Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Jan 8;65(Pt 2):o263. doi: 10.1107/S1600536808044279

7-Azido-N,N-diethyl-4,5-O-isopropyl­idene-4-C-methyl-3,6-anhydro-7-de­oxy-d-glycero-d-manno-heptonamide

Sarah F Jenkinson a,*, Chen Wang a, Maria-Soledad Pino-González b, George W J Fleet a, David J Watkin c
PMCID: PMC2968166  PMID: 21581878

Abstract

The reaction of 5-azido-5-de­oxy-2,3-O-isopropyl­idene-2-C-methyl-d-ribose with N,N-diethyl-2-(dimethyl­sulfuranyl­idene)acetamide gave the title compound, C15H26N4O5, as the major product arising from initial formation of an epoxide which was subsequently opened by intra­molecular attack of the free 4-hydroxyl group. X-ray crystallography confirmed the relative stereochemistry of the title compound and the absolute configuration was determined by the use of d-ribose as the starting material. The crystal structure contains chains of mol­ecules running parallel to the a axis, being linked by weak bifurcated O—H⋯(N,N) hydrogen bonds.

Related literature

For related literature see: Assiego et al. (2004); Pino-González et al. (2003, 2008); Valpuesta Fernández et al. (1990); Valpuesta et al. (1993); Görbitz (1999).graphic file with name e-65-0o263-scheme1.jpg

Experimental

Crystal data

  • C15H26N4O5

  • M r = 342.40

  • Orthorhombic, Inline graphic

  • a = 8.64400 (10) Å

  • b = 13.4195 (2) Å

  • c = 15.9146 (3) Å

  • V = 1846.06 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 150 K

  • 0.60 × 0.60 × 0.40 mm

Data collection

  • Area diffractometer

  • Absorption correction: multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997) T min = 0.82, T max = 0.96

  • 23123 measured reflections

  • 2354 independent reflections

  • 2077 reflections with I > 2σ(I)

  • R int = 0.077

Refinement

  • R[F 2 > 2σ(F 2)] = 0.049

  • wR(F 2) = 0.129

  • S = 1.02

  • 1992 reflections

  • 217 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.20 e Å−3

Data collection: COLLECT (Nonius, 2001); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808044279/lh2750sup1.cif

e-65-0o263-sup1.cif (18.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808044279/lh2750Isup2.hkl

e-65-0o263-Isup2.hkl (117.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O17—H171⋯N10i 0.88 2.30 3.112 (4) 152
O17—H171⋯N11i 0.88 2.45 3.313 (4) 167

Symmetry code: (i) Inline graphic.

Acknowledgments

MSPG is grateful to Junta de Andalucia for a grant. The authors thank the Oxford University Crystallography Service for use of the instruments.

supplementary crystallographic information

Comment

The use of sulfur ylids in the stereoselective formation of epoxides and their subsequent regioselective opening has been utilized in the formation of iminosugars such as the seven-membered ring azepanes (Assiego et al., 2004), pipecolic acid derivatives (Pino-González et al.,2008) and piperidines (Pino-González et al., 2003). In order to extend this methodology the reaction of azido ribose derivative 1 with N,N-diethyl-2-(dimethylsulfuranylidene)acetamide was investigated.

Reaction of azido ribose derivative 1 with the sulfur ylid gave the title compound, furan 3, as the major product (Fig. 1). The product was confirmed, by both X-ray crystallography and the use of D-ribose as the starting material, to have the D-glycero-D-manno stereochemistry (Fig. 2) arising from initial attack of the ylid on the Si face of the aldehyde, as predicted from a Felkin-Ahn model (Valpuesta Fernández et al., 1990; Valpuesta et al., 1993), resulting in formation of epoxide 2, followed by intramolecular opening of the epoxide to give the title compound 3.

The compound was seen to adopt weakly (O—H···N) hydrogen bonded chains of molecules running parallel to the a-axis. The hydrogen bond is bifurcated (Fig. 3). Only classical hydrogen bonding has been considered.

Experimental

The title compound was recrystallized by vapour diffusion from a mixture of ethyl acetate and cyclohexane: m.p. 371–373 K; [α]D23 +16.4 (c, 1.0 in CHCl3).

Refinement

In the absence of significant anomalous scattering, Friedel pairs were merged and the absolute configuration was assigned from the starting material.

The relatively large ratio of minimum to maximum corrections applied in the multiscan process (1:1.16) reflects changes in the illuminated volume of the crystal. Changes in illuminated volume were kept to a minimum, and were taken into account (Görbitz, 1999) by the multi-scan inter-frame scaling (DENZO/SCALEPACK, Otwinowski & Minor, 1997).

The refinement was performed excluding the data for which I was less than 3σ(I).

The H atoms were all located in a difference map, but those attached to carbon atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H in the range 0.93–0.98, O—H = 0.82 Å) and Uiso(H) (in the range 1.2–1.5 times Ueq of the parent atom), after which the positions were refined with riding constraints.

Figures

Fig. 1.

Fig. 1.

Synthetic Scheme

Fig. 2.

Fig. 2.

The title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitrary radius.

Fig. 3.

Fig. 3.

Packing diagram for the title compound projected along the b-axis. Hydrogen bonds are indicated by dotted lines.

Crystal data

C15H26N4O5 F(000) = 736
Mr = 342.40 Dx = 1.232 Mg m3
Orthorhombic, P212121 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2ab Cell parameters from 2356 reflections
a = 8.6440 (1) Å θ = 5–27°
b = 13.4195 (2) Å µ = 0.09 mm1
c = 15.9146 (3) Å T = 150 K
V = 1846.06 (5) Å3 Plate, colourless
Z = 4 0.60 × 0.60 × 0.40 mm

Data collection

Area diffractometer 2077 reflections with I > 2σ(I)
graphite Rint = 0.077
ω scans θmax = 27.5°, θmin = 5.1°
Absorption correction: multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997) h = −11→11
Tmin = 0.82, Tmax = 0.96 k = −17→17
23123 measured reflections l = −20→20
2354 independent reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049 H-atom parameters constrained
wR(F2) = 0.129 Method = Modified Sheldrick w = 1/[σ2(F2) + (0.1P)2 + 0.29P], where P = [max(Fo2,0) + 2Fc2]/3
S = 1.02 (Δ/σ)max = 0.0003
1992 reflections Δρmax = 0.24 e Å3
217 parameters Δρmin = −0.20 e Å3
0 restraints

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.35653 (19) 0.34433 (12) 0.66423 (11) 0.0350
C2 0.3014 (3) 0.24404 (17) 0.66153 (15) 0.0332
C3 0.4224 (3) 0.18015 (18) 0.70965 (16) 0.0371
O4 0.3791 (2) 0.17151 (16) 0.79595 (11) 0.0446
C5 0.4967 (3) 0.2129 (2) 0.84827 (18) 0.0489
O6 0.5741 (3) 0.28402 (17) 0.79711 (13) 0.0567
C7 0.5654 (3) 0.2496 (2) 0.71213 (16) 0.0414
C8 0.5218 (3) 0.33863 (19) 0.65738 (15) 0.0359
C9 0.5726 (3) 0.32292 (19) 0.56645 (15) 0.0369
N10 0.5219 (3) 0.40493 (18) 0.51111 (14) 0.0432
N11 0.3807 (3) 0.40751 (17) 0.49594 (14) 0.0432
N12 0.2579 (3) 0.4190 (2) 0.47516 (19) 0.0629
C13 0.4212 (5) 0.2678 (3) 0.9201 (2) 0.0714
C14 0.6054 (4) 0.1311 (3) 0.8787 (2) 0.0650
C15 0.4486 (3) 0.0783 (2) 0.6708 (2) 0.0472
C16 0.1375 (3) 0.23817 (17) 0.69753 (16) 0.0343
O17 0.0763 (2) 0.14313 (12) 0.67786 (11) 0.0401
C18 0.0305 (3) 0.31779 (18) 0.65939 (15) 0.0334
O19 −0.0340 (2) 0.29828 (14) 0.59206 (12) 0.0424
N20 0.0093 (2) 0.40342 (15) 0.70067 (14) 0.0364
C21 −0.0987 (3) 0.47788 (19) 0.66655 (18) 0.0407
C22 −0.0208 (4) 0.5595 (3) 0.6178 (2) 0.0626
C23 0.0809 (3) 0.4266 (2) 0.78247 (16) 0.0430
C24 −0.0166 (4) 0.3904 (3) 0.85556 (18) 0.0562
H21 0.2943 0.2241 0.6020 0.0397*
H71 0.6551 0.2162 0.6930 0.0485*
H81 0.5759 0.3970 0.6784 0.0443*
H91 0.5284 0.2612 0.5394 0.0490*
H92 0.6863 0.3164 0.5677 0.0495*
H131 0.4998 0.2997 0.9504 0.1074*
H132 0.3617 0.2267 0.9575 0.1071*
H133 0.3543 0.3189 0.9005 0.1069*
H141 0.7116 0.1505 0.8701 0.1022*
H142 0.5918 0.1211 0.9387 0.1023*
H143 0.5851 0.0695 0.8476 0.1021*
H151 0.5319 0.0397 0.6952 0.0807*
H152 0.3501 0.0445 0.6815 0.0799*
H153 0.4686 0.0848 0.6104 0.0790*
H161 0.1438 0.2430 0.7599 0.0419*
H211 −0.1602 0.4457 0.6266 0.0494*
H212 −0.1637 0.5025 0.7098 0.0491*
H222 −0.1025 0.5966 0.5865 0.1080*
H221 0.0567 0.5295 0.5787 0.1079*
H223 0.0279 0.6004 0.6627 0.1076*
H232 0.1785 0.3960 0.7850 0.0507*
H231 0.0915 0.4974 0.7838 0.0496*
H243 0.0323 0.4135 0.9063 0.0898*
H242 −0.0188 0.3185 0.8585 0.0891*
H241 −0.1201 0.4187 0.8522 0.0890*
H171 0.0318 0.1201 0.6319 0.0671*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0338 (8) 0.0344 (8) 0.0368 (8) −0.0019 (7) 0.0028 (7) −0.0011 (7)
C2 0.0358 (12) 0.0336 (11) 0.0303 (10) −0.0013 (9) −0.0010 (9) −0.0023 (9)
C3 0.0367 (12) 0.0413 (12) 0.0333 (11) 0.0024 (10) 0.0011 (10) 0.0029 (10)
O4 0.0404 (9) 0.0598 (11) 0.0336 (9) 0.0000 (9) −0.0027 (8) 0.0075 (8)
C5 0.0477 (15) 0.0614 (17) 0.0376 (12) 0.0017 (13) −0.0068 (12) 0.0052 (12)
O6 0.0642 (13) 0.0683 (13) 0.0375 (9) −0.0153 (11) −0.0124 (10) 0.0036 (9)
C7 0.0361 (12) 0.0505 (14) 0.0375 (12) −0.0017 (12) −0.0042 (10) −0.0010 (11)
C8 0.0316 (11) 0.0403 (12) 0.0358 (11) −0.0059 (10) 0.0019 (10) −0.0031 (11)
C9 0.0333 (11) 0.0418 (12) 0.0357 (11) −0.0024 (10) 0.0015 (10) 0.0000 (10)
N10 0.0422 (12) 0.0454 (12) 0.0421 (11) −0.0054 (10) 0.0024 (10) 0.0055 (9)
N11 0.0482 (14) 0.0450 (12) 0.0365 (10) 0.0012 (10) 0.0022 (10) 0.0005 (9)
N12 0.0513 (16) 0.080 (2) 0.0577 (15) 0.0105 (15) −0.0074 (13) 0.0077 (15)
C13 0.079 (2) 0.092 (3) 0.0433 (15) 0.010 (2) −0.0073 (17) −0.0083 (16)
C14 0.0592 (19) 0.077 (2) 0.0588 (18) 0.0085 (17) −0.0179 (17) 0.0139 (17)
C15 0.0442 (14) 0.0386 (12) 0.0586 (16) 0.0043 (12) 0.0040 (13) 0.0010 (12)
C16 0.0347 (12) 0.0340 (11) 0.0342 (10) −0.0023 (10) −0.0002 (10) −0.0002 (10)
O17 0.0411 (9) 0.0356 (8) 0.0437 (9) −0.0075 (8) −0.0057 (8) 0.0017 (7)
C18 0.0286 (10) 0.0371 (11) 0.0345 (11) −0.0013 (9) 0.0011 (9) 0.0013 (9)
O19 0.0397 (10) 0.0462 (9) 0.0413 (9) 0.0055 (8) −0.0070 (8) −0.0070 (8)
N20 0.0348 (10) 0.0377 (10) 0.0366 (9) 0.0027 (8) −0.0017 (8) −0.0055 (8)
C21 0.0356 (12) 0.0413 (12) 0.0451 (13) 0.0055 (10) −0.0023 (11) −0.0043 (11)
C22 0.063 (2) 0.0606 (19) 0.0639 (19) 0.0157 (16) 0.0146 (17) 0.0167 (16)
C23 0.0496 (15) 0.0401 (12) 0.0393 (13) 0.0020 (12) −0.0046 (12) −0.0080 (11)
C24 0.070 (2) 0.0591 (17) 0.0393 (13) 0.0089 (16) 0.0069 (14) −0.0047 (13)

Geometric parameters (Å, °)

O1—C2 1.429 (3) C14—H142 0.972
O1—C8 1.435 (3) C14—H143 0.979
C2—C3 1.554 (3) C15—H151 0.968
C2—C16 1.530 (3) C15—H152 0.979
C2—H21 0.986 C15—H153 0.982
C3—O4 1.428 (3) C16—O17 1.415 (3)
C3—C7 1.548 (4) C16—C18 1.538 (3)
C3—C15 1.517 (4) C16—H161 0.997
O4—C5 1.427 (4) O17—H171 0.882
C5—O6 1.422 (4) C18—O19 1.236 (3)
C5—C13 1.509 (5) C18—N20 1.336 (3)
C5—C14 1.524 (4) N20—C21 1.471 (3)
O6—C7 1.431 (3) N20—C23 1.475 (3)
C7—C8 1.526 (4) C21—C22 1.501 (4)
C7—H71 0.946 C21—H211 0.934
C8—C9 1.527 (3) C21—H212 0.947
C8—H81 0.972 C22—H222 0.998
C9—N10 1.476 (3) C22—H221 0.999
C9—H91 1.009 C22—H223 0.994
C9—H92 0.987 C23—C24 1.516 (4)
N10—N11 1.245 (4) C23—H232 0.940
N11—N12 1.122 (4) C23—H231 0.955
C13—H131 0.936 C24—H243 0.962
C13—H132 0.960 C24—H242 0.967
C13—H133 0.950 C24—H241 0.973
C14—H141 0.964
C2—O1—C8 106.25 (18) C5—C14—H142 109.8
O1—C2—C3 106.27 (19) H141—C14—H142 107.0
O1—C2—C16 110.26 (19) C5—C14—H143 109.7
C3—C2—C16 114.23 (19) H141—C14—H143 109.0
O1—C2—H21 107.7 H142—C14—H143 111.0
C3—C2—H21 111.4 C3—C15—H151 115.5
C16—C2—H21 106.8 C3—C15—H152 102.5
C2—C3—O4 110.0 (2) H151—C15—H152 109.3
C2—C3—C7 102.59 (19) C3—C15—H153 110.2
O4—C3—C7 103.5 (2) H151—C15—H153 108.0
C2—C3—C15 113.4 (2) H152—C15—H153 111.4
O4—C3—C15 110.9 (2) C2—C16—O17 108.00 (19)
C7—C3—C15 115.7 (2) C2—C16—C18 111.91 (19)
C3—O4—C5 110.1 (2) O17—C16—C18 108.32 (19)
O4—C5—O6 105.2 (2) C2—C16—H161 108.6
O4—C5—C13 108.9 (3) O17—C16—H161 107.5
O6—C5—C13 108.1 (3) C18—C16—H161 112.4
O4—C5—C14 110.1 (3) C16—O17—H171 131.5
O6—C5—C14 112.1 (3) C16—C18—O19 117.8 (2)
C13—C5—C14 112.2 (3) C16—C18—N20 119.1 (2)
C5—O6—C7 107.4 (2) O19—C18—N20 123.1 (2)
C3—C7—O6 105.1 (2) C18—N20—C21 119.3 (2)
C3—C7—C8 105.0 (2) C18—N20—C23 123.9 (2)
O6—C7—C8 107.4 (2) C21—N20—C23 116.7 (2)
C3—C7—H71 111.2 N20—C21—C22 113.7 (2)
O6—C7—H71 114.5 N20—C21—H211 107.4
C8—C7—H71 112.9 C22—C21—H211 104.0
C7—C8—O1 104.13 (19) N20—C21—H212 110.2
C7—C8—C9 111.2 (2) C22—C21—H212 112.8
O1—C8—C9 111.5 (2) H211—C21—H212 108.5
C7—C8—H81 108.4 C21—C22—H222 107.7
O1—C8—H81 114.2 C21—C22—H221 109.2
C9—C8—H81 107.4 H222—C22—H221 111.3
C8—C9—N10 112.2 (2) C21—C22—H223 102.8
C8—C9—H91 114.2 H222—C22—H223 112.6
N10—C9—H91 104.2 H221—C22—H223 112.7
C8—C9—H92 106.3 N20—C23—C24 112.1 (2)
N10—C9—H92 112.0 N20—C23—H232 108.8
H91—C9—H92 108.2 C24—C23—H232 109.1
C9—N10—N11 115.3 (2) N20—C23—H231 105.7
N10—N11—N12 171.3 (3) C24—C23—H231 110.8
C5—C13—H131 107.4 H232—C23—H231 110.3
C5—C13—H132 114.9 C23—C24—H243 107.2
H131—C13—H132 109.5 C23—C24—H242 111.6
C5—C13—H133 111.5 H243—C24—H242 106.8
H131—C13—H133 106.3 C23—C24—H241 110.1
H132—C13—H133 107.0 H243—C24—H241 109.0
C5—C14—H141 110.3 H242—C24—H241 112.0

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C9—H91···O19i 1.01 2.30 3.140 (4) 140
C9—H92···O19ii 0.99 2.46 3.441 (4) 172
C23—H232···O1 0.94 2.56 3.231 (4) 129
C23—H231···O17iii 0.95 2.51 3.269 (4) 136
O17—H171···N10iv 0.88 2.30 3.112 (4) 152
O17—H171···N11iv 0.88 2.45 3.313 (4) 167

Symmetry codes: (i) x+1/2, −y+1/2, −z+1; (ii) x+1, y, z; (iii) −x, y+1/2, −z+3/2; (iv) x−1/2, −y+1/2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2750).

References

  1. Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst.27, 435.
  2. Assiego, C., Pino-González, M.-S. & López-Herrera, F. J. (2004). Tetrahedron Lett.45, 2611–2613.
  3. Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst.36, 1487.
  4. Görbitz, C. H. (1999). Acta Cryst. B55, 1090–1098. [DOI] [PubMed]
  5. Nonius (2001). COLLECT Nonius BV, Delft, The Netherlands.
  6. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  7. Pino-González, M.-S., Assiego, C. & López-Herrera, F. J. (2003). Tetrahedron Lett.44, 8353–8356.
  8. Pino-González, M.-S., Assiego, C. & Oña, N. (2008). Tetrahedron Asymmetry, 19, 932–937.
  9. Valpuesta, M., Durante, P. & López-Herrera, F. J. (1993). Tetrahedron, 42, 9547–9560.
  10. Valpuesta Fernández, M. V., Durante-Lanes, P. & López-Herrera, F. J. (1990). Tetrahedron, 46, 7911–7922.
  11. Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON Chemical Crystallography Laboratory, University of Oxford, England.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808044279/lh2750sup1.cif

e-65-0o263-sup1.cif (18.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808044279/lh2750Isup2.hkl

e-65-0o263-Isup2.hkl (117.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES