Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Jan 23;65(Pt 2):o374. doi: 10.1107/S1600536809002062

1′,3′,3′-Trimethyl-2,3-diphenyl-2,3-di­hydro­isoxazole-5(4H)-spiro-2′-indoline

Naoual Laghrib a, Jean-Claude Daran b, Rachid Fihi a, Lhou Majidi a, Mohamed Azrour c,*
PMCID: PMC2968171  PMID: 21581972

Abstract

Two diastereoisomers of the title compound, C25H26N2O, have been prepared by cyclo­addition between 1,3,3-trimethyl-2-methyl­eneindoline and C-phenyl-N-phenyl­nitrone. The stereochemistry of the major diastereoisomer, viz. S,R/R,S, is confirmed by the X-ray analysis. The oxazole and the pyrole rings have envelope conformations. The packing is stabilized by weak C—H⋯π inter­actions involving the phenyl ring attached to the N atom of the oxazole and the phenyl ring of the indole fragment.

Related literature

For general background, see: Alonso-Perarnau et al. (1997); Cacciarini et al. (2000); Pariera et al. (1993). For related studies, see: Daran et al. (2006); Fihi et al. (1995, 2004); Roussel et al. (2000, 2003). For the synthetic procedure, see: Brüning et al. (1973). For puckering parameters, see: Cremer & Pople (1975). graphic file with name e-65-0o374-scheme1.jpg

Experimental

Crystal data

  • C25H26N2O

  • M r = 370.48

  • Orthorhombic, Inline graphic

  • a = 18.0393 (18) Å

  • b = 8.9854 (7) Å

  • c = 12.3947 (9) Å

  • V = 2009.1 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 180 (2) K

  • 0.48 × 0.36 × 0.28 mm

Data collection

  • Stoe IPDS diffractometer

  • Absorption correction: none

  • 19030 measured reflections

  • 2021 independent reflections

  • 1581 reflections with I > 2σ(I)

  • R int = 0.059

Refinement

  • R[F 2 > 2σ(F 2)] = 0.042

  • wR(F 2) = 0.105

  • S = 1.15

  • 2021 reflections

  • 256 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.15 e Å−3

Data collection: IPDS (Stoe & Cie, 2000); cell refinement: IPDS; data reduction: X-RED (Stoe & Cie, 1996); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809002062/fl2228sup1.cif

e-65-0o374-sup1.cif (20.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809002062/fl2228Isup2.hkl

e-65-0o374-Isup2.hkl (97.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1is the centroid of the C21–C26 ring and Cg2 is the centroid of the C3–C8 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯Cg1i 0.95 2.89 3.735 (3) 149
C23—H23⋯Cg2ii 0.95 2.95 3.803 (4) 150

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

supplementary crystallographic information

Comment

Heterocyclic spirocompounds are of interest in synthetic organic chemistry (Pariera et al., 1993; Alonso-Perarnau et al., 1997; Cacciarini et al., 2000). The cycloaddition between dipolarophiles bearing an exocyclic carbon-carbon double bond and appropriate1,3-dipoles is one of the best methods for the synthesis of bicyclic spirocompounds.

As part of our research on bicyclic spirocompounds (Fihi et al., 1995; Roussel et al., 2000, 2003; Daran et al., 2006), we reported that methylene lactones react with 1,3-dipoles with high selectivity. In a previous article (Fihi et al., 2004) we reported that 1,3-dipolar cycloaddition of arylnitriloxydes and N-Phenylarylnitrilimines to 5-chloro-2-methylene-1,3,3-trimethylindoline is regiospecific. Arylnitriloxydes reactions lead to spiroheterocyclic compounds, whereas N-phenylarylnitrilimines reactions afforded evolutives products.

We report here, the cycloaddition of C-phenyl-N-phenylnitrone (2) to 2-methylene-1,3,3-trimethylindoline (1). The reaction produced a mixture of diastereoisomers (Fig. 2). The ratio (77 / 23%) of which was evaluated by 1HNMR (performed on the crude reaction mixture). To confirm unambiguously the structure assignment of (3) and (3'), and to establish the stereochemistry of each spiroheterocycle, an X-ray structural analyses was carried out on the major spirocompound, because the 1H and 13CNMR studies did not provide unambiguous information.

The stereochemistry of the major diastereoisomer, S,R/R,S, is confirmed by the X-ray analyses (Fig. 1). The oxazole and the pyrole rings have an envelope conformation with puckering parameters Q(2)= 0.399 (3)°, φ(2)= 218.9 (5)° and Q(2)= 0.274 (3)°, φ(2)= 218.9 (7)° (Cremer & Pople, 1975). The packing is stabilized by weak C—H···π interactions involving the phenyl attached to the nitrogen of the oxazole and the phenyl of the indole fragment (Table 1: Cg1is the centroid of the C21—C26 ring and Cg2 is the centroid of the C3—C8 ring).

Experimental

2-Methylene-1,3,3-trimethylindoline (1) is a commercial product. C-phenyl, N-diphenylnitrone (2) was synthesized according to the literature procedure (Brüning et al., 1973). A solution of (2) (1 g, 6 mmol), (1) (1,12 g, 6 mmol) in ethylacetate (40 ml) was stirred at reflux for 24 h. The solvent was then evaporated under reduced pressure. The residue was crystallized from ethanol, leading to a mixture of diastereiosomers (3) and (3'). They were separated and purified by chromatography on silica gel (eluant: dichloromethane / hexane: 10 / 90). The spirocompounds were finally recrystallized from dichloromethane.

Refinement

All H atoms were fixed geometrically and treated as riding on their parent atoms with C—H = 0.98 Å (methyl), 0.99 Å (methylene), 1.0 Å (methine) and 0.95 Å (aromatic) with Uiso(H) = 1.2Ueq(aromatic, methylene and methine) or Uiso(H) = 1.5Ueq(methyl).

In the absence of significant anomalous scattering, the absolute structure could not be reliably determined and the Friedel pairs were merged and any references to the Flack parameter were removed.

Figures

Fig. 1.

Fig. 1.

Molecular view of (I). Displacement ellipsoids are drawn at the 30% probability level and H atoms are represented as small spheres of arbitrary radii.

Fig. 2.

Fig. 2.

The formation of the title compound.

Crystal data

C25H26N2O F(000) = 792
Mr = 370.48 Dx = 1.225 Mg m3
Orthorhombic, Pna21 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2n Cell parameters from 8000 reflections
a = 18.0393 (18) Å θ = 1.7–26.2°
b = 8.9854 (7) Å µ = 0.08 mm1
c = 12.3947 (9) Å T = 180 K
V = 2009.1 (3) Å3 Prism, colorless
Z = 4 0.48 × 0.36 × 0.28 mm

Data collection

Stoe IPDS diffractometer 1581 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.059
graphite θmax = 26.0°, θmin = 2.5°
φ scans h = −22→22
19030 measured reflections k = −11→11
2021 independent reflections l = −14→14

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105 H-atom parameters constrained
S = 1.15 w = 1/[σ2(Fo2) + (0.061P)2] where P = (Fo2 + 2Fc2)/3
2021 reflections (Δ/σ)max = 0.007
256 parameters Δρmax = 0.26 e Å3
1 restraint Δρmin = −0.15 e Å3

Special details

Experimental. The data were collected on a Stoe Imaging Plate Diffraction System (IPDS). The crystal-to-detector distance was 70 mm. 167 frames (4 min per frame) were obtained with 0 < φ < 250.5° and with the crystals rotated through 1.5° in φ. Coverage of the unique set was over 97.4% complete to at least 26.04°. Crystal decay was monitored by measuring 200 reflections per frame.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.43438 (17) 0.9280 (3) 0.0510 (3) 0.0360 (7)
C2 0.52004 (18) 0.9356 (3) 0.0701 (3) 0.0398 (7)
C3 0.53941 (16) 1.0776 (3) 0.0091 (3) 0.0346 (7)
C4 0.60643 (18) 1.1346 (4) −0.0231 (3) 0.0470 (8)
H4 0.6508 1.0802 −0.0111 0.056*
C5 0.6086 (2) 1.2734 (4) −0.0738 (3) 0.0523 (9)
H5 0.6547 1.3141 −0.0964 0.063*
C6 0.5439 (2) 1.3510 (4) −0.0909 (3) 0.0482 (9)
H6 0.5460 1.4452 −0.1256 0.058*
C7 0.47568 (18) 1.2952 (3) −0.0588 (3) 0.0412 (7)
H7 0.4312 1.3493 −0.0710 0.049*
C8 0.47495 (15) 1.1576 (3) −0.0082 (3) 0.0327 (7)
C9 0.34450 (16) 0.7260 (3) 0.0744 (3) 0.0363 (7)
H9 0.2955 0.7656 0.0500 0.044*
C10 0.38766 (19) 0.8462 (4) 0.1354 (3) 0.0458 (8)
H10A 0.3531 0.9161 0.1713 0.055*
H10B 0.4199 0.8006 0.1908 0.055*
C21 0.36716 (14) 0.6294 (3) −0.1120 (2) 0.0294 (6)
C22 0.40480 (18) 0.6491 (3) −0.2083 (3) 0.0367 (7)
H22 0.4453 0.7164 −0.2117 0.044*
C23 0.38362 (18) 0.5708 (3) −0.2998 (3) 0.0429 (7)
H23 0.4091 0.5856 −0.3660 0.051*
C24 0.32514 (17) 0.4710 (4) −0.2943 (3) 0.0438 (8)
H24 0.3110 0.4163 −0.3565 0.053*
C25 0.28787 (18) 0.4513 (4) −0.1993 (3) 0.0414 (8)
H25 0.2482 0.3821 −0.1959 0.050*
C26 0.30746 (15) 0.5317 (3) −0.1074 (3) 0.0352 (7)
H26 0.2803 0.5199 −0.0423 0.042*
C91 0.33383 (16) 0.5862 (3) 0.1405 (3) 0.0359 (7)
C92 0.39087 (17) 0.4871 (3) 0.1574 (3) 0.0418 (8)
H92 0.4380 0.5056 0.1259 0.050*
C93 0.3806 (2) 0.3610 (4) 0.2195 (3) 0.0511 (9)
H93 0.4205 0.2936 0.2302 0.061*
C94 0.3131 (2) 0.3330 (4) 0.2658 (3) 0.0537 (9)
H94 0.3064 0.2460 0.3082 0.064*
C95 0.2549 (2) 0.4299 (4) 0.2513 (3) 0.0532 (9)
H95 0.2083 0.4109 0.2841 0.064*
C96 0.26512 (18) 0.5563 (4) 0.1878 (3) 0.0462 (8)
H96 0.2249 0.6229 0.1767 0.055*
C111 0.33893 (17) 1.1202 (4) 0.0002 (4) 0.0526 (9)
H11A 0.3290 1.2248 0.0175 0.079*
H11B 0.3032 1.0567 0.0380 0.079*
H11C 0.3342 1.1051 −0.0778 0.079*
C211 0.5371 (2) 0.9600 (4) 0.1901 (3) 0.0531 (9)
H21A 0.5894 0.9871 0.1986 0.080*
H21B 0.5270 0.8682 0.2301 0.080*
H21C 0.5058 1.0403 0.2181 0.080*
C212 0.5604 (2) 0.7992 (4) 0.0285 (4) 0.0576 (11)
H21D 0.5484 0.7845 −0.0479 0.086*
H21E 0.5448 0.7117 0.0698 0.086*
H21F 0.6139 0.8134 0.0366 0.086*
N1 0.41386 (13) 1.0819 (2) 0.0341 (2) 0.0369 (6)
N2 0.39329 (13) 0.7023 (2) −0.0180 (2) 0.0323 (6)
O1 0.41789 (11) 0.8501 (2) −0.04964 (17) 0.0370 (5)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0486 (17) 0.0268 (14) 0.0327 (18) −0.0061 (13) 0.0006 (14) −0.0026 (13)
C2 0.0508 (18) 0.0289 (15) 0.040 (2) 0.0018 (13) −0.0082 (15) 0.0004 (13)
C3 0.0405 (16) 0.0306 (15) 0.0327 (19) −0.0027 (12) 0.0001 (13) 0.0003 (12)
C4 0.0412 (17) 0.0488 (19) 0.051 (2) −0.0023 (14) 0.0057 (15) −0.0044 (17)
C5 0.061 (2) 0.052 (2) 0.045 (2) −0.0220 (17) 0.0183 (17) −0.0051 (16)
C6 0.075 (2) 0.0369 (18) 0.033 (2) −0.0124 (16) 0.0080 (16) −0.0010 (14)
C7 0.0545 (18) 0.0294 (16) 0.040 (2) −0.0016 (13) −0.0020 (15) 0.0007 (14)
C8 0.0393 (15) 0.0278 (15) 0.0308 (17) −0.0033 (11) 0.0016 (13) −0.0016 (12)
C9 0.0392 (16) 0.0353 (15) 0.0344 (19) −0.0024 (13) 0.0062 (13) −0.0029 (12)
C10 0.0589 (19) 0.0389 (17) 0.040 (2) −0.0125 (14) 0.0075 (16) −0.0062 (15)
C21 0.0326 (14) 0.0234 (13) 0.0322 (18) 0.0021 (11) −0.0030 (12) −0.0014 (12)
C22 0.0439 (16) 0.0333 (15) 0.0328 (19) −0.0024 (12) 0.0017 (13) 0.0000 (13)
C23 0.0537 (18) 0.0432 (17) 0.0318 (18) 0.0047 (14) 0.0002 (15) −0.0054 (15)
C24 0.0491 (18) 0.0433 (17) 0.039 (2) 0.0008 (13) −0.0094 (16) −0.0094 (15)
C25 0.0419 (16) 0.0399 (16) 0.042 (2) −0.0044 (13) −0.0055 (15) −0.0063 (15)
C26 0.0323 (14) 0.0364 (15) 0.0369 (18) −0.0013 (12) −0.0045 (13) 0.0005 (14)
C91 0.0445 (16) 0.0323 (15) 0.0307 (17) −0.0099 (13) 0.0010 (14) −0.0021 (13)
C92 0.0427 (16) 0.0409 (17) 0.042 (2) −0.0040 (13) −0.0009 (14) −0.0015 (15)
C93 0.061 (2) 0.0437 (19) 0.048 (2) −0.0014 (15) −0.0055 (17) 0.0017 (16)
C94 0.066 (2) 0.0429 (19) 0.052 (2) −0.0193 (17) −0.0025 (18) 0.0060 (17)
C95 0.054 (2) 0.058 (2) 0.047 (2) −0.0182 (18) 0.0122 (17) 0.0016 (18)
C96 0.0472 (17) 0.0453 (18) 0.046 (2) −0.0044 (14) 0.0023 (16) −0.0026 (16)
C111 0.0396 (17) 0.0475 (18) 0.071 (3) 0.0017 (14) −0.0049 (18) −0.0098 (18)
C211 0.066 (2) 0.0489 (19) 0.045 (2) −0.0085 (16) −0.0146 (18) 0.0061 (17)
C212 0.055 (2) 0.0375 (18) 0.081 (3) 0.0098 (16) −0.0048 (19) −0.0012 (18)
N1 0.0374 (13) 0.0269 (12) 0.0464 (17) −0.0029 (11) 0.0025 (11) −0.0012 (12)
N2 0.0410 (13) 0.0248 (12) 0.0311 (15) −0.0095 (10) 0.0016 (10) −0.0016 (11)
O1 0.0570 (13) 0.0239 (10) 0.0302 (12) −0.0113 (8) 0.0029 (10) −0.0018 (9)

Geometric parameters (Å, °)

C1—N1 1.446 (4) C23—C24 1.386 (5)
C1—O1 1.461 (4) C23—H23 0.9500
C1—C10 1.531 (5) C24—C25 1.367 (5)
C1—C2 1.565 (4) C24—H24 0.9500
C2—C212 1.516 (5) C25—C26 1.395 (4)
C2—C3 1.523 (4) C25—H25 0.9500
C2—C211 1.534 (5) C26—H26 0.9500
C3—C4 1.372 (4) C91—C92 1.377 (4)
C3—C8 1.384 (4) C91—C96 1.397 (4)
C4—C5 1.397 (5) C92—C93 1.382 (5)
C4—H4 0.9500 C92—H92 0.9500
C5—C6 1.376 (5) C93—C94 1.369 (6)
C5—H5 0.9500 C93—H93 0.9500
C6—C7 1.388 (5) C94—C95 1.375 (6)
C6—H6 0.9500 C94—H94 0.9500
C7—C8 1.387 (4) C95—C96 1.393 (5)
C7—H7 0.9500 C95—H95 0.9500
C8—N1 1.397 (4) C96—H96 0.9500
C9—N2 1.460 (4) C111—N1 1.457 (4)
C9—C91 1.512 (4) C111—H11A 0.9800
C9—C10 1.531 (4) C111—H11B 0.9800
C9—H9 1.0000 C111—H11C 0.9800
C10—H10A 0.9900 C211—H21A 0.9800
C10—H10B 0.9900 C211—H21B 0.9800
C21—C22 1.384 (4) C211—H21C 0.9800
C21—C26 1.390 (4) C212—H21D 0.9800
C21—N2 1.417 (4) C212—H21E 0.9800
C22—C23 1.388 (5) C212—H21F 0.9800
C22—H22 0.9500 N2—O1 1.454 (3)
N1—C1—O1 106.4 (2) C25—C24—H24 120.0
N1—C1—C10 114.6 (3) C23—C24—H24 120.0
O1—C1—C10 104.0 (2) C24—C25—C26 120.8 (3)
N1—C1—C2 103.5 (2) C24—C25—H25 119.6
O1—C1—C2 110.6 (2) C26—C25—H25 119.6
C10—C1—C2 117.4 (3) C21—C26—C25 119.3 (3)
C212—C2—C3 113.4 (3) C21—C26—H26 120.3
C212—C2—C211 110.5 (3) C25—C26—H26 120.3
C3—C2—C211 108.4 (3) C92—C91—C96 118.4 (3)
C212—C2—C1 112.8 (3) C92—C91—C9 121.6 (3)
C3—C2—C1 100.8 (2) C96—C91—C9 120.0 (3)
C211—C2—C1 110.6 (3) C91—C92—C93 120.9 (3)
C4—C3—C8 120.1 (3) C91—C92—H92 119.5
C4—C3—C2 131.2 (3) C93—C92—H92 119.5
C8—C3—C2 108.6 (3) C94—C93—C92 120.2 (3)
C3—C4—C5 119.3 (3) C94—C93—H93 119.9
C3—C4—H4 120.4 C92—C93—H93 119.9
C5—C4—H4 120.4 C93—C94—C95 120.5 (3)
C6—C5—C4 119.9 (3) C93—C94—H94 119.8
C6—C5—H5 120.1 C95—C94—H94 119.8
C4—C5—H5 120.1 C94—C95—C96 119.3 (3)
C5—C6—C7 121.7 (3) C94—C95—H95 120.3
C5—C6—H6 119.2 C96—C95—H95 120.3
C7—C6—H6 119.2 C95—C96—C91 120.7 (3)
C8—C7—C6 117.4 (3) C95—C96—H96 119.7
C8—C7—H7 121.3 C91—C96—H96 119.7
C6—C7—H7 121.3 N1—C111—H11A 109.5
C3—C8—C7 121.7 (3) N1—C111—H11B 109.5
C3—C8—N1 110.6 (3) H11A—C111—H11B 109.5
C7—C8—N1 127.7 (3) N1—C111—H11C 109.5
N2—C9—C91 112.4 (2) H11A—C111—H11C 109.5
N2—C9—C10 100.6 (2) H11B—C111—H11C 109.5
C91—C9—C10 112.6 (3) C2—C211—H21A 109.5
N2—C9—H9 110.3 C2—C211—H21B 109.5
C91—C9—H9 110.3 H21A—C211—H21B 109.5
C10—C9—H9 110.3 C2—C211—H21C 109.5
C1—C10—C9 106.4 (3) H21A—C211—H21C 109.5
C1—C10—H10A 110.5 H21B—C211—H21C 109.5
C9—C10—H10A 110.5 C2—C212—H21D 109.5
C1—C10—H10B 110.5 C2—C212—H21E 109.5
C9—C10—H10B 110.5 H21D—C212—H21E 109.5
H10A—C10—H10B 108.6 C2—C212—H21F 109.5
C22—C21—C26 119.7 (3) H21D—C212—H21F 109.5
C22—C21—N2 119.1 (2) H21E—C212—H21F 109.5
C26—C21—N2 121.0 (3) C8—N1—C1 108.5 (2)
C21—C22—C23 120.3 (3) C8—N1—C111 120.6 (3)
C21—C22—H22 119.8 C1—N1—C111 120.4 (2)
C23—C22—H22 119.8 C21—N2—O1 107.6 (2)
C24—C23—C22 119.8 (3) C21—N2—C9 120.8 (2)
C24—C23—H23 120.1 O1—N2—C9 105.2 (2)
C22—C23—H23 120.1 N2—O1—C1 105.6 (2)
C25—C24—C23 120.0 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C7—H7···Cg1i 0.95 2.89 3.735 (3) 149
C23—H23···Cg2ii 0.95 2.95 3.803 (4) 150

Symmetry codes: (i) x, y+1, z; (ii) −x+1, −y+2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FL2228).

References

  1. Alonso-Perarnau, D., De March, P., El Arrad, M., Figueredo, M., Font, J. & Parella, T. (1997). Tetrahedron, 53, 14763–14772.
  2. Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst.32, 115–119.
  3. Brüning, I., Grashey, R., Hauck, H., Huisgen, R. & Seidel, H. (1973). Org. Synth. Coll. V, pp. 1124–1129.
  4. Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
  5. Cacciarini, M., Cordero, M., Faggi, C. & Goti, A. (2000). Molecules, 5, 637–647.
  6. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  7. Daran, J.-C., Fihi, R., Roussel, C., Laghrib, N., Azrour, M., Ciamala, K. & Vebreld, J. (2006). Acta Cryst. E62, o329–o331.
  8. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  9. Fihi, R., Ciamala, K., Vebrel, J. & Rodier, N. (1995). Bull. Soc. Chim. Belg.104, 1, 55–62.
  10. Fihi, R., Majidi, L. & Zair, T. (2004). J. Mar. Chim. Heterocycl.3, 52–56.
  11. Pariera, S. M., Savage, J. P., Simpson, G. W., Greenword, R. J. & Mackay, M. F. (1993). Tetrahedron, 6, 1401–1412.
  12. Roussel, C., Fihi, R., Ciamala, K., Audebert, P. & Vebrel, J. (2000). New J. Chem.24, 471–476.
  13. Roussel, C., Fihi, R., Ciamala, K., Vebrel, J., Zair, T. & Riche, C. (2003). Org. Biomol. Chem.1, 2689–2698. [DOI] [PubMed]
  14. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  15. Stoe & Cie (1996). X-RED Stoe & Cie, Darmstadt, Germany.
  16. Stoe & Cie (2000). IPDS Manual Stoe & Cie, Darmstadt, Germany.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809002062/fl2228sup1.cif

e-65-0o374-sup1.cif (20.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809002062/fl2228Isup2.hkl

e-65-0o374-Isup2.hkl (97.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES