Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Jan 28;65(Pt 2):o396–o397. doi: 10.1107/S1600536808043857

rac-Methyl 4-azido-3-hydr­oxy-3-(2-nitro­phen­yl)butanoate

Olivier Vallat a, Ana-Maria Buciumas a, Reinhard Neier a,*, Helen Stoeckli-Evans b
PMCID: PMC2968186  PMID: 21581990

Abstract

In the title compound, C11H12N4O5, the mean plane through the nitro substituent on the benzene ring is inclined to the benzene mean plane by 85.8 (2)°, which avoids steric inter­actions with the ortho substituents. The hydr­oxy group is involved in bifurcated hydrogen bonds. The first is an intra­molecular O—H⋯O hydrogen bond, involving the ester carbonyl O atom, which gives rise to the formation of a boat-like hydrogen-bonded chelate ring. The second is an inter­molecular O—H⋯N hydrogen bond involving the first N atom of the azide group of a symmetry-related mol­ecule. In the crystal structure this leads to the formation of a polmer chain extending in the c-axis direction.

Related literature

For literature related to the anti­tumor properties of rhazinilam, see: Bonneau et al. (2007). For literature related to the synthesis and structure–activity relationships of rhazinilam analogues, see: Decor et al. (2006); Baudoin et al. (2002); Ghosez et al. (2001); Rubio & Bornmann (2001); Dupont et al. (2000, 1999); Alazard et al. (1996). For details of the Mukaiyama reaction, see: Mukaiyama et al. (1974). For literature related to the synthesis of pyrrolinone precursors, see: Vallat (2004); Vallat et al. (2009).graphic file with name e-65-0o396-scheme1.jpg

Experimental

Crystal data

  • C11H12N4O5

  • M r = 280.25

  • Monoclinic, Inline graphic

  • a = 9.4772 (11) Å

  • b = 14.0710 (12) Å

  • c = 10.1861 (12) Å

  • β = 110.496 (13)°

  • V = 1272.4 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 153 (2) K

  • 0.40 × 0.30 × 0.30 mm

Data collection

  • Stoe IPDS diffractometer

  • Absorption correction: none

  • 8743 measured reflections

  • 2451 independent reflections

  • 1587 reflections with I > 2σ(I)

  • R int = 0.074

Refinement

  • R[F 2 > 2σ(F 2)] = 0.036

  • wR(F 2) = 0.088

  • S = 0.87

  • 2451 reflections

  • 230 parameters

  • All H-atom parameters refined

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.21 e Å−3

Data collection: EXPOSE in IPDS Software (Stoe & Cie, 2000); cell refinement: CELL in IPDS Software; data reduction: INTEGRATE in IPDS Software; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808043857/lh2749sup1.cif

e-65-0o396-sup1.cif (18.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808043857/lh2749Isup2.hkl

e-65-0o396-Isup2.hkl (120.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3O⋯O4 0.825 (19) 2.30 (2) 2.9439 (16) 135.5 (18)
O3—H3O⋯N2i 0.825 (19) 2.27 (2) 2.9193 (18) 135.6 (18)
C10—H10B⋯O4ii 0.95 (2) 2.557 (19) 3.350 (2) 141.0 (15)
C11—H11B⋯O1iii 0.95 (3) 2.57 (2) 3.268 (3) 130.9 (16)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic, Inline graphic.

Acknowledgments

This work was partially financed by the Swiss National Science Foundation.

supplementary crystallographic information

Comment

Rhazinilam, a natural product, has been shown to possess antitumoral properties. It induces in vitro spiralization of microtubules [vinblastin effect] and inhibits the disassembly of these microtubules [paclitaxel effect](Bonneau et al., 2007). It has shown significant in vitro cytotoxicity towards various cancer cells, but it is not active in vivo. Several groups have been interested in synthesizing and studying the structure-activity relationship of rhazinilam analogues (Decor et al., 2006; Baudoin et al., 2002; Ghosez et al., 2001; Rubia & Bornmann, 2001; Dupont et al., 2000; Dupont et al., 1999; Alazard et al., 1996).

In the synthesis of Rhazinilam analogues developed in our group the Mukaiyama reaction, a versatile synthetic tool in organic chemistry, is a key step reaction (Mukaiyama et al., 1974). In one of our retrosynthetic approaches (1-methoxyvinyloxy)trimethysilane was used as a nucleophile, 2-azido-1-(2-nitrophenyl)ethanone as an electrophile and TiCl4 as a Lewis acid, to synthesize the title hydroxyester, in high yield. This hydroxyester is a suitable precursor for the formation of the pyrrolinone required for the next step in the synthesis of Rhazinilam analogues (Vallat, 2004; Vallat et al., 2009).

The molecular structure of the title compound is illustrated in Fig. 1. The bond distances and angles are normal. The mean plane through the nitro group is inclined to the benzene mean plane by 85.8 (2)°, so avoiding steric interactions with the ortho substituents. The hydroxyl group (O3) is involved in bifurcated hydrogen bonds (Table 1). The first is an intramolecular O—H···O hydrogen bond, involving the ester carbonyl O-atom (O4), and gives rise to the formation of a boat-like hydrogen bonded chelate ring. The second is an intermolecular O—H···N hydrogen bond involving the first N-atom (N2) of the azide group (Table 1). This leads to the formation of a polymer chain extending in the c direction. (Fig. 2). There are also two weak intermolecular C—H···O interactions involving atoms O1 and O4 and the hydrogen atoms of the butanoate moiety (Table 1).

Experimental

Under an atmosphere of Ar, (1-methoxyvinyloxy)trimethylsilane (1.06 g, 7.3 mmol) was dissolved in dry CH2Cl2 (15 ml) and the temperature lowered to 243K. 2-Azido-1- (2-nitrophenyl)ethanone (0.5 g, 2.4 mmol) dissolved in dry CH2Cl2 (6 ml) was added to the reaction mixture dropwise. A solution of TiCl4 (0.13 ml, 1.2 mmol), freshly distilled over polyvinylpyridine, in dry CH2Cl2 (4 ml), was added slowly. The solution became immediately red and then dark red. The reaction mixture was stirred at 243K for 15 min and then at 258K for 30 min. The cold mixture was then poured into an aqueous solution of 2 N NaOH (2.4 ml) and extracted with chloroform. The combined organic layers were washed with brine, dried over MgSO4 and concentrated under vacuum. Purification of the residue by flash chromatography (silica gel, CH2Cl2) followed by crystallization (ether/hexane) gave a white solid (Yield 76%). Colourless plate-like crystals, suitable for X-ray analysis, were obtained by slow evaporation of a solution in ether/hexane (v:v = 1:1)

Refinement

The H-atoms were located from difference Fourier maps and freely refined: O—H = 0.825 (19) Å, C—H = 0.91 (3) - 1.02 (2) Å.

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound, showing the atom labelling scheme and the displacement ellipsoids drawn at the 50% probability level. The intramolecular O—H···O hydrogen bond is shown as a dashed line.

Fig. 2.

Fig. 2.

A view along the a axis of the crystal packing of the title compound, showing the intra and intermolecular hydrogen bonds as dashed lines (see Table 1 for details).

Crystal data

C11H12N4O5 F(000) = 584
Mr = 280.25 Dx = 1.463 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 5300 reflections
a = 9.4772 (11) Å θ = 2.6–25.8°
b = 14.0710 (12) Å µ = 0.12 mm1
c = 10.1861 (12) Å T = 153 K
β = 110.496 (13)° Plate, colourless
V = 1272.4 (2) Å3 0.40 × 0.30 × 0.30 mm
Z = 4

Data collection

Stoe IPDS diffractometer 1587 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.074
graphite θmax = 25.9°, θmin = 2.5°
φ oscillation scans h = −11→11
8743 measured reflections k = −17→17
2451 independent reflections l = −12→12

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036 All H-atom parameters refined
wR(F2) = 0.088 w = 1/[σ2(Fo2) + (0.0487P)2] where P = (Fo2 + 2Fc2)/3
S = 0.87 (Δ/σ)max < 0.001
2451 reflections Δρmax = 0.23 e Å3
230 parameters Δρmin = −0.21 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0087 (18)

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.32528 (17) −0.00702 (10) 0.18798 (17) 0.0599 (6)
O2 0.39794 (16) 0.06178 (11) 0.39169 (15) 0.0653 (5)
O3 0.20867 (11) 0.19457 (8) 0.17217 (12) 0.0272 (4)
O4 0.13982 (13) 0.26155 (8) 0.41688 (11) 0.0370 (4)
O5 −0.07815 (12) 0.34053 (9) 0.35528 (11) 0.0372 (4)
N1 0.30233 (17) 0.02628 (11) 0.28967 (16) 0.0424 (5)
N2 −0.03288 (14) 0.22705 (10) −0.10334 (13) 0.0321 (4)
N3 0.08103 (17) 0.25861 (10) −0.12165 (13) 0.0340 (5)
N4 0.17267 (19) 0.29547 (14) −0.15016 (17) 0.0535 (6)
C1 0.1474 (2) 0.01792 (12) 0.29231 (16) 0.0330 (5)
C2 0.1235 (3) −0.06299 (14) 0.35997 (18) 0.0472 (7)
C3 −0.0179 (3) −0.07913 (17) 0.3639 (2) 0.0574 (9)
C4 −0.1334 (3) −0.01579 (16) 0.3016 (2) 0.0524 (8)
C5 −0.1057 (2) 0.06436 (14) 0.23568 (19) 0.0391 (6)
C6 0.03622 (18) 0.08457 (11) 0.22890 (15) 0.0277 (5)
C7 0.05471 (16) 0.17238 (11) 0.14778 (15) 0.0253 (5)
C8 −0.01067 (19) 0.14495 (13) −0.00855 (16) 0.0293 (5)
C9 0.02297 (16) 0.28584 (12) 0.32851 (16) 0.0263 (5)
C10 −0.02665 (18) 0.25954 (13) 0.17665 (17) 0.0293 (5)
C11 −0.0434 (3) 0.36959 (19) 0.4988 (2) 0.0489 (8)
H2 0.210 (2) −0.1090 (17) 0.404 (2) 0.062 (6)*
H3 −0.039 (3) −0.1301 (18) 0.409 (2) 0.071 (7)*
H3O 0.242 (2) 0.2153 (14) 0.253 (2) 0.043 (6)*
H4 −0.235 (3) −0.0267 (16) 0.307 (2) 0.064 (6)*
H5 −0.183 (2) 0.1080 (15) 0.186 (2) 0.053 (6)*
H8A 0.0553 (19) 0.0951 (13) −0.0298 (16) 0.032 (4)*
H8B −0.113 (2) 0.1209 (12) −0.0262 (17) 0.035 (4)*
H10A −0.0016 (19) 0.3118 (13) 0.1284 (17) 0.037 (5)*
H10B −0.133 (2) 0.2515 (14) 0.1442 (19) 0.047 (5)*
H11A −0.035 (3) 0.315 (2) 0.560 (3) 0.084 (8)*
H11B −0.128 (3) 0.4060 (17) 0.497 (2) 0.067 (7)*
H11C 0.044 (3) 0.4065 (17) 0.525 (2) 0.062 (6)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0611 (9) 0.0464 (10) 0.0834 (11) 0.0058 (7) 0.0395 (8) −0.0098 (8)
O2 0.0494 (8) 0.0595 (10) 0.0596 (9) 0.0016 (7) −0.0151 (7) 0.0141 (8)
O3 0.0215 (6) 0.0308 (7) 0.0259 (6) −0.0016 (5) 0.0039 (4) −0.0006 (5)
O4 0.0298 (6) 0.0426 (8) 0.0307 (6) 0.0080 (5) 0.0006 (5) −0.0054 (5)
O5 0.0262 (6) 0.0445 (8) 0.0401 (7) 0.0067 (5) 0.0108 (5) −0.0081 (5)
N1 0.0440 (9) 0.0276 (9) 0.0482 (10) 0.0104 (7) 0.0069 (8) 0.0091 (7)
N2 0.0236 (7) 0.0413 (9) 0.0279 (7) −0.0005 (6) 0.0048 (5) 0.0044 (6)
N3 0.0352 (8) 0.0377 (9) 0.0257 (7) 0.0053 (7) 0.0063 (6) 0.0049 (6)
N4 0.0431 (10) 0.0645 (12) 0.0571 (10) −0.0023 (9) 0.0228 (8) 0.0169 (9)
C1 0.0452 (10) 0.0269 (10) 0.0264 (8) −0.0012 (8) 0.0118 (7) −0.0025 (7)
C2 0.0829 (15) 0.0269 (11) 0.0336 (10) −0.0010 (11) 0.0226 (10) 0.0010 (8)
C3 0.109 (2) 0.0334 (13) 0.0435 (12) −0.0247 (13) 0.0437 (13) −0.0082 (9)
C4 0.0721 (15) 0.0475 (14) 0.0494 (12) −0.0280 (12) 0.0360 (11) −0.0173 (10)
C5 0.0432 (10) 0.0397 (11) 0.0370 (9) −0.0133 (9) 0.0174 (8) −0.0097 (9)
C6 0.0341 (9) 0.0255 (9) 0.0229 (7) −0.0046 (7) 0.0091 (7) −0.0049 (6)
C7 0.0201 (7) 0.0260 (9) 0.0269 (8) −0.0015 (6) 0.0045 (6) 0.0003 (6)
C8 0.0272 (9) 0.0297 (10) 0.0272 (8) −0.0021 (7) 0.0047 (7) −0.0003 (7)
C9 0.0230 (8) 0.0223 (9) 0.0322 (8) −0.0018 (7) 0.0080 (7) 0.0002 (7)
C10 0.0226 (8) 0.0299 (10) 0.0304 (9) 0.0017 (7) 0.0032 (7) 0.0012 (7)
C11 0.0456 (12) 0.0569 (15) 0.0476 (12) 0.0028 (11) 0.0207 (10) −0.0157 (11)

Geometric parameters (Å, °)

O1—N1 1.224 (2) C5—C6 1.400 (3)
O2—N1 1.221 (2) C6—C7 1.530 (2)
O3—C7 1.426 (2) C7—C10 1.531 (2)
O4—C9 1.206 (2) C7—C8 1.542 (2)
O5—C9 1.330 (2) C9—C10 1.497 (2)
O5—C11 1.441 (2) C2—H2 1.02 (2)
O3—H3O 0.825 (19) C3—H3 0.91 (2)
N1—C1 1.483 (3) C4—H4 1.00 (3)
N2—C8 1.473 (2) C5—H5 0.95 (2)
N2—N3 1.240 (2) C8—H8A 1.012 (19)
N3—N4 1.133 (2) C8—H8B 0.983 (19)
C1—C6 1.389 (2) C10—H10A 0.959 (18)
C1—C2 1.390 (3) C10—H10B 0.95 (2)
C2—C3 1.374 (4) C11—H11A 0.98 (3)
C3—C4 1.382 (4) C11—H11B 0.95 (3)
C4—C5 1.384 (3) C11—H11C 0.93 (3)
C9—O5—C11 116.57 (15) O4—C9—C10 125.11 (15)
C7—O3—H3O 105.2 (14) C7—C10—C9 113.54 (14)
O1—N1—O2 125.32 (18) C1—C2—H2 119.6 (12)
O2—N1—C1 117.49 (15) C3—C2—H2 121.7 (12)
O1—N1—C1 117.11 (15) C2—C3—H3 122.3 (18)
N3—N2—C8 116.57 (14) C4—C3—H3 117.5 (18)
N2—N3—N4 171.07 (18) C3—C4—H4 120.1 (13)
N1—C1—C6 122.19 (15) C5—C4—H4 120.3 (13)
C2—C1—C6 123.7 (2) C4—C5—H5 122.8 (13)
N1—C1—C2 114.10 (18) C6—C5—H5 114.6 (12)
C1—C2—C3 118.7 (2) N2—C8—H8A 111.1 (10)
C2—C3—C4 120.3 (2) N2—C8—H8B 104.2 (10)
C3—C4—C5 119.6 (3) C7—C8—H8A 109.8 (9)
C4—C5—C6 122.56 (19) C7—C8—H8B 106.8 (10)
C1—C6—C7 125.77 (16) H8A—C8—H8B 111.5 (15)
C5—C6—C7 118.97 (15) C7—C10—H10A 106.5 (11)
C1—C6—C5 115.17 (16) C7—C10—H10B 112.4 (12)
O3—C7—C6 112.72 (13) C9—C10—H10A 107.2 (10)
O3—C7—C10 110.15 (13) C9—C10—H10B 107.4 (11)
C6—C7—C8 105.96 (13) H10A—C10—H10B 109.6 (16)
O3—C7—C8 104.56 (13) O5—C11—H11A 111.3 (17)
C8—C7—C10 110.58 (13) O5—C11—H11B 104.1 (12)
C6—C7—C10 112.49 (13) O5—C11—H11C 108.2 (13)
N2—C8—C7 113.22 (14) H11A—C11—H11B 109 (2)
O4—C9—O5 123.38 (14) H11A—C11—H11C 113 (2)
O5—C9—C10 111.52 (14) H11B—C11—H11C 111 (2)
C11—O5—C9—O4 −1.0 (3) C4—C5—C6—C1 0.5 (3)
C11—O5—C9—C10 179.32 (17) C4—C5—C6—C7 177.10 (16)
O1—N1—C1—C2 91.99 (19) C1—C6—C7—O3 −15.3 (2)
O1—N1—C1—C6 −86.4 (2) C1—C6—C7—C8 98.52 (18)
O2—N1—C1—C2 −84.7 (2) C1—C6—C7—C10 −140.54 (16)
O2—N1—C1—C6 96.86 (19) C5—C6—C7—O3 168.49 (14)
N3—N2—C8—C7 78.29 (18) C5—C6—C7—C8 −77.74 (18)
N1—C1—C2—C3 −177.75 (16) C5—C6—C7—C10 43.21 (19)
C6—C1—C2—C3 0.6 (3) O3—C7—C8—N2 −73.41 (17)
N1—C1—C6—C5 177.43 (15) C6—C7—C8—N2 167.29 (14)
N1—C1—C6—C7 1.1 (2) C10—C7—C8—N2 45.12 (19)
C2—C1—C6—C5 −0.8 (2) O3—C7—C10—C9 −69.34 (17)
C2—C1—C6—C7 −177.19 (15) C6—C7—C10—C9 57.34 (19)
C1—C2—C3—C4 0.0 (3) C8—C7—C10—C9 175.59 (14)
C2—C3—C4—C5 −0.3 (3) O4—C9—C10—C7 19.8 (2)
C3—C4—C5—C6 0.1 (3) O5—C9—C10—C7 −160.54 (14)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O3—H3O···O4 0.825 (19) 2.30 (2) 2.9439 (16) 135.5 (18)
O3—H3O···N2i 0.825 (19) 2.27 (2) 2.9193 (18) 135.6 (18)
C10—H10B···O4ii 0.95 (2) 2.557 (19) 3.350 (2) 141.0 (15)
C11—H11B···O1iii 0.95 (3) 2.57 (2) 3.268 (3) 130.9 (16)

Symmetry codes: (i) x+1/2, −y+1/2, z+1/2; (ii) x−1/2, −y+1/2, z−1/2; (iii) x−1/2, −y+1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2749).

References

  1. Alazard, J.-P., Millet-Paillusson, C., Guenard, D. & Thal, C. (1996). Bull. Soc. Chim. Fr.133, 251–266.
  2. Baudoin, O., Claveau, F., Thoret, S., Herrbach, A., Guenard, D. & Gueritte, F. (2002). Bioorg. Med. Chem.10, 3395–3400. [DOI] [PubMed]
  3. Bonneau, A.-L. R., Robert, N., Hoarau, C., Baudoin, O. & Marsais, F. (2007). Org. Biomol. Chem.5, 175–183. [DOI] [PubMed]
  4. Decor, A., Monse, B., Martin, M.-T., Chiaroni, A., Thoret, S., Guenard, D., Gueritte, F. & Baudoin, O. (2006). Bioorg. Med. Chem.14, 2314–2332. [DOI] [PubMed]
  5. Dupont, C., Guenard, D., Tchertanov, L., Thoret, S. & Gueritte, F. (1999). Bioorg. Med. Chem.7, 2961–2969. [DOI] [PubMed]
  6. Dupont, C. D., Guenard, C., Thal, C., Thoret, S. & Gueritte, F. (2000). Tetrahedron Lett.41, 5853–5856.
  7. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  8. Ghosez, L., Franc, C., Denonne, F., Cuisinier, C. & Touillaux, R. (2001). Can. J. Chem.79, 1827–1839.
  9. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst.39, 453–457.
  10. Mukaiyama, T., Banno, K. & Narasaka, K. (1974). J. Am. Chem. Soc.96, 7503–7509.
  11. Rubio, M. B. & Bornmann, W. G. (2001). Abstracts of Papers, 222nd ACS National Meeting, Chicago, IL, USA.
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Stoe & Cie (2000). IPDS Software. Stoe & Cie GmbH, Darmstadt, Germany.
  14. Vallat, O. (2004). PhD thesis, Université de Neuchâtel, Switzerland.
  15. Vallat, O., Buciumas, A.-M., Neels, A., Stoeckli-Evans, H. & Neier, R. (2009). In preparation.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808043857/lh2749sup1.cif

e-65-0o396-sup1.cif (18.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808043857/lh2749Isup2.hkl

e-65-0o396-Isup2.hkl (120.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES