Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Jan 10;65(Pt 2):o287. doi: 10.1107/S1600536809000282

8-Phenyl-10-oxa-8-aza­tricyclo­[4.3.0.12,5]decane-7,9-dione

Wen-Zhong Zhu a, Qiu-Yue Lin a,*
PMCID: PMC2968178  PMID: 21581899

Abstract

The reaction of aniline with norcantharidin produced the imide title compound, C14H13NO3, which shows no significant hydrogen bonds in the crystal structure. The dihedral angle between the phenyl and pyrrolidine rings is 48.48 (6)°.

Related literature

For the use of norcantharidin in synthesis see: Hill et al. (2007). For background, see: Wang (1989).graphic file with name e-65-0o287-scheme1.jpg

Experimental

Crystal data

  • C14H13NO3

  • M r = 243.25

  • Monoclinic, Inline graphic

  • a = 9.5914 (4) Å

  • b = 8.4345 (3) Å

  • c = 14.4101 (6) Å

  • β = 93.468 (3)°

  • V = 1163.62 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 296 (2) K

  • 0.32 × 0.25 × 0.04 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.971, T max = 0.996

  • 18085 measured reflections

  • 2699 independent reflections

  • 1898 reflections with I > 2σ(I)

  • R int = 0.041

Refinement

  • R[F 2 > 2σ(F 2)] = 0.041

  • wR(F 2) = 0.177

  • S = 0.61

  • 2699 reflections

  • 163 parameters

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.17 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809000282/at2701sup1.cif

e-65-0o287-sup1.cif (18.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809000282/at2701Isup2.hkl

e-65-0o287-Isup2.hkl (132.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10B⋯O2i 0.97 2.59 3.502 (3) 156

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors acknowledge financial support from the Natural Science Foundation of Zhejiang Province, China (grant No. Y407301).

supplementary crystallographic information

Comment

Norcantharidin are a variety of pharmacologically important compounds such as protein kinase inhibitors and antitumor properties (Wang, 1989). We have designed, synthesized and crystallized several norcantharidin derivatives to study their anticancer properties. In order to study on the relationship between the activity of norcantharidin and the importance of aromatic ring linked to the carboxyl, the norcantharidin derivative was synthesized and its crystal structure is reported here.

X-ray crystallography confirmed the molecular structure and the atom connectivity for the title compound, as illustrated in Fig. 1. In the compound, the dihedral angle between the mean planes of pyrrolidine (C7/C8/C13/C14/N1) rings and the phenyl (C1—C6) is 48.48 (6)°. It exhibits no unusual crystal packing features, and each molecule acts as a donor and acceptor for one C10—H10B···O2 weak intermolecular hydrogen bonds.

Experimental

The title compound was synthesized by the condensation of norcantharidin (1 mmol) with aniline (1 mmol) in DMF (10 mL). After refluxing for 3 h, the reaction mixture was left to stand for two weeks, colourless crystals were isolated.

Refinement

The H atoms bonded to C atoms were positioned geometrically and refined using a riding model [C—H = 0.93 - 0.98 Å, Uiso(H) = 1.2Ueq(C)].

Figures

Fig. 1.

Fig. 1.

A view of the molecule of (I) showing the atom-labelling scheme with displacement ellipsoids drawn at the 30% probability.

Crystal data

C14H13NO3 F(000) = 512
Mr = 243.25 Dx = 1.389 Mg m3Dm = 1.389 Mg m3Dm measured by not measured
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 3324 reflections
a = 9.5914 (4) Å θ = 2.1–27.7°
b = 8.4345 (3) Å µ = 0.10 mm1
c = 14.4101 (6) Å T = 296 K
β = 93.468 (3)° Sheet, colourless
V = 1163.62 (8) Å3 0.32 × 0.25 × 0.04 mm
Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer 2699 independent reflections
Radiation source: fine-focus sealed tube 1898 reflections with I > 2σ(I)
graphite Rint = 0.041
φ and ω scans θmax = 27.7°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −12→12
Tmin = 0.971, Tmax = 0.996 k = −11→10
18085 measured reflections l = −18→18

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.177 H-atom parameters constrained
S = 0.61 w = 1/[σ2(Fo2) + (0.1908P)2 + 0.6671P] where P = (Fo2 + 2Fc2)/3
2699 reflections (Δ/σ)max < 0.001
163 parameters Δρmax = 0.16 e Å3
0 restraints Δρmin = −0.17 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.10268 (15) 0.22038 (16) 0.69370 (9) 0.0418 (4)
O1 −0.04620 (15) 0.1156 (2) 0.79702 (10) 0.0655 (4)
O2 0.19084 (14) 0.33610 (17) 0.56481 (9) 0.0579 (4)
O3 −0.13027 (14) 0.06451 (14) 0.54810 (10) 0.0526 (4)
C1 0.32246 (19) 0.0814 (2) 0.68510 (13) 0.0513 (4)
H1A 0.3026 0.0665 0.6217 0.062*
C2 0.4439 (2) 0.0209 (3) 0.72752 (17) 0.0620 (5)
H2A 0.5055 −0.0358 0.6927 0.074*
C3 0.4743 (2) 0.0442 (3) 0.82150 (17) 0.0646 (6)
H3A 0.5562 0.0034 0.8499 0.078*
C4 0.3832 (2) 0.1278 (2) 0.87295 (15) 0.0599 (5)
H4A 0.4042 0.1435 0.9361 0.072*
C5 0.2603 (2) 0.1891 (2) 0.83178 (13) 0.0493 (4)
H5A 0.1989 0.2457 0.8668 0.059*
C6 0.23040 (18) 0.16445 (19) 0.73715 (12) 0.0421 (4)
C7 0.09220 (19) 0.29901 (19) 0.60787 (11) 0.0432 (4)
C8 −0.05956 (18) 0.32348 (19) 0.57997 (11) 0.0432 (4)
H8A −0.0820 0.4349 0.5668 0.052*
C9 −0.1114 (2) 0.2122 (2) 0.50018 (13) 0.0502 (4)
H9A −0.0485 0.2054 0.4492 0.060*
C10 −0.2605 (2) 0.2614 (3) 0.46982 (14) 0.0592 (5)
H10A −0.2906 0.2148 0.4104 0.071*
H10B −0.2696 0.3758 0.4659 0.071*
C11 −0.3429 (2) 0.1933 (2) 0.54908 (16) 0.0585 (5)
H11A −0.3931 0.2756 0.5802 0.070*
H11B −0.4082 0.1120 0.5267 0.070*
C12 −0.22552 (19) 0.1238 (2) 0.61262 (14) 0.0488 (4)
H12A −0.2570 0.0432 0.6556 0.059*
C13 −0.13944 (18) 0.25713 (19) 0.66061 (11) 0.0430 (4)
H13A −0.1973 0.3369 0.6894 0.052*
C14 −0.02839 (18) 0.1892 (2) 0.72702 (12) 0.0449 (4)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0422 (8) 0.0437 (7) 0.0400 (7) 0.0010 (6) 0.0060 (6) 0.0082 (6)
O1 0.0549 (8) 0.0882 (11) 0.0546 (8) 0.0025 (7) 0.0131 (6) 0.0281 (7)
O2 0.0542 (8) 0.0651 (8) 0.0555 (8) −0.0097 (6) 0.0127 (6) 0.0158 (6)
O3 0.0538 (7) 0.0369 (6) 0.0678 (8) 0.0025 (5) 0.0099 (6) −0.0059 (5)
C1 0.0465 (10) 0.0543 (10) 0.0534 (10) −0.0008 (8) 0.0072 (8) −0.0011 (8)
C2 0.0440 (10) 0.0628 (12) 0.0799 (14) 0.0028 (9) 0.0097 (9) 0.0026 (10)
C3 0.0417 (10) 0.0654 (13) 0.0851 (15) −0.0065 (9) −0.0098 (10) 0.0115 (11)
C4 0.0588 (12) 0.0611 (12) 0.0580 (11) −0.0136 (9) −0.0121 (9) 0.0061 (9)
C5 0.0533 (10) 0.0465 (9) 0.0481 (9) −0.0053 (8) 0.0025 (8) 0.0012 (7)
C6 0.0414 (8) 0.0397 (8) 0.0456 (9) −0.0038 (6) 0.0042 (7) 0.0050 (7)
C7 0.0486 (9) 0.0398 (8) 0.0415 (8) −0.0053 (7) 0.0059 (7) 0.0044 (6)
C8 0.0490 (9) 0.0359 (8) 0.0444 (9) −0.0014 (7) 0.0015 (7) 0.0053 (6)
C9 0.0568 (11) 0.0490 (9) 0.0450 (9) −0.0032 (8) 0.0053 (8) −0.0019 (7)
C10 0.0640 (13) 0.0534 (10) 0.0579 (11) −0.0032 (9) −0.0139 (9) −0.0036 (9)
C11 0.0462 (10) 0.0540 (11) 0.0741 (13) 0.0006 (8) −0.0060 (9) −0.0081 (9)
C12 0.0434 (9) 0.0398 (8) 0.0639 (11) −0.0005 (7) 0.0090 (8) 0.0043 (8)
C13 0.0441 (9) 0.0396 (8) 0.0459 (9) 0.0050 (7) 0.0082 (7) 0.0018 (7)
C14 0.0434 (9) 0.0472 (9) 0.0450 (9) 0.0024 (7) 0.0100 (7) 0.0044 (7)

Geometric parameters (Å, °)

N1—C14 1.398 (2) C5—H5A 0.9300
N1—C7 1.402 (2) C7—C8 1.501 (2)
N1—C6 1.422 (2) C8—C13 1.536 (2)
O1—C14 1.205 (2) C8—C9 1.543 (2)
O2—C7 1.204 (2) C8—H8A 0.9800
O3—C12 1.433 (2) C9—C10 1.528 (3)
O3—C9 1.441 (2) C9—H9A 0.9800
C1—C2 1.380 (3) C10—C11 1.539 (3)
C1—C6 1.383 (2) C10—H10A 0.9700
C1—H1A 0.9300 C10—H10B 0.9700
C2—C3 1.382 (3) C11—C12 1.525 (3)
C2—H2A 0.9300 C11—H11A 0.9700
C3—C4 1.374 (3) C11—H11B 0.9700
C3—H3A 0.9300 C12—C13 1.535 (2)
C4—C5 1.387 (3) C12—H12A 0.9800
C4—H4A 0.9300 C13—C14 1.502 (2)
C5—C6 1.392 (3) C13—H13A 0.9800
C14—N1—C7 111.99 (14) O3—C9—C8 102.29 (14)
C14—N1—C6 123.71 (14) C10—C9—C8 107.58 (15)
C7—N1—C6 124.01 (14) O3—C9—H9A 114.2
C12—O3—C9 96.47 (12) C10—C9—H9A 114.2
C2—C1—C6 119.77 (18) C8—C9—H9A 114.2
C2—C1—H1A 120.1 C9—C10—C11 101.54 (15)
C6—C1—H1A 120.1 C9—C10—H10A 111.5
C1—C2—C3 120.2 (2) C11—C10—H10A 111.5
C1—C2—H2A 119.9 C9—C10—H10B 111.5
C3—C2—H2A 119.9 C11—C10—H10B 111.5
C4—C3—C2 119.91 (19) H10A—C10—H10B 109.3
C4—C3—H3A 120.0 C12—C11—C10 101.26 (16)
C2—C3—H3A 120.0 C12—C11—H11A 111.5
C3—C4—C5 120.8 (2) C10—C11—H11A 111.5
C3—C4—H4A 119.6 C12—C11—H11B 111.5
C5—C4—H4A 119.6 C10—C11—H11B 111.5
C4—C5—C6 118.85 (18) H11A—C11—H11B 109.3
C4—C5—H5A 120.6 O3—C12—C11 102.78 (16)
C6—C5—H5A 120.6 O3—C12—C13 101.63 (13)
C1—C6—C5 120.45 (17) C11—C12—C13 110.30 (14)
C1—C6—N1 119.36 (16) O3—C12—H12A 113.7
C5—C6—N1 120.16 (16) C11—C12—H12A 113.7
O2—C7—N1 124.14 (17) C13—C12—H12A 113.7
O2—C7—C8 127.30 (15) C14—C13—C12 110.43 (14)
N1—C7—C8 108.55 (14) C14—C13—C8 104.73 (14)
C7—C8—C13 105.51 (13) C12—C13—C8 101.86 (13)
C7—C8—C9 112.30 (14) C14—C13—H13A 113.0
C13—C8—C9 100.91 (14) C12—C13—H13A 113.0
C7—C8—H8A 112.5 C8—C13—H13A 113.0
C13—C8—H8A 112.5 O1—C14—N1 124.09 (17)
C9—C8—H8A 112.5 O1—C14—C13 126.79 (16)
O3—C9—C10 103.26 (15) N1—C14—C13 109.10 (14)
C6—C1—C2—C3 −0.6 (3) C13—C8—C9—C10 74.97 (17)
C1—C2—C3—C4 0.1 (3) O3—C9—C10—C11 31.94 (17)
C2—C3—C4—C5 0.2 (3) C8—C9—C10—C11 −75.77 (17)
C3—C4—C5—C6 0.0 (3) C9—C10—C11—C12 2.39 (18)
C2—C1—C6—C5 0.8 (3) C9—O3—C12—C11 56.48 (16)
C2—C1—C6—N1 −177.25 (17) C9—O3—C12—C13 −57.71 (15)
C4—C5—C6—C1 −0.6 (3) C10—C11—C12—O3 −36.30 (17)
C4—C5—C6—N1 177.52 (16) C10—C11—C12—C13 71.41 (18)
C14—N1—C6—C1 126.96 (18) O3—C12—C13—C14 −74.48 (16)
C7—N1—C6—C1 −46.3 (2) C11—C12—C13—C14 177.05 (15)
C14—N1—C6—C5 −51.1 (2) O3—C12—C13—C8 36.33 (16)
C7—N1—C6—C5 135.62 (17) C11—C12—C13—C8 −72.14 (17)
C14—N1—C7—O2 −178.77 (17) C7—C8—C13—C14 −3.54 (17)
C6—N1—C7—O2 −4.8 (3) C9—C8—C13—C14 113.50 (15)
C14—N1—C7—C8 −0.10 (19) C7—C8—C13—C12 −118.62 (14)
C6—N1—C7—C8 173.85 (14) C9—C8—C13—C12 −1.58 (16)
O2—C7—C8—C13 −179.03 (18) C7—N1—C14—O1 176.01 (17)
N1—C7—C8—C13 2.35 (18) C6—N1—C14—O1 2.0 (3)
O2—C7—C8—C9 71.9 (2) C7—N1—C14—C13 −2.3 (2)
N1—C7—C8—C9 −106.67 (16) C6—N1—C14—C13 −176.26 (14)
C12—O3—C9—C10 −54.79 (16) C12—C13—C14—O1 −65.7 (2)
C12—O3—C9—C8 56.86 (16) C8—C13—C14—O1 −174.64 (18)
C7—C8—C9—O3 78.51 (17) C12—C13—C14—N1 112.55 (16)
C13—C8—C9—O3 −33.41 (16) C8—C13—C14—N1 3.61 (18)
C7—C8—C9—C10 −173.12 (14)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C10—H10B···O2i 0.97 2.59 3.502 (3) 156

Symmetry codes: (i) −x, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2701).

References

  1. Bruker (2004). SAINT and APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Hill, T. A., Stewart, S. G., Ackland, S. P., Gilbert, J., Sauer, B., Sakoff, J. A. & McCluskey, A. (2007). Bioorg. Med. Chem 15, 6126–6134. [DOI] [PubMed]
  3. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  4. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  5. Wang, G.-S. (1989). J. Ethnopharmacol.26, 147–162. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809000282/at2701sup1.cif

e-65-0o287-sup1.cif (18.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809000282/at2701Isup2.hkl

e-65-0o287-Isup2.hkl (132.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES