Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Jan 17;65(Pt 2):o320. doi: 10.1107/S1600536809000178

Benzyl­tributyl­ammonium 4-hydroxy­naphthalene-2-sulfonate

Kazuya Uta a, Jin Mizuguchi a,*
PMCID: PMC2968190  PMID: 21581925

Abstract

The title compound, C19H34N+·C10H7O4S, is a charge-control agent used for toners in electrophotography. In the crystal structure, centrosymmetric anions associate through O—H⋯O hydrogen bonds formed between the O—H group of one anion and the sulfonate O atom of a neighbor. The components of the dimer are offset with respect to each other so that the separation between the two parallel naphthalene skeletons is about 1.6 Å. The ethyl residues of two of the butyl groups are disordered and were modelled over two postions (site occupancies = 0.33/0.67 and 0.34/0.66).

Related literature

For the function of charge-control agents, see: Nash et al. (2001). For the structures of benzyl­tributyl­ammonium 4-hydroxy­naphthalene-1-sulfonate and benzyl­tributyl­ammonium 6-hydroxy­naphthalene-2-sulfonate, see: Mizuguchi et al. (2007) and Uta et al. (2009), respectively.graphic file with name e-65-0o320-scheme1.jpg

Experimental

Crystal data

  • C19H34N+·C10H7O4S

  • M r = 499.70

  • Monoclinic, Inline graphic

  • a = 11.2676 (11) Å

  • b = 12.4528 (12) Å

  • c = 20.549 (2) Å

  • β = 101.628 (7)°

  • V = 2824.1 (5) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 1.27 mm−1

  • T = 296.1 K

  • 0.50 × 0.35 × 0.35 mm

Data collection

  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995) T min = 0.625, T max = 0.640

  • 25962 measured reflections

  • 4907 independent reflections

  • 4254 reflections with F 2 > 2σ(F 2)

  • R int = 0.033

Refinement

  • R[F 2 > 2σ(F 2)] = 0.082

  • wR(F 2) = 0.221

  • S = 1.08

  • 4907 reflections

  • 347 parameters

  • H-atom parameters constrained

  • Δρmax = 0.67 e Å−3

  • Δρmin = −0.97 e Å−3

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2006); program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: CrystalStructure.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809000178/tk2353sup1.cif

e-65-0o320-sup1.cif (30KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809000178/tk2353Isup2.hkl

e-65-0o320-Isup2.hkl (240.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4O⋯O2i 0.82 1.90 2.706 (2) 167

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors express their sincere thanks to Mr O. Yamate at Orient Chemical Industries, Ltd for the sample preparation.

supplementary crystallographic information

Comment

Compound (I) is a charge-control-agent used for toners in electrophotography. The background of the present study has been set out in a previous contribution (Uta et al., 2009). We have previously investigated the crystal structures of two isomers of (I) in connection with the mechanism of their high thermal stability, namely benzyltributylammonium 4-hydroxynaphthalene-1-sulfonate (Mizuguchi et al., 2007) and benzyltributylammonium 6-hydroxynaphthalene-2-sulfonate (Uta et al., 2009). The anions in both isomers are found to form chains via O—H···O hydrogen bonds formed between the O—H group of one anion and the sulfonic-O atom of neighbors. The presence of these hydrogen-bonded networks ensures the high thermal stability of these compounds as characterized by their high melting points of 462 K and 433 K, respectively. This paper describes a variation to the above in that the O—H···O hydrogen bonding occurs between isolated pairs of molecules.

The asymmetric unit of (I) comprises a benzyltributylammonium cation and a 4-hydroxynaphthalene-2-sulfonate anion, Fig. 1. Centrosymmetrically related anions associate via O—H···O hydrogen bonds, Fig. 2 and Table 1, to form a 14-membered ring. As highlighted in the side-on view of Fig. 3, a step topology characterizes the dimeric unit so that the distance between the parallel naphthalene skeletons is about 1.6 Å. The hydrogen-bonded dimer in (I) is found to enhance the thermal stability as seen in the melting point of 451 K.

Experimental

Compound (I) was obtained from Orient Chemical Industries, Ltd. and was recrystallized from a dichloromethane solution. After 48 h, a number of colorless crystals were obtained in the form of blocks.

Refinement

Each of the two pairs of butyl-C10 & C11 and C18 & C19 atoms were found to be disordered over two sites. From anisotropic refinement, the site occupancies for the C10A/C10B and C11A/C11B pairs were fixed at 0.33 and 0.67, respectively, whereas those for C18A/C18B and C19A/C19B were fixed at 0.34 and 0.66, respectively. All H atoms were placed in their geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.93 Å (aromatic), 0.96 Å (methyl), or 0.97 Å (methylene), and O—H = 0.82 Å, and with Uiso(H) = 1.2-1.5Ueq(parent atom).

Figures

Fig. 1.

Fig. 1.

The asymmetric unit of (I), showing 30% probability displacement ellipsoids and only the major components of the disordered residues.

Fig. 2.

Fig. 2.

View of the hydrogen bonded anion dimer in (I). The O—-H···O hydrogen bonds are shown as dashed lines.

Fig. 3.

Fig. 3.

Side-on view of the hydrogen bonded anion dimer in (I) highlighting the step-like topology. The O—-H···O hydrogen bonds are shown as dashed lines.

Crystal data

C19H34N+·C10H7O4S F(000) = 1080
Mr = 499.70 Dx = 1.175 Mg m3
Monoclinic, P21/n Cu Kα radiation, λ = 1.54187 Å
Hall symbol: -P 2yn Cell parameters from 20030 reflections
a = 11.2676 (11) Å θ = 3.5–68.2°
b = 12.4528 (12) Å µ = 1.27 mm1
c = 20.549 (2) Å T = 296 K
β = 101.628 (7)° Block, colorless
V = 2824.1 (5) Å3 0.50 × 0.35 × 0.35 mm
Z = 4

Data collection

Rigaku R-AXIS RAPID diffractometer 4254 reflections with F2 > 2σ(F2)
Detector resolution: 10.00 pixels mm-1 Rint = 0.033
ω scans θmax = 68.2°
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) h = −13→13
Tmin = 0.625, Tmax = 0.640 k = −15→15
25962 measured reflections l = −24→24
4907 independent reflections

Refinement

Refinement on F2 H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.082 w = 1/[σ2(Fo2) + (0.1354P)2 + 1.1699P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.221 (Δ/σ)max < 0.001
S = 1.08 Δρmax = 0.67 e Å3
4907 reflections Δρmin = −0.97 e Å3
347 parameters

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
S1 0.91846 (5) 0.00482 (5) 0.63573 (3) 0.0505 (2)
O1 0.80247 (16) 0.02686 (17) 0.59362 (10) 0.0661 (5)
O2 0.97467 (17) −0.09153 (14) 0.61559 (10) 0.0630 (4)
O3 0.91597 (19) 0.00507 (16) 0.70580 (10) 0.0672 (5)
O4 1.1388 (2) 0.22083 (17) 0.48351 (10) 0.0714 (5)
N1 0.63389 (19) 0.16264 (17) 0.75442 (12) 0.0573 (5)
C1 0.4036 (2) −0.0072 (2) 0.68571 (16) 0.0625 (7)
C2 0.3010 (2) −0.0304 (2) 0.63847 (17) 0.0691 (7)
C3 0.2984 (2) −0.0091 (2) 0.57251 (18) 0.0703 (8)
C4 0.3972 (3) 0.0358 (2) 0.55390 (16) 0.0737 (8)
C5 0.5013 (2) 0.0591 (2) 0.60108 (15) 0.0677 (7)
C6 0.5045 (2) 0.0377 (2) 0.66767 (14) 0.0541 (6)
C7 0.6212 (2) 0.0541 (2) 0.71838 (14) 0.0581 (6)
C8 0.5322 (2) 0.1792 (2) 0.79266 (16) 0.0734 (8)
C9 0.53000 (17) 0.1034 (3) 0.85017 (16) 0.0945 (10)
C10A 0.4160 (3) 0.0773 (3) 0.8763 (3) 0.105 (2) 0.33
C10B 0.4118 (3) 0.1309 (3) 0.8716 (2) 0.1068 (19) 0.67
C11A 0.3668 (12) 0.1744 (7) 0.9023 (8) 0.133 (2) 0.33
C11B 0.4095 (7) 0.0758 (6) 0.9349 (3) 0.133 (2) 0.67
C12 0.6247 (2) 0.2546 (2) 0.70588 (16) 0.0695 (7)
C13 0.7250 (3) 0.2623 (2) 0.66732 (16) 0.0794 (9)
C14 0.6911 (2) 0.3473 (3) 0.6135 (2) 0.1264 (16)
C15 0.7786 (6) 0.3542 (6) 0.5691 (3) 0.200 (3)
C16 0.7576 (2) 0.1590 (2) 0.80101 (15) 0.0625 (7)
C17 0.7946 (2) 0.2602 (2) 0.84116 (16) 0.0797 (8)
C18A 0.9264 (3) 0.2545 (3) 0.8776 (4) 0.097 (3) 0.34
C18B 0.9066 (4) 0.2397 (6) 0.8951 (2) 0.107 (2) 0.66
C19A 0.9500 (12) 0.1705 (8) 0.9291 (5) 0.1192 (19) 0.34
C19B 1.0137 (5) 0.2081 (6) 0.8686 (3) 0.1192 (19) 0.66
C20 1.0176 (2) 0.10968 (19) 0.62246 (12) 0.0490 (5)
C21 1.0829 (2) 0.1662 (2) 0.67460 (14) 0.0567 (6)
C22 1.1668 (2) 0.2447 (2) 0.66307 (15) 0.0592 (6)
C23 1.2369 (2) 0.3057 (2) 0.71564 (18) 0.0758 (8)
C24 1.3190 (3) 0.3785 (2) 0.7044 (2) 0.0871 (10)
C25 1.3381 (2) 0.3946 (2) 0.6407 (2) 0.0880 (11)
C26 1.2734 (2) 0.3379 (2) 0.58762 (19) 0.0751 (8)
C27 1.1857 (2) 0.2624 (2) 0.59803 (15) 0.0578 (6)
C28 1.1160 (2) 0.2017 (2) 0.54510 (13) 0.0543 (6)
C29 1.0324 (2) 0.1288 (2) 0.55687 (12) 0.0504 (5)
H1 0.4048 −0.0221 0.7302 0.075*
H2 0.2337 −0.0604 0.6513 0.083*
H3 0.2296 −0.0251 0.5406 0.084*
H4 0.3949 0.0510 0.5093 0.088*
H4O 1.0955 0.1822 0.4563 0.086*
H5 0.5684 0.0889 0.5880 0.081*
H7A 0.6877 0.0472 0.6953 0.073*
H7B 0.6276 −0.0019 0.7507 0.073*
H8A 0.5377 0.2521 0.8097 0.088*
H8B 0.4554 0.1729 0.7615 0.088*
H9A 0.5886 0.1310 0.8876 0.113* 0.33
H9B 0.5617 0.0353 0.8382 0.113* 0.33
H9C 0.5990 0.1156 0.8861 0.113* 0.67
H9D 0.5304 0.0291 0.8360 0.113* 0.67
H10A 0.3554 0.0471 0.8407 0.125* 0.33
H10B 0.4349 0.0241 0.9113 0.125* 0.33
H10C 0.4060 0.2079 0.8773 0.128* 0.67
H10D 0.3435 0.1079 0.8379 0.128* 0.67
H11A 0.2989 0.1551 0.9216 0.200* 0.33
H11B 0.3411 0.2244 0.8667 0.200* 0.33
H11C 0.4284 0.2069 0.9356 0.200* 0.33
H11D 0.4257 0.0007 0.9305 0.200* 0.67
H11E 0.3311 0.0845 0.9458 0.200* 0.67
H11F 0.4701 0.1062 0.9695 0.200* 0.67
H12A 0.5483 0.2485 0.6745 0.083*
H12B 0.6227 0.3211 0.7302 0.083*
H13A 0.7360 0.1934 0.6473 0.095*
H13B 0.8004 0.2817 0.6969 0.095*
H14A 0.6116 0.3310 0.5872 0.152*
H14B 0.6863 0.4167 0.6344 0.152*
H15A 0.8566 0.3743 0.5944 0.300*
H15B 0.7518 0.4071 0.5354 0.300*
H15C 0.7845 0.2857 0.5486 0.300*
H16A 0.7581 0.0996 0.8316 0.075*
H16B 0.8183 0.1439 0.7748 0.075*
H17A 0.7429 0.2696 0.8732 0.096* 0.34
H17B 0.7836 0.3218 0.8117 0.096* 0.34
H17C 0.7284 0.2837 0.8614 0.096* 0.66
H17D 0.8116 0.3168 0.8119 0.096* 0.66
H18A 0.9770 0.2412 0.8454 0.116* 0.34
H18B 0.9495 0.3235 0.8981 0.116* 0.34
H18C 0.9255 0.3044 0.9215 0.129* 0.66
H18D 0.8886 0.1834 0.9242 0.129* 0.66
H19A 0.8759 0.1337 0.9309 0.179* 0.34
H19B 0.9818 0.2029 0.9715 0.179* 0.34
H19C 1.0079 0.1202 0.9186 0.179* 0.34
H19D 0.9994 0.1395 0.8471 0.179* 0.66
H19E 1.0830 0.2034 0.9043 0.179* 0.66
H19F 1.0286 0.2608 0.8370 0.179* 0.66
H21 1.0722 0.1530 0.7176 0.068*
H23 1.2258 0.2951 0.7588 0.091*
H24 1.3629 0.4180 0.7395 0.104*
H25 1.3955 0.4446 0.6336 0.106*
H26 1.2875 0.3493 0.5451 0.090*
H29 0.9851 0.0918 0.5217 0.060*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0471 (3) 0.0556 (3) 0.0498 (4) 0.0019 (2) 0.0121 (2) 0.0009 (2)
O1 0.0447 (9) 0.0798 (12) 0.0700 (13) −0.0022 (8) 0.0026 (8) 0.0053 (9)
O2 0.0680 (11) 0.0481 (9) 0.0778 (12) 0.0001 (8) 0.0264 (9) −0.0020 (8)
O3 0.0714 (12) 0.0808 (13) 0.0529 (12) −0.0005 (9) 0.0208 (9) 0.0039 (8)
O4 0.0883 (13) 0.0682 (12) 0.0624 (12) −0.0186 (10) 0.0261 (10) 0.0013 (9)
N1 0.0523 (11) 0.0544 (11) 0.0650 (14) 0.0038 (9) 0.0118 (10) −0.0133 (9)
C1 0.0623 (16) 0.0628 (16) 0.0629 (18) −0.0047 (12) 0.0140 (14) −0.0025 (12)
C2 0.0529 (14) 0.0727 (17) 0.080 (2) −0.0037 (13) 0.0091 (14) −0.0040 (15)
C3 0.0572 (16) 0.0753 (19) 0.072 (2) 0.0098 (13) −0.0029 (14) −0.0090 (14)
C4 0.0740 (18) 0.089 (2) 0.0562 (18) 0.0045 (16) 0.0088 (14) −0.0033 (15)
C5 0.0629 (15) 0.0783 (19) 0.0640 (18) −0.0043 (14) 0.0181 (13) −0.0072 (14)
C6 0.0522 (13) 0.0503 (13) 0.0597 (16) 0.0044 (10) 0.0109 (11) −0.0074 (11)
C7 0.0539 (13) 0.0514 (13) 0.0659 (17) 0.0030 (11) 0.0050 (12) −0.0156 (11)
C8 0.0551 (14) 0.082 (2) 0.085 (2) 0.0037 (14) 0.0181 (14) −0.0301 (16)
C9 0.091 (2) 0.118 (2) 0.079 (2) −0.016 (2) 0.0288 (18) −0.021 (2)
C10A 0.108 (5) 0.131 (6) 0.089 (5) −0.011 (5) 0.051 (4) 0.013 (5)
C10B 0.107 (3) 0.107 (4) 0.107 (4) 0.000 (3) 0.022 (3) 0.000 (3)
C11A 0.136 (4) 0.150 (5) 0.133 (4) −0.034 (4) 0.072 (3) −0.023 (3)
C11B 0.136 (4) 0.150 (5) 0.133 (4) −0.034 (4) 0.072 (3) −0.023 (3)
C12 0.0718 (17) 0.0527 (15) 0.080 (2) 0.0071 (12) 0.0058 (15) −0.0059 (13)
C13 0.088 (2) 0.0681 (18) 0.083 (2) −0.0052 (16) 0.0189 (18) −0.0014 (15)
C14 0.180 (4) 0.087 (2) 0.124 (3) 0.009 (3) 0.057 (3) 0.023 (2)
C15 0.257 (8) 0.173 (6) 0.199 (6) −0.004 (6) 0.115 (6) 0.052 (5)
C16 0.0512 (13) 0.0635 (15) 0.0697 (18) 0.0009 (11) 0.0051 (12) −0.0117 (12)
C17 0.0754 (18) 0.0747 (18) 0.085 (2) −0.0020 (15) 0.0072 (15) −0.0266 (15)
C18A 0.082 (4) 0.091 (5) 0.106 (6) −0.013 (5) −0.006 (5) −0.035 (4)
C18B 0.089 (3) 0.110 (4) 0.108 (4) −0.007 (3) −0.013 (2) −0.025 (3)
C19A 0.082 (2) 0.115 (4) 0.146 (5) 0.003 (3) −0.010 (2) −0.008 (3)
C19B 0.082 (2) 0.115 (4) 0.146 (5) 0.003 (3) −0.010 (2) −0.008 (3)
C20 0.0459 (11) 0.0502 (12) 0.0502 (14) 0.0061 (9) 0.0079 (10) −0.0018 (10)
C21 0.0557 (13) 0.0608 (14) 0.0530 (15) 0.0054 (11) 0.0096 (11) −0.0075 (11)
C22 0.0514 (13) 0.0541 (14) 0.0691 (18) 0.0071 (11) 0.0045 (12) −0.0155 (11)
C23 0.0674 (17) 0.0699 (18) 0.083 (2) 0.0005 (14) −0.0009 (15) −0.0261 (15)
C24 0.0656 (18) 0.071 (2) 0.117 (3) −0.0029 (15) 0.0002 (19) −0.0342 (19)
C25 0.0600 (17) 0.0616 (18) 0.140 (3) −0.0112 (14) 0.015 (2) −0.022 (2)
C26 0.0644 (16) 0.0560 (16) 0.109 (2) −0.0063 (13) 0.0266 (17) −0.0067 (15)
C27 0.0514 (13) 0.0462 (12) 0.0762 (18) 0.0008 (10) 0.0137 (12) −0.0077 (11)
C28 0.0576 (13) 0.0478 (12) 0.0586 (15) 0.0018 (10) 0.0144 (11) −0.0004 (10)
C29 0.0512 (12) 0.0498 (12) 0.0483 (14) 0.0005 (10) 0.0057 (10) −0.0033 (10)

Geometric parameters (Å, °)

S1—O1 1.4409 (17) C7—H7A 0.968
S1—O2 1.4552 (19) C7—H7B 0.955
S1—O3 1.446 (2) C8—H8A 0.970
S1—C20 1.775 (2) C8—H8B 0.970
O4—C28 1.362 (3) C9—H9A 0.970
N1—C7 1.535 (3) C9—H9B 0.970
N1—C8 1.529 (4) C10A—H10A 0.970
N1—C12 1.508 (3) C10A—H10B 0.970
N1—C16 1.524 (3) C10B—H10C 0.970
C1—C2 1.382 (4) C10B—H10D 0.970
C1—C6 1.383 (4) C11A—H11A 0.960
C2—C3 1.376 (5) C11A—H11B 0.960
C3—C4 1.367 (4) C11A—H11C 0.960
C4—C5 1.393 (4) C11B—H11D 0.960
C5—C6 1.387 (4) C11B—H11E 0.960
C6—C7 1.518 (3) C11B—H11F 0.960
C8—C9 1.517 (4) C12—H12A 0.970
C9—C10A 1.523 (5) C12—H12B 0.970
C9—C10B 1.524 (5) C13—H13A 0.970
C10A—C11A 1.475 (13) C13—H13B 0.970
C10B—C11B 1.475 (8) C14—H14A 0.970
C12—C13 1.508 (5) C14—H14B 0.970
C13—C14 1.523 (4) C15—H15A 0.960
C14—C15 1.474 (8) C15—H15B 0.960
C16—C17 1.518 (4) C15—H15C 0.960
C17—C18A 1.524 (5) C16—H16A 0.970
C17—C18B 1.524 (5) C16—H16B 0.970
C18A—C19A 1.475 (13) C17—H17A 0.970
C18B—C19B 1.475 (8) C17—H17B 0.970
C20—C21 1.367 (3) C18A—H18A 0.970
C20—C29 1.411 (3) C18A—H18B 0.970
C21—C22 1.412 (3) C18B—H18C 0.970
C22—C23 1.423 (4) C18B—H18D 0.970
C22—C27 1.413 (4) C19A—H19A 0.960
C23—C24 1.349 (5) C19A—H19B 0.960
C24—C25 1.383 (6) C19A—H19C 0.960
C25—C26 1.378 (5) C19B—H19D 0.960
C26—C27 1.411 (4) C19B—H19E 0.960
C27—C28 1.424 (3) C19B—H19F 0.960
C28—C29 1.364 (3) C21—H21 0.930
O4—H4O 0.820 C23—H23 0.930
C1—H1 0.930 C24—H24 0.930
C2—H2 0.930 C25—H25 0.930
C3—H3 0.930 C26—H26 0.930
C4—H4 0.930 C29—H29 0.930
C5—H5 0.930
O2···O4i 2.706 (2) C5···H18Biv 2.985
O4···O2i 2.706 (2) C7···H9D 2.826
S1···H4Oi 2.984 C8···H9C 2.073
O1···H3ii 2.710 C8···H9D 2.073
O1···H4ii 2.910 C8···H17C 2.706
O1···H5 2.728 C9···H9C 0.970
O1···H7A 2.681 C9···H9D 0.970
O1···H13A 2.532 C10B···H9C 2.079
O2···H2iii 2.889 C10B···H9D 2.079
O2···H4Oi 1.900 C11B···H15Bvii 2.991
O2···H8Aiv 2.501 C11B···H9C 2.585
O2···H10Civ 2.826 C11B···H9D 2.728
O2···H29i 2.945 C12···H17D 2.816
O2···H17Civ 2.882 C15···H11Evi 2.822
O3···H7A 2.590 C16···H9C 2.792
O3···H12Biv 2.720 C16···H17C 2.056
O3···H16B 2.615 C16···H17D 2.056
O3···H24v 2.742 C17···H17C 0.970
O4···H9Avi 2.676 C17···H17D 0.970
O4···H11Cvi 2.542 C18B···H17C 2.061
O4···H11Fvi 2.848 C18B···H17D 2.061
O4···H17Avi 2.757 C19B···H17D 2.703
O4···H9Cvi 2.829 C23···H8Biii 2.958
O4···H17Cvi 2.887 C24···H10Aviii 2.897
N1···H9C 2.871 C25···H10Aviii 2.973
N1···H9D 2.779 C25···H12Aiii 2.956
N1···H17C 2.702 C26···H11Dviii 2.991
N1···H17D 2.852 C28···H11Cvi 2.985
O1—S1—O2 112.35 (11) C9—C10B—H10C 109.9
O1—S1—O3 113.60 (12) C9—C10B—H10D 109.9
O1—S1—C20 106.88 (11) C11B—C10B—H10C 109.9
O2—S1—O3 112.45 (11) C11B—C10B—H10D 109.9
O2—S1—C20 103.85 (11) H10C—C10B—H10D 108.3
O3—S1—C20 106.89 (11) C10A—C11A—H11A 109.5
C7—N1—C8 111.1 (2) C10A—C11A—H11B 109.5
C7—N1—C12 111.2 (2) C10A—C11A—H11C 109.5
C7—N1—C16 105.12 (18) H11A—C11A—H11B 109.5
C8—N1—C12 106.2 (2) H11A—C11A—H11C 109.5
C8—N1—C16 111.5 (2) H11B—C11A—H11C 109.5
C12—N1—C16 111.7 (2) C10B—C11B—H11D 109.5
C2—C1—C6 120.8 (3) C10B—C11B—H11E 109.5
C1—C2—C3 120.0 (3) C10B—C11B—H11F 109.5
C2—C3—C4 119.8 (2) H11D—C11B—H11E 109.5
C3—C4—C5 120.6 (3) H11D—C11B—H11F 109.5
C4—C5—C6 119.8 (2) H11E—C11B—H11F 109.5
C1—C6—C5 118.9 (2) N1—C12—H12A 108.3
C1—C6—C7 121.0 (2) N1—C12—H12B 108.3
C5—C6—C7 119.9 (2) C13—C12—H12A 108.3
N1—C7—C6 115.6 (2) C13—C12—H12B 108.3
N1—C8—C9 116.6 (2) H12A—C12—H12B 107.4
C8—C9—C10A 123.6 (2) C12—C13—H13A 109.9
C8—C9—C10B 103.8 (2) C12—C13—H13B 109.9
C9—C10B—C11B 108.8 (4) C14—C13—H13A 109.9
N1—C12—C13 115.9 (2) C14—C13—H13B 109.9
C12—C13—C14 108.7 (2) H13A—C13—H13B 108.3
C13—C14—C15 112.9 (3) C13—C14—H14A 109.0
N1—C16—C17 115.6 (2) C13—C14—H14B 109.0
C16—C17—C18A 111.2 (3) C15—C14—H14A 109.0
C16—C17—C18B 110.7 (3) C15—C14—H14B 109.0
C17—C18A—C19A 113.8 (6) H14A—C14—H14B 107.8
C17—C18B—C19B 113.3 (4) C14—C15—H15A 109.5
S1—C20—C21 121.0 (2) C14—C15—H15B 109.5
S1—C20—C29 118.05 (17) C14—C15—H15C 109.5
C21—C20—C29 120.9 (2) H15A—C15—H15B 109.5
C20—C21—C22 119.9 (2) H15A—C15—H15C 109.5
C21—C22—C23 122.0 (2) H15B—C15—H15C 109.5
C21—C22—C27 120.1 (2) N1—C16—H16A 108.4
C23—C22—C27 117.9 (2) N1—C16—H16B 108.4
C22—C23—C24 121.6 (3) C17—C16—H16A 108.4
C23—C24—C25 120.2 (3) C17—C16—H16B 108.4
C24—C25—C26 121.0 (3) H16A—C16—H16B 107.4
C25—C26—C27 119.8 (3) C16—C17—H17A 109.4
C22—C27—C26 119.4 (2) C16—C17—H17B 109.4
C22—C27—C28 118.3 (2) C16—C17—H17C 109.5
C26—C27—C28 122.2 (2) C16—C17—H17D 109.5
O4—C28—C27 116.0 (2) C18A—C17—H17A 109.4
O4—C28—C29 123.2 (2) C18A—C17—H17B 109.4
C27—C28—C29 120.8 (2) C18B—C17—H17C 109.5
C20—C29—C28 120.0 (2) C18B—C17—H17D 109.5
C28—O4—H4O 109.5 H17A—C17—H17B 108.0
C2—C1—H1 119.6 H17C—C17—H17D 108.1
C6—C1—H1 119.6 C17—C18A—H18A 108.8
C1—C2—H2 120.0 C17—C18A—H18B 108.8
C3—C2—H2 120.0 C19A—C18A—H18A 108.8
C2—C3—H3 120.1 C19A—C18A—H18B 108.8
C4—C3—H3 120.1 H18A—C18A—H18B 107.7
C3—C4—H4 119.7 C17—C18B—H18C 108.9
C5—C4—H4 119.7 C17—C18B—H18D 108.9
C4—C5—H5 120.1 C19B—C18B—H18C 108.9
C6—C5—H5 120.1 C19B—C18B—H18D 108.9
N1—C7—H7A 108.0 H18C—C18B—H18D 107.7
N1—C7—H7B 108.6 C18A—C19A—H19A 109.5
C6—C7—H7A 107.5 C18A—C19A—H19B 109.5
C6—C7—H7B 108.3 C18A—C19A—H19C 109.5
H7A—C7—H7B 108.6 H19A—C19A—H19B 109.5
N1—C8—H8A 108.1 H19A—C19A—H19C 109.5
N1—C8—H8B 108.1 H19B—C19A—H19C 109.5
C9—C8—H8A 108.1 C18B—C19B—H19D 109.5
C9—C8—H8B 108.1 C18B—C19B—H19E 109.5
H8A—C8—H8B 107.3 C18B—C19B—H19F 109.5
C8—C9—H9A 106.4 H19D—C19B—H19E 109.5
C8—C9—H9B 106.4 H19D—C19B—H19F 109.5
C8—C9—H9C 111.0 H19E—C19B—H19F 109.5
C8—C9—H9D 111.0 C20—C21—H21 120.1
C10A—C9—H9A 106.4 C22—C21—H21 120.1
C10A—C9—H9B 106.4 C22—C23—H23 119.2
C10B—C9—H9C 111.0 C24—C23—H23 119.2
C10B—C9—H9D 111.0 C23—C24—H24 119.9
H9A—C9—H9B 106.5 C25—C24—H24 119.9
H9C—C9—H9D 109.0 C24—C25—H25 119.5
C9—C10A—H10A 109.4 C26—C25—H25 119.5
C9—C10A—H10B 109.4 C25—C26—H26 120.1
C11A—C10A—H10A 109.4 C27—C26—H26 120.1
C11A—C10A—H10B 109.4 C20—C29—H29 120.0
H10A—C10A—H10B 108.0 C28—C29—H29 120.0
O1—S1—C20—C21 127.8 (2) C8—C9—C10A—C11A −62.4 (8)
O1—S1—C20—C29 −55.8 (2) C8—C9—C10B—C11B −170.1 (4)
O2—S1—C20—C21 −113.2 (2) N1—C12—C13—C14 171.0 (2)
O2—S1—C20—C29 63.2 (2) C12—C13—C14—C15 −174.9 (3)
O3—S1—C20—C21 5.9 (2) N1—C16—C17—C18A −171.1 (3)
O3—S1—C20—C29 −177.75 (19) N1—C16—C17—C18B 168.8 (3)
C7—N1—C8—C9 65.3 (2) C16—C17—C18B—C19B 61.8 (6)
C8—N1—C7—C6 60.0 (3) S1—C20—C21—C22 176.06 (19)
C7—N1—C12—C13 −65.4 (2) S1—C20—C29—C28 −173.89 (19)
C12—N1—C7—C6 −58.1 (3) C21—C20—C29—C28 2.5 (3)
C7—N1—C16—C17 177.8 (2) C29—C20—C21—C22 −0.2 (3)
C16—N1—C7—C6 −179.2 (2) C20—C21—C22—C23 179.96 (18)
C8—N1—C12—C13 173.6 (2) C20—C21—C22—C27 −1.9 (3)
C12—N1—C8—C9 −173.6 (2) C21—C22—C23—C24 178.3 (2)
C8—N1—C16—C17 −61.7 (3) C21—C22—C27—C26 −177.4 (2)
C16—N1—C8—C9 −51.6 (3) C21—C22—C27—C28 1.8 (3)
C12—N1—C16—C17 57.0 (3) C23—C22—C27—C26 0.8 (3)
C16—N1—C12—C13 51.8 (3) C23—C22—C27—C28 180.0 (2)
C2—C1—C6—C5 −0.2 (3) C27—C22—C23—C24 0.1 (3)
C2—C1—C6—C7 −174.4 (2) C22—C23—C24—C25 −0.8 (5)
C6—C1—C2—C3 0.2 (4) C23—C24—C25—C26 0.6 (5)
C1—C2—C3—C4 −0.5 (4) C24—C25—C26—C27 0.3 (4)
C2—C3—C4—C5 0.8 (5) C25—C26—C27—C22 −1.0 (4)
C3—C4—C5—C6 −0.7 (5) C25—C26—C27—C28 179.8 (2)
C4—C5—C6—C1 0.4 (4) C22—C27—C28—O4 −179.2 (2)
C4—C5—C6—C7 174.7 (2) C22—C27—C28—C29 0.5 (3)
C1—C6—C7—N1 −90.5 (3) C26—C27—C28—O4 −0.1 (2)
C5—C6—C7—N1 95.4 (3) C26—C27—C28—C29 179.6 (2)
N1—C8—C9—C10A −155.4 (3) O4—C28—C29—C20 177.1 (2)
N1—C8—C9—C10B −173.1 (2) C27—C28—C29—C20 −2.6 (3)

Symmetry codes: (i) −x+2, −y, −z+1; (ii) −x+1, −y, −z+1; (iii) x+1, y, z; (iv) −x+3/2, y−1/2, −z+3/2; (v) −x+5/2, y−1/2, −z+3/2; (vi) x+1/2, −y+1/2, z−1/2; (vii) x−1/2, −y+1/2, z+1/2; (viii) −x+3/2, y+1/2, −z+3/2.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O4—H4O···O2i 0.82 1.90 2.706 (2) 167

Symmetry codes: (i) −x+2, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2353).

References

  1. Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst.36, 1103.
  2. Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII Report ORNL-6895. Oak Ridge National Laboratory. Tennessee, USA.
  3. Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  4. Mizuguchi, J., Sato, Y., Uta, K. & Sato, K. (2007). Acta Cryst. E63, o2509–o2510.
  5. Nash, R. J., Grande, M. L. & Muller, R. N. (2001). Proceedings of the 7th International Conference on Advances in Non-Impact Printing Technology, pp. 358–364.
  6. Rigaku (1998). PROCESS-AUTO Rigaku Corporation, Tokyo, Japan.
  7. Rigaku/MSC (2006). CrystalStructure Rigaku/MSC, The Woodlands, Texas, USA.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Uta, K., Sato, Y. & Mizuguchi, J. (2009). Acta Cryst. E65, o319. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809000178/tk2353sup1.cif

e-65-0o320-sup1.cif (30KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809000178/tk2353Isup2.hkl

e-65-0o320-Isup2.hkl (240.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES