Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Jan 28;65(Pt 2):o389. doi: 10.1107/S1600536809002633

N-(4-Chloro­phen­yl)-2-methyl­benzamide

B Thimme Gowda a,*, Sabine Foro b, B P Sowmya a, Hiromitsu Terao c, Hartmut Fuess b
PMCID: PMC2968167  PMID: 21581984

Abstract

In the structure of the title compound, C14H12ClNO, the N—H and C=O bonds are trans to each other. Furthermore, the C=O bond is syn to the ortho-methyl group in the benzoyl ring, similar to what is observed in 2-methyl-N-(4-methyl­phen­yl)benzamide and 2-methyl-N-phenyl­benzamide. The amide linkage (–NHCO–) makes dihedral angles of 36.9 (7) and 46.4 (5)° with the aniline and benzoyl rings, respectively, while the dihedral angle between the benzoyl and aniline rings is 83.1 (1)°. In the crystal structure, mol­ecules form chains running along the b axis through N—H⋯O hydrogen bonds.

Related literature

For related structures, see: Gowda et al. (2003, 2008a ,b ); Gowda, Tokarčík et al. (2008).graphic file with name e-65-0o389-scheme1.jpg

Experimental

Crystal data

  • C14H12ClNO

  • M r = 245.70

  • Monoclinic, Inline graphic

  • a = 22.345 (2) Å

  • b = 5.1092 (4) Å

  • c = 22.222 (1) Å

  • β = 109.593 (6)°

  • V = 2390.1 (3) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 2.67 mm−1

  • T = 299 (2) K

  • 0.50 × 0.13 × 0.13 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: none

  • 2213 measured reflections

  • 2085 independent reflections

  • 1741 reflections with I > 2σ(I)

  • R int = 0.074

  • 3 standard reflections frequency: 120 min intensity decay: 1.0%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.046

  • wR(F 2) = 0.159

  • S = 1.08

  • 2085 reflections

  • 182 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.39 e Å−3

Data collection: CAD-4-PC (Enraf–Nonius, 1996); cell refinement: CAD-4-PC; data reduction: REDU4 (Stoe & Cie, 1987); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809002633/bt2857sup1.cif

e-65-0o389-sup1.cif (17.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809002633/bt2857Isup2.hkl

e-65-0o389-Isup2.hkl (102.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.84 (3) 2.14 (3) 2.937 (3) 159 (2)

Symmetry code: (i) Inline graphic.

Acknowledgments

BTG thanks the Alexander von Humboldt Foundation, Bonn, Germany, for extensions of his research fellowship.

supplementary crystallographic information

Comment

In the present work, as part of a study of the substituent effects on the solid state structures of benzanilides (Gowda et al., 2003; 2008a, b, c), the structure of 2-methyl-N-(4-chlorophenyl)- benzamide has been determined. In the structure of the title compound (Fig. 1), the N—H and C=O bonds are trans to each other. Further, the C=O bond is syn to the ortho-methyl substituent in the benzoyl ring. These observations are similar to those observed in 2-methyl-N-(phenyl)-benzamide (Gowda et al., 2008a), 2-methyl-N-(4-methylphenyl)- benzamide (Gowda, Tokarčík et al., 2008), 2-methyl-N- (2-chlorophenyl)-benzamide and 2-methyl-N-(3-chlorophenyl)- benzamide (Gowda et al., 2008b). The amide linkage, –NHCO– makes dihedral angles of 36.9 (7)° and 46.4 (5)° with the aniline and benzoyl rings, respectively, while the dihedral angle between the benzoyl and aniline rings is 83.1 (1)°, in comparison with the central amide group –NHCO– being tilted to the benzoyl ring at an angle of 60.0 (1)° and the two rings (benzoyl & aniline) making a dihedral angle of 81.4 (1)° in N4MP2MBA. The other bond parameters in the title compound are similar to those in the previously mentioned structures. The packing diagram shows N—H···O (Table 1) hydrogen bonds connnecting the molecules into chains running along the b-axis (Fig. 2).

Experimental

The title compound was prepared according to the literature method (Gowda et al., 2003). The purity of the compound was checked by determining its melting point. It was characterized by recording its infrared and NMR spectra. Single crystals of the title compound used in X-ray diffraction studies were obtained from a slow evaporation of its ethanolic solution at room temperature.

Refinement

The H atoms of the methyl group were positioned with idealized geometry using a riding model with C—H = 0.96 Å. The other H atoms were located in difference map, and their positional parameters were refined freely. The isotropic displacement parameters of all H atoms were set to 1.2 Ueq(C-aromatic, N) or 1.5 Ueq(C-methyl).

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound, showing the atom labeling scheme. The displacement ellipsoids are drawn at the 50% probability level. The H atoms are represented as small spheres of arbitrary radii.

Fig. 2.

Fig. 2.

Molecular packing of the title compound with hydrogen bonding shown as dashed lines..

Crystal data

C14H12ClNO F(000) = 1024
Mr = 245.70 Dx = 1.366 Mg m3
Monoclinic, C2/c Cu Kα radiation, λ = 1.54180 Å
Hall symbol: -C 2yc Cell parameters from 25 reflections
a = 22.345 (2) Å θ = 8.1–22.2°
b = 5.1092 (4) Å µ = 2.67 mm1
c = 22.222 (1) Å T = 299 K
β = 109.593 (6)° Rod, colourless
V = 2390.1 (3) Å3 0.50 × 0.13 × 0.13 mm
Z = 8

Data collection

Enraf–Nonius CAD-4 diffractometer Rint = 0.074
Radiation source: fine-focus sealed tube θmax = 66.9°, θmin = 4.2°
graphite h = −25→26
ω/2θ scans k = −6→0
2213 measured reflections l = −26→1
2085 independent reflections 3 standard reflections every 120 min
1741 reflections with I > 2σ(I) intensity decay: 1.0%

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.046 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.159 w = 1/[σ2(Fo2) + (0.1089P)2 + 0.7738P] where P = (Fo2 + 2Fc2)/3
S = 1.08 (Δ/σ)max = 0.002
2085 reflections Δρmax = 0.27 e Å3
182 parameters Δρmin = −0.39 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0012 (3)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.38579 (10) −0.0174 (4) 0.97284 (10) 0.0427 (5)
C2 0.43053 (12) −0.1978 (5) 0.96925 (11) 0.0531 (6)
H2 0.4467 (13) −0.343 (6) 1.0021 (12) 0.064*
C3 0.45905 (12) −0.1751 (6) 0.92298 (12) 0.0582 (6)
H3 0.4906 (14) −0.296 (6) 0.9225 (13) 0.070*
C4 0.44190 (11) 0.0270 (5) 0.88024 (10) 0.0501 (6)
C5 0.39547 (13) 0.2001 (5) 0.88127 (11) 0.0556 (6)
H5 0.3833 (13) 0.344 (7) 0.8502 (13) 0.067*
C6 0.36711 (12) 0.1774 (5) 0.92743 (10) 0.0541 (6)
H6 0.3328 (14) 0.277 (6) 0.9283 (12) 0.065*
C7 0.34840 (11) 0.1669 (4) 1.05601 (10) 0.0464 (5)
C8 0.32646 (10) 0.0953 (4) 1.11029 (10) 0.0422 (5)
C9 0.35181 (9) 0.2246 (4) 1.16938 (9) 0.0437 (5)
C10 0.32915 (11) 0.1468 (5) 1.21792 (11) 0.0529 (6)
H10 0.3491 (12) 0.242 (6) 1.2606 (13) 0.063*
C11 0.28353 (12) −0.0416 (5) 1.20908 (12) 0.0573 (6)
H11 0.2695 (14) −0.099 (6) 1.2430 (14) 0.069*
C12 0.25847 (11) −0.1652 (5) 1.15110 (12) 0.0567 (6)
H12 0.2257 (13) −0.308 (6) 1.1438 (12) 0.068*
C13 0.28029 (11) −0.0955 (5) 1.10188 (11) 0.0497 (5)
H13 0.2621 (12) −0.182 (6) 1.0597 (12) 0.060*
C14 0.40270 (12) 0.4269 (5) 1.18350 (12) 0.0570 (6)
H14A 0.4283 0.4180 1.2278 0.068*
H14B 0.3837 0.5973 1.1741 0.068*
H14C 0.4288 0.3958 1.1576 0.068*
N1 0.36006 (10) −0.0392 (4) 1.02268 (8) 0.0461 (5)
H1N 0.3609 (12) −0.189 (6) 1.0382 (12) 0.055*
O1 0.35554 (12) 0.3935 (3) 1.04201 (9) 0.0740 (6)
Cl1 0.48134 (3) 0.07146 (16) 0.82524 (3) 0.0760 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0526 (11) 0.0351 (10) 0.0411 (10) −0.0047 (9) 0.0164 (9) −0.0033 (8)
C2 0.0640 (13) 0.0443 (13) 0.0541 (12) 0.0073 (10) 0.0240 (10) 0.0077 (10)
C3 0.0597 (13) 0.0582 (15) 0.0617 (14) 0.0086 (11) 0.0270 (11) 0.0013 (12)
C4 0.0588 (12) 0.0507 (13) 0.0445 (11) −0.0110 (10) 0.0220 (10) −0.0055 (9)
C5 0.0773 (15) 0.0458 (14) 0.0448 (11) 0.0035 (11) 0.0220 (10) 0.0053 (10)
C6 0.0688 (14) 0.0485 (14) 0.0479 (12) 0.0123 (11) 0.0233 (10) 0.0040 (10)
C7 0.0638 (12) 0.0334 (11) 0.0459 (11) 0.0005 (9) 0.0234 (9) 0.0011 (8)
C8 0.0485 (10) 0.0354 (11) 0.0447 (10) 0.0052 (8) 0.0185 (8) 0.0017 (8)
C9 0.0458 (10) 0.0394 (11) 0.0479 (11) 0.0053 (8) 0.0184 (8) 0.0003 (8)
C10 0.0592 (13) 0.0557 (14) 0.0485 (11) 0.0053 (11) 0.0245 (10) −0.0031 (10)
C11 0.0628 (14) 0.0616 (15) 0.0590 (13) 0.0013 (11) 0.0358 (12) 0.0055 (11)
C12 0.0522 (12) 0.0537 (14) 0.0695 (15) −0.0074 (11) 0.0274 (11) 0.0023 (12)
C13 0.0513 (11) 0.0461 (13) 0.0505 (11) −0.0004 (10) 0.0155 (9) 0.0001 (10)
C14 0.0600 (13) 0.0505 (15) 0.0621 (13) −0.0057 (10) 0.0226 (11) −0.0080 (10)
N1 0.0669 (11) 0.0315 (9) 0.0455 (10) 0.0002 (8) 0.0262 (8) 0.0018 (7)
O1 0.1407 (18) 0.0319 (9) 0.0708 (11) −0.0004 (10) 0.0636 (12) 0.0022 (7)
Cl1 0.0838 (5) 0.0892 (6) 0.0706 (5) −0.0083 (4) 0.0465 (4) 0.0039 (4)

Geometric parameters (Å, °)

C1—C6 1.378 (3) C8—C13 1.386 (3)
C1—C2 1.382 (3) C8—C9 1.408 (3)
C1—N1 1.413 (3) C9—C10 1.394 (3)
C2—C3 1.384 (3) C9—C14 1.490 (3)
C2—H2 1.02 (3) C10—C11 1.368 (4)
C3—C4 1.368 (4) C10—H10 1.03 (3)
C3—H3 0.94 (3) C11—C12 1.374 (4)
C4—C5 1.369 (4) C11—H11 0.95 (3)
C4—Cl1 1.745 (2) C12—C13 1.385 (3)
C5—C6 1.380 (3) C12—H12 1.01 (3)
C5—H5 0.98 (3) C13—H13 0.99 (3)
C6—H6 0.93 (3) C14—H14A 0.9600
C7—O1 1.223 (3) C14—H14B 0.9600
C7—N1 1.362 (3) C14—H14C 0.9600
C7—C8 1.492 (3) N1—H1N 0.84 (3)
C6—C1—C2 119.1 (2) C10—C9—C8 116.8 (2)
C6—C1—N1 121.9 (2) C10—C9—C14 119.0 (2)
C2—C1—N1 119.03 (19) C8—C9—C14 124.18 (19)
C1—C2—C3 120.6 (2) C11—C10—C9 122.4 (2)
C1—C2—H2 122.3 (15) C11—C10—H10 122.6 (16)
C3—C2—H2 116.9 (15) C9—C10—H10 115.0 (16)
C4—C3—C2 119.2 (2) C10—C11—C12 120.5 (2)
C4—C3—H3 121.7 (17) C10—C11—H11 122.0 (18)
C2—C3—H3 119.1 (17) C12—C11—H11 117.4 (19)
C3—C4—C5 120.9 (2) C11—C12—C13 118.8 (2)
C3—C4—Cl1 119.67 (19) C11—C12—H12 122.0 (15)
C5—C4—Cl1 119.40 (19) C13—C12—H12 119.2 (15)
C4—C5—C6 119.8 (2) C12—C13—C8 121.2 (2)
C4—C5—H5 120.3 (17) C12—C13—H13 119.4 (16)
C6—C5—H5 119.8 (17) C8—C13—H13 119.4 (16)
C1—C6—C5 120.2 (2) C9—C14—H14A 109.5
C1—C6—H6 115.6 (17) C9—C14—H14B 109.5
C5—C6—H6 124.0 (17) H14A—C14—H14B 109.5
O1—C7—N1 121.9 (2) C9—C14—H14C 109.5
O1—C7—C8 122.95 (19) H14A—C14—H14C 109.5
N1—C7—C8 115.14 (19) H14B—C14—H14C 109.5
C13—C8—C9 120.3 (2) C7—N1—C1 124.59 (19)
C13—C8—C7 119.68 (19) C7—N1—H1N 117.7 (18)
C9—C8—C7 120.03 (19) C1—N1—H1N 115.8 (18)
C6—C1—C2—C3 3.7 (4) C7—C8—C9—C10 −179.84 (19)
N1—C1—C2—C3 −176.8 (2) C13—C8—C9—C14 178.3 (2)
C1—C2—C3—C4 −0.7 (4) C7—C8—C9—C14 −2.8 (3)
C2—C3—C4—C5 −2.4 (4) C8—C9—C10—C11 −1.4 (3)
C2—C3—C4—Cl1 175.54 (19) C14—C9—C10—C11 −178.6 (2)
C3—C4—C5—C6 2.5 (4) C9—C10—C11—C12 0.7 (4)
Cl1—C4—C5—C6 −175.48 (19) C10—C11—C12—C13 0.0 (4)
C2—C1—C6—C5 −3.7 (4) C11—C12—C13—C8 −0.1 (4)
N1—C1—C6—C5 176.9 (2) C9—C8—C13—C12 −0.6 (3)
C4—C5—C6—C1 0.6 (4) C7—C8—C13—C12 −179.5 (2)
O1—C7—C8—C13 135.1 (3) O1—C7—N1—C1 5.2 (4)
N1—C7—C8—C13 −44.8 (3) C8—C7—N1—C1 −174.86 (18)
O1—C7—C8—C9 −43.7 (3) C6—C1—N1—C7 −41.2 (3)
N1—C7—C8—C9 136.3 (2) C2—C1—N1—C7 139.3 (2)
C13—C8—C9—C10 1.3 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1N···O1i 0.84 (3) 2.14 (3) 2.937 (3) 159 (2)

Symmetry codes: (i) x, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2857).

References

  1. Enraf–Nonius (1996). CAD-4-PC Enraf–Nonius, Delft, The Netherlands.
  2. Gowda, B. T., Foro, S., Sowmya, B. P. & Fuess, H. (2008a). Acta Cryst. E64, o383. [DOI] [PMC free article] [PubMed]
  3. Gowda, B. T., Foro, S., Sowmya, B. P. & Fuess, H. (2008b). Acta Cryst. E64, o1421. [DOI] [PMC free article] [PubMed]
  4. Gowda, B. T., Jyothi, K., Paulus, H. & Fuess, H. (2003). Z. Naturforsch. Teil A, 58, 225–230.
  5. Gowda, B. T., Tokarčík, M., Kožíšek, J., Sowmya, B. P. & Fuess, H. (2008). Acta Cryst. E64, o1494. [DOI] [PMC free article] [PubMed]
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  8. Stoe & Cie (1987). REDU4 Stoe & Cie GmbH, Darmstadt, Germany.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809002633/bt2857sup1.cif

e-65-0o389-sup1.cif (17.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809002633/bt2857Isup2.hkl

e-65-0o389-Isup2.hkl (102.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES