (12)
C5—C4—C10 105.37 (13) O11—C12—O13 104.83 (13)
O3—C4—H41 111.7 O11—C12—C14 110.64 (13)
C5—C4—H41 112.9 O13—C12—C14 111.54 (15)
C10—C4—H41 112.2 O11—C12—H121 110.1
C4—C5—C6 103.48 (12) O13—C12—H121 108.5
C4—C5—O8 103.80 (13) C14—C12—H121 111.0
C6—C5—O8 109.98 (14) C12—O13—C9 108.59 (12)
C4—C5—H51 112.3 C12—C14—C15 119.63 (16)
C6—C5—H51 115.8 C12—C14—C19 120.33 (15)
O8—C5—H51 110.7 C15—C14—C19 120.04 (16)
C2—C6—C5 102.55 (12) C14—C15—C16 120.10 (18)
C2—C6—O7 109.20 (14) C14—C15—H151 120.4
C5—C6—O7 117.93 (14) C16—C15—H151 119.5
C2—C6—H61 106.9 C15—C16—C17 119.99 (17)
C5—C6—H61 107.1 C15—C16—H161 120.7
O7—C6—H61 112.2 C17—C16—H161 119.3
C6—O7—H71 103.8 C16—C17—C18 119.95 (17)
C5—O8—C9 108.88 (13) C16—C17—H171 120.4
O8—C9—C10 106.84 (14) C18—C17—H171 119.6
O8—C9—O13 113.45 (14) C17—C18—C19 120.40 (18)
C10—C9—O13 104.58 (13) C17—C18—H181 118.6
O8—C9—H91 109.2 C19—C18—H181 121.0
C10—C9—H91 114.3 C14—C19—C18 119.51 (17)
O13—C9—H91 108.5 C14—C19—H191 118.2
C9—C10—C4 104.06 (13) C18—C19—H191 122.3

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C4—H41···O1i 0.99 2.37 3.200 (3) 141
C6—H61···O8ii 1.01 2.49 3.289 (3) 135
C9—H91···O1iii 1.01 2.55 3.349 (3) 137
C15—H151···O11iv 0.97 2.59 3.281 (3) 128
C16—H161···O13v 0.98 2.51 3.350 (3) 143
O7—H71···O1iv 0.86 1.97 2.811 (3) 165

Symmetry codes: (i) −x+2, y−1/2, −z+2; (ii) −x+1, y−1/2, −z+2; (iii) −x+2, y+1/2, −z+2; (iv) x−1, y, z; (v) −x, y−1/2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2760).

References

  1. Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst.27, 435.
  2. Austin, G. N., Fleet, G. W. J., Peach, J. M., Prout, K. & Son, J. C. (1987). Tetrahedron Lett.28, 4741–4744.
  3. Bashyal, B. P., Chow, H. F., Fellows, L. E. & Fleet, G. W. J. (1987). Tetrahedron, 43, 415–422.
  4. Bashyal, B. P., Chow, H. F. & Fleet, G. W. J. (1986). Tetrahedron Lett.27, 3205–3208.
  5. Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst.36, 1487.
  6. Bleriot, Y., Masaguer, C. F., Charlwood, J., Winchester, B. G., Lane, A. L., Crook, S., Watkin, D. J. & Fleet, G. W. J. (1997). Tetrahedron, 53, 15135–15146.
  7. Csuk, R., Mueller, N. & Weidmann, H. (1984). Monatsh. Chem.115, 93–99.
  8. Dax, K., Fechter, M., Gradnig, G., Grassberger, V., Illaszewicz, C., Ungerank, M. V. & Stuetz, A. E. D (1991). Carbohydr. Res.217, 59–70.
  9. Dax, K., Gaigg, B., Grassberger, B., Koelblinger, B. & Stuetz, A. E. (1990). J. Carbohydr. Chem.9, 479–99.
  10. Ke, W., Whitfield, D. M., Gill, M., Larocque, S. & Yu, S.-H. (2003). Tetrahedron Lett.44, 7767–7770.
  11. Kitahara, T., Ogawa, T., Naganuma, T. & Matsui, M. (1974). Agric. Biol. Chem.38, 2189–90.
  12. Macher, I., Dax, K., Inselsbacher, H. & Weidmann, H. (1979). Carbohydr. Res.77, 225–230.
  13. Masaguer, C. F., Bleriot, Y., Charlwood, J., Winchester, B. G. & Fleet, G. W. J. (1997). Tetrahedron, 53, 15147–15156.
  14. Nonius (2001). COLLECT Nonius BV, Delft, The Netherlands.
  15. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  16. Shah, R. H. (1970). Carbohydr. Res.12, 43–56.
  17. Sheldrick, B., Mackie, W. & Akrigg, D. (1983). Acta Cryst. C39, 1257–1259.
  18. Shing, T. K. M. & Tsui, H. C. (1992). J. Chem. Soc. Chem. Commun. pp. 432–434.
  19. Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON Chemical Crystallography Laboratory, Oxford, England.
  20. Witty, D. R., Fleet, G. W. J., Vogt, K., Wilson, F. X., Wang, Y., Storer, R., Myers, P. L. & Wallis, C. J. (1990). Tetrahedron Lett.33, 4787–4790.
  21. Yoda, H., Nakaseko, Y. & Takabe, K. (2002). Synlett, pp. 1532–1534.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809002876/lh2760sup1.cif

e-65-0o414-sup1.cif (15.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809002876/lh2760Isup2.hkl

e-65-0o414-Isup2.hkl (71.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES