Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Jan 23;65(Pt 2):o361. doi: 10.1107/S1600536809001834

Bis(2-bromo­benz­yl) tris­ulfide

Suneel P Singh a, Alan J Lough b,*, Adrian L Schwan a
PMCID: PMC2968175  PMID: 21581959

Abstract

The title mol­ecule, C14H12Br2S3, lies on a crystallographic twofold rotation axis which bis­ects the S—S—S angle. The dihedral angle between the two symmetry-related benzene rings is 89.91 (9)°. In terms of hybridization principles, the S—C—C angle is slightly larger than expected.

Related literature

For related literature, see: Haoyun et al. (2006); De Sousa et al. (1990); Johnson et al. (1997); Rys et al. (2008). For a related synthesis see: Banerji & Kalena (1980); O’Donnell & Schwan (2003). For a related crystal structure, see: Abu-Yousef et al. (2006).graphic file with name e-65-0o361-scheme1.jpg

Experimental

Crystal data

  • C14H12Br2S3

  • M r = 436.24

  • Orthorhombic, Inline graphic

  • a = 12.771 (3) Å

  • b = 13.030 (3) Å

  • c = 4.7635 (10) Å

  • V = 792.7 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 5.49 mm−1

  • T = 150 (1) K

  • 0.16 × 0.12 × 0.10 mm

Data collection

  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SORTAV; Blessing, 1995) T min = 0.378, T max = 0.576

  • 5451 measured reflections

  • 1745 independent reflections

  • 1447 reflections with I > 2σ(I)

  • R int = 0.047

Refinement

  • R[F 2 > 2σ(F 2)] = 0.034

  • wR(F 2) = 0.081

  • S = 1.06

  • 1745 reflections

  • 87 parameters

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.72 e Å−3

  • Absolute structure: Flack (1983), 659 Friedel pairs

  • Flack parameter: −0.024 (13)

Data collection: COLLECT (Nonius, 2002); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809001834/pv2135sup1.cif

e-65-0o361-sup1.cif (12.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809001834/pv2135Isup2.hkl

e-65-0o361-Isup2.hkl (86KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond angles (°).

S2i—S1—S2 106.21 (9)
C2—C1—S2 114.0 (3)

Symmetry code: (i) Inline graphic.

Acknowledgments

Acknowledgment is made to the Donors of the American Chemical Society Petroleum Research Fund for support of this research. AJL thanks NSERC Canada for funding.

supplementary crystallographic information

Comment

Organic sulfides are an attractive class of compounds because of their synthetic and pharmaceutical applications. Dibenzyl trisulfide was isolated from the sub-tropical shrub Petiveria alliacea L. (De Sousa et al., 1990; Johnson et al., 1997). Dibenzyl trisulfide dervatives have been synthesized in moderate yield via a diimidazolyl sulfide derivative (Banerji & Kalena, 1980). The immunomodulatory activitities, molecular mechanism, anti tumor activities and some other biological activities of dibenzyltrisulfide derivatives have been reported (Haoyun et al., 2006).

In the title molecule (Fig. 1), the bond lengths and bond angles are comparable to those observed in a similar compound (Abu-Yousef et al., 2006).

Experimental

The N-protected amino acid derivative (1) (Fig. 2) was synthesized by following the described procedure for its benzyl analog (O'Donnell & Schwan, 2003). Compound (1) was reacted with trifluoroacetic acid (20 equiv.) at 273 K for 2 hr to give amino acid derivative (2). The title compound (3) was prepared by stirring (2) in dichloromethane at room temperature in 20% yield and was crystallized by slow evaporation of a dichloromethane/methanol (9:1, v/v) solution. It should be noted that compound (2) in dichlorometane on standing at room temperature for several days also gave compound (3).

Refinement

H atoms bonded to C atoms were placed in calculated positions with C—H = 0.95 - 0.99Å and were included in a riding-model approximation with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of title compound. All non-H atoms are represented by 30% probability displacement ellipsoids. Atoms labeled with the suffix 'a' are related by the symmetry operator (-x + 1, -y, z).

Fig. 2.

Fig. 2.

The reaction scheme for the formation of the title compound.

Crystal data

C14H12Br2S3 F(000) = 428
Mr = 436.24 Dx = 1.828 Mg m3
Orthorhombic, P21212 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2 2ab Cell parameters from 5451 reflections
a = 12.771 (3) Å θ = 3.1–27.5°
b = 13.030 (3) Å µ = 5.49 mm1
c = 4.7635 (10) Å T = 150 K
V = 792.7 (3) Å3 Block, colourless
Z = 2 0.16 × 0.12 × 0.10 mm

Data collection

Nonius KappaCCD diffractometer 1745 independent reflections
Radiation source: fine-focus sealed tube 1447 reflections with I > 2σ(I)
graphite Rint = 0.047
Detector resolution: 9 pixels mm-1 θmax = 27.5°, θmin = 3.1°
φ scans and ω scans with κ offsets h = −16→16
Absorption correction: multi-scan (SORTAV; Blessing, 1995) k = −16→16
Tmin = 0.378, Tmax = 0.576 l = −6→6
5451 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034 H-atom parameters constrained
wR(F2) = 0.081 w = 1/[σ2(Fo2) + (0.0416P)2] where P = (Fo2 + 2Fc2)/3
S = 1.06 (Δ/σ)max = 0.001
1745 reflections Δρmax = 0.32 e Å3
87 parameters Δρmin = −0.72 e Å3
0 restraints Absolute structure: Flack (1983), 659 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: −0.024 (13)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 0.42247 (3) 0.38038 (3) 0.13013 (11) 0.04922 (17)
S1 0.5000 0.0000 0.2536 (3) 0.0305 (3)
S2 0.53734 (6) 0.11976 (7) −0.0036 (2) 0.0319 (2)
C1 0.4113 (3) 0.1583 (3) −0.1526 (8) 0.0311 (8)
H1A 0.4221 0.2196 −0.2718 0.037*
H1B 0.3853 0.1024 −0.2750 0.037*
C2 0.3293 (3) 0.1822 (3) 0.0620 (7) 0.0271 (8)
C3 0.2529 (3) 0.1057 (3) 0.1324 (8) 0.0356 (9)
H3A 0.2544 0.0412 0.0395 0.043*
C4 0.1784 (3) 0.1239 (3) 0.3296 (8) 0.0369 (9)
H4A 0.1282 0.0724 0.3722 0.044*
C5 0.1750 (3) 0.2175 (3) 0.4693 (9) 0.0433 (11)
H5A 0.1232 0.2294 0.6086 0.052*
C6 0.2470 (3) 0.2930 (3) 0.4058 (8) 0.0367 (10)
H6A 0.2446 0.3572 0.5002 0.044*
C7 0.3222 (3) 0.2750 (3) 0.2054 (8) 0.0283 (8)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.0469 (2) 0.0294 (2) 0.0713 (3) −0.00040 (19) −0.0036 (2) 0.0041 (2)
S1 0.0356 (7) 0.0339 (7) 0.0219 (6) 0.0098 (6) 0.000 0.000
S2 0.0286 (4) 0.0303 (4) 0.0369 (5) 0.0012 (4) 0.0002 (4) −0.0007 (5)
C1 0.0356 (19) 0.0353 (18) 0.0224 (18) 0.0040 (16) −0.0018 (16) 0.0010 (15)
C2 0.0272 (18) 0.0307 (19) 0.023 (2) 0.0053 (15) −0.0051 (13) 0.0018 (15)
C3 0.043 (2) 0.037 (2) 0.027 (2) 0.0185 (18) −0.015 (2) −0.007 (2)
C4 0.0286 (19) 0.044 (2) 0.038 (2) −0.0044 (18) −0.0051 (16) 0.010 (2)
C5 0.033 (2) 0.063 (3) 0.033 (2) 0.016 (2) 0.0022 (18) 0.004 (2)
C6 0.038 (2) 0.041 (2) 0.031 (2) 0.0149 (19) −0.0079 (19) −0.0082 (18)
C7 0.0277 (19) 0.0294 (18) 0.028 (2) 0.0042 (14) −0.0081 (15) 0.0033 (15)

Geometric parameters (Å, °)

Br1—C7 1.911 (3) C3—C4 1.358 (5)
S1—S2i 2.0403 (13) C3—H3A 0.9500
S1—S2 2.0403 (13) C4—C5 1.389 (5)
S2—C1 1.829 (3) C4—H4A 0.9500
C1—C2 1.496 (5) C5—C6 1.380 (6)
C1—H1A 0.9900 C5—H5A 0.9500
C1—H1B 0.9900 C6—C7 1.374 (5)
C2—C7 1.392 (5) C6—H6A 0.9500
C2—C3 1.435 (5)
S2i—S1—S2 106.21 (9) C2—C3—H3A 119.5
C1—S2—S1 103.71 (12) C3—C4—C5 120.5 (4)
C2—C1—S2 114.0 (3) C3—C4—H4A 119.8
C2—C1—H1A 108.7 C5—C4—H4A 119.8
S2—C1—H1A 108.7 C6—C5—C4 120.0 (4)
C2—C1—H1B 108.7 C6—C5—H5A 120.0
S2—C1—H1B 108.7 C4—C5—H5A 120.0
H1A—C1—H1B 107.6 C7—C6—C5 119.8 (4)
C7—C2—C3 116.4 (3) C7—C6—H6A 120.1
C7—C2—C1 124.2 (3) C5—C6—H6A 120.1
C3—C2—C1 119.4 (3) C6—C7—C2 122.3 (3)
C4—C3—C2 121.1 (4) C6—C7—Br1 118.4 (3)
C4—C3—H3A 119.5 C2—C7—Br1 119.2 (3)

Symmetry codes: (i) −x+1, −y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2135).

References

  1. Abu-Yousef, I. A., Rys, A. Z. & Harpp, D. N. (2006). J. Sulfur Chem.27, 15–24.
  2. Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst.27, 435.
  3. Banerji, A. & Kalena, G. P. (1980). Tetrahedron Lett.21, 3003–3004.
  4. Blessing, R. H. (1995). Acta Cryst. A51, 33–38. [DOI] [PubMed]
  5. De Sousa, J. R., Demuner, A. J., Pinheiro, J. A., Breitmaier, E. & Cassels, B. K. (1990). Phytochemistry, 29, 3653–3655.
  6. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  7. Haoyun, A., Jenny, Z., Xiaobo, W. & Xiao, X. (2006). Bioorg. Med. Chem. Lett.16, 4826–4829.
  8. Johnson, L., Williams, L. A. D. & Roberst, E. V. (1997). Pestic. Sci.50, 228–232.
  9. Nonius (2002). COLLECT Nonius BV, Delft, The Netherlands.
  10. O’Donnell, J. S. & Schwan, A. L. (2003). Tetrahedron Lett.44, 6293–6296.
  11. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet pp. 307–326. New York: Academic Press.
  12. Rys, A. Z., Abu-Yousef, I. A. & Harpp, D. N. (2008). Tetrahedron Lett.49, 6670–6673.
  13. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  14. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809001834/pv2135sup1.cif

e-65-0o361-sup1.cif (12.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809001834/pv2135Isup2.hkl

e-65-0o361-Isup2.hkl (86KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES