Abstract
The complete molecule of the title compound, [MnCl2(C18H10N4)2], is generated by crystallographic twofold symmetry with the Mn atom lying on the rotation axis. The Mn coordination geometry is a distorted cis-MnCl2N4 octahedron, arising from two N,N′-bidentate dipyrido[3,2-a:2′,3′-c]phenazine (DPPZ) ligands and two chloride ions. In the crystal structure, neighbouring mononuclear units pack together through π–π contacts between the DPPZ rings [shortest centroid–centroid distance = 3.480 (2) Å], leading to a chain-like structure along [001]. C—H⋯Cl hydrogen bonds complete the structure.
Related literature
For background, see: Che et al. (2006 ▶, 2008 ▶); Xu et al. (2008 ▶).
Experimental
Crystal data
[MnCl2(C18H10N4)2]
M r = 690.44
Monoclinic,
a = 8.4017 (17) Å
b = 12.256 (3) Å
c = 28.226 (6) Å
β = 95.09 (3)°
V = 2895.0 (10) Å3
Z = 4
Mo Kα radiation
μ = 0.69 mm−1
T = 292 (2) K
0.38 × 0.24 × 0.21 mm
Data collection
Bruker SMART CCD area-detector diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2002 ▶) T min = 0.821, T max = 0.864
11873 measured reflections
2866 independent reflections
1748 reflections with I > 2σ(I)
R int = 0.078
Refinement
R[F 2 > 2σ(F 2)] = 0.053
wR(F 2) = 0.120
S = 1.00
2866 reflections
243 parameters
H atoms treated by a mixture of independent and constrained refinement
Δρmax = 0.32 e Å−3
Δρmin = −0.43 e Å−3
Data collection: SMART (Bruker, 2002 ▶); cell refinement: SAINT (Bruker, 2002 ▶); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 ▶); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 ▶); molecular graphics: SHELXTL (Sheldrick, 2008 ▶); software used to prepare material for publication: SHELXTL.
Supplementary Material
Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808043468/hb2884sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536808043468/hb2884Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Table 1. Selected bond lengths (Å).
| Mn—N1 | 2.283 (3) |
| Mn—N2 | 2.316 (3) |
| Mn—Cl | 2.4644 (12) |
Table 2. Hydrogen-bond geometry (Å, °).
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| C2—H2⋯Cli | 1.09 (3) | 2.67 (3) | 3.737 (4) | 168 (2) |
| C15—H15⋯Clii | 1.04 (3) | 2.64 (3) | 3.648 (4) | 163 (3) |
Symmetry codes: (i)
; (ii)
.
Acknowledgments
The authors thank the Doctoral Foundation of Jilin Normal University (grant Nos. 2006006 and 2007009) and the Subject and Base Construction Foundation of Jilin Normal University (grant No. 2006041).
supplementary crystallographic information
Comment
1,10-Phenanthroline (phen) and its derivatives, as chelating N-containing aromatic ligands, has been extensively studied in the chemistry of coordination polymers (Che et al., 2008). Here, we report the crystal structure of the title compound, [Mn(DPPZ)2Cl2] or [Mn(C18H10N4)2Cl2] (I), based on the dipyrido[3,2 - a:2',3'-c]-phenazine (DPPZ) ligand (Xu et al., 2008).
In compound (I), the Mn atom (site symmetry 2) is coordinated in a distorted octahedral fashion (Fig. 1) by four N atoms from two DPPZ ligands and two Cl ions (Table 1). The DPPZ ring systems is almost planar and the dihedral angle between the two symmetry-related DPPZ planes is 70.66°.
π-π stacking interactions between the DPPZ ligands assemble mononuclear complex molecules into one-dimensional chains along (001) [centroid-centroid distances = 3.480 (2) Å] (Fig. 2). Finally, C—H···Cl hydrogen bonds involving the hydrogen of aromatic rings and the Cl ions further stabilize the crystal structure (Table 2).
Experimental
The DPPZ ligand was synthesized according to the literature method of Che et al. (2006). A mixture of DPPZ, MnCl2 and water in a molar ratio of 2:1:5000 was sealed in a Teflon-lined autoclave and heated to 423 K for 3 d. Upon cooling and opening the bomb, yellow blocks of (I) were obtained (81% yield based on Mn).
Refinement
The H atoms were located in a difference map and their positions were freely refined with a fixed Uiso value of 0.06Å2.
Figures
Fig. 1.
A view of (I). Displacement ellipsoids are drawn at the 30% probability level (arbitrary spheres for the H atoms). [Symmetry code: (i) -x + 2, y, -z + 1/2.]
Fig. 2.
View of the supramolecular chain structure of (I) arising from π-π stacking. H atoms have been omitted. [Symmetry code: (A) -x + 2, y, -z + 1/2; (B) x, -y + 1, -z; (C) x, y, -z - 1; (BA) x, -y + 1, -z - 1.]
Crystal data
| [MnCl2(C18H10N4)2] | F(000) = 1404 |
| Mr = 690.44 | Dx = 1.584 Mg m−3 |
| Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
| Hall symbol: -C 2yc | Cell parameters from 2001 reflections |
| a = 8.4017 (17) Å | θ = 2.9–26.1° |
| b = 12.256 (3) Å | µ = 0.69 mm−1 |
| c = 28.226 (6) Å | T = 292 K |
| β = 95.09 (3)° | Block, yellow |
| V = 2895.0 (10) Å3 | 0.38 × 0.24 × 0.21 mm |
| Z = 4 |
Data collection
| Bruker SMART CCD area-detector diffractometer | 2866 independent reflections |
| Radiation source: fine-focus sealed tube | 1748 reflections with I > 2σ(I) |
| graphite | Rint = 0.078 |
| ω scans | θmax = 26.1°, θmin = 2.9° |
| Absorption correction: multi-scan (SADABS; Bruker, 2002) | h = −10→10 |
| Tmin = 0.821, Tmax = 0.864 | k = −15→15 |
| 11873 measured reflections | l = −34→34 |
Refinement
| Refinement on F2 | Primary atom site location: structure-invariant direct methods |
| Least-squares matrix: full | Secondary atom site location: difference Fourier map |
| R[F2 > 2σ(F2)] = 0.053 | Hydrogen site location: inferred from neighbouring sites |
| wR(F2) = 0.120 | H atoms treated by a mixture of independent and constrained refinement |
| S = 1.00 | w = 1/[σ2(Fo2) + (0.0518P)2] where P = (Fo2 + 2Fc2)/3 |
| 2866 reflections | (Δ/σ)max = 0.001 |
| 243 parameters | Δρmax = 0.32 e Å−3 |
| 0 restraints | Δρmin = −0.42 e Å−3 |
Special details
| Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
| Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| C1 | 0.6671 (4) | 0.3405 (3) | 0.29912 (12) | 0.0408 (9) | |
| C2 | 0.5622 (4) | 0.3550 (3) | 0.33399 (12) | 0.0459 (10) | |
| C3 | 0.6118 (4) | 0.4167 (3) | 0.37276 (13) | 0.0461 (10) | |
| C4 | 0.7619 (4) | 0.4666 (3) | 0.37635 (11) | 0.0343 (8) | |
| C5 | 0.8223 (4) | 0.5307 (3) | 0.41737 (11) | 0.0367 (9) | |
| C7 | 0.7118 (5) | 0.6056 (3) | 0.53324 (14) | 0.0508 (11) | |
| C8 | 0.7738 (5) | 0.6604 (3) | 0.57158 (13) | 0.0521 (11) | |
| C9 | 0.9253 (5) | 0.7097 (3) | 0.57276 (13) | 0.0501 (11) | |
| C10 | 1.0139 (5) | 0.7010 (3) | 0.53419 (13) | 0.0508 (11) | |
| C11 | 0.9520 (4) | 0.6445 (3) | 0.49315 (12) | 0.0424 (9) | |
| C12 | 0.9766 (4) | 0.5811 (3) | 0.41822 (12) | 0.0373 (9) | |
| C13 | 1.0710 (4) | 0.5678 (3) | 0.37731 (11) | 0.0364 (9) | |
| C14 | 1.2220 (4) | 0.6152 (3) | 0.37604 (13) | 0.0448 (10) | |
| C15 | 1.3054 (4) | 0.5992 (3) | 0.33699 (13) | 0.0472 (10) | |
| C16 | 1.2389 (4) | 0.5345 (3) | 0.30016 (13) | 0.0419 (9) | |
| C17 | 1.0135 (4) | 0.5042 (3) | 0.33907 (11) | 0.0345 (8) | |
| C18 | 0.8568 (4) | 0.4510 (3) | 0.33849 (11) | 0.0333 (8) | |
| C6 | 0.7985 (4) | 0.5942 (3) | 0.49265 (12) | 0.0404 (9) | |
| N1 | 0.8113 (3) | 0.3861 (2) | 0.30102 (9) | 0.0377 (7) | |
| N2 | 1.0963 (3) | 0.4861 (2) | 0.30080 (9) | 0.0380 (7) | |
| N3 | 0.7343 (3) | 0.5382 (2) | 0.45415 (9) | 0.0409 (8) | |
| N4 | 1.0403 (3) | 0.6370 (2) | 0.45531 (10) | 0.0427 (8) | |
| Mn | 1.0000 | 0.34811 (7) | 0.2500 | 0.0383 (3) | |
| Cl | 0.82991 (11) | 0.22033 (8) | 0.20077 (3) | 0.0501 (3) | |
| H1 | 0.634 (4) | 0.289 (3) | 0.2722 (13) | 0.060* | |
| H2 | 0.448 (4) | 0.313 (3) | 0.3296 (12) | 0.060* | |
| H3 | 0.550 (4) | 0.427 (3) | 0.3977 (13) | 0.060* | |
| H7 | 0.613 (4) | 0.566 (3) | 0.5315 (12) | 0.060* | |
| H8 | 0.720 (4) | 0.663 (3) | 0.5996 (13) | 0.060* | |
| H9 | 0.973 (4) | 0.751 (3) | 0.6018 (14) | 0.060* | |
| H10 | 1.116 (4) | 0.738 (3) | 0.5341 (13) | 0.060* | |
| H14 | 1.264 (4) | 0.661 (3) | 0.3997 (13) | 0.060* | |
| H15 | 1.417 (4) | 0.634 (3) | 0.3341 (12) | 0.060* | |
| H16 | 1.299 (4) | 0.524 (3) | 0.2703 (12) | 0.060* |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| C1 | 0.036 (2) | 0.056 (3) | 0.031 (2) | −0.0009 (19) | 0.0073 (16) | −0.0062 (19) |
| C2 | 0.036 (2) | 0.068 (3) | 0.035 (2) | −0.003 (2) | 0.0089 (17) | −0.006 (2) |
| C3 | 0.037 (2) | 0.069 (3) | 0.035 (2) | 0.003 (2) | 0.0195 (18) | 0.000 (2) |
| C4 | 0.0330 (19) | 0.043 (2) | 0.0278 (19) | 0.0012 (17) | 0.0080 (15) | 0.0006 (16) |
| C5 | 0.037 (2) | 0.045 (2) | 0.0288 (19) | 0.0031 (18) | 0.0086 (16) | 0.0008 (17) |
| C7 | 0.058 (3) | 0.061 (3) | 0.036 (2) | 0.005 (2) | 0.019 (2) | −0.003 (2) |
| C8 | 0.061 (3) | 0.069 (3) | 0.029 (2) | 0.004 (2) | 0.0175 (19) | −0.008 (2) |
| C9 | 0.060 (3) | 0.058 (3) | 0.032 (2) | 0.012 (2) | 0.002 (2) | −0.008 (2) |
| C10 | 0.054 (3) | 0.061 (3) | 0.037 (2) | −0.002 (2) | 0.007 (2) | −0.009 (2) |
| C11 | 0.049 (2) | 0.050 (2) | 0.029 (2) | 0.005 (2) | 0.0079 (17) | −0.0027 (18) |
| C12 | 0.041 (2) | 0.042 (2) | 0.030 (2) | 0.0025 (18) | 0.0095 (16) | −0.0019 (18) |
| C13 | 0.039 (2) | 0.042 (2) | 0.030 (2) | 0.0012 (17) | 0.0075 (16) | −0.0004 (17) |
| C14 | 0.045 (2) | 0.051 (3) | 0.039 (2) | −0.010 (2) | 0.0098 (18) | −0.0088 (19) |
| C15 | 0.038 (2) | 0.056 (3) | 0.049 (2) | −0.009 (2) | 0.0158 (19) | −0.002 (2) |
| C16 | 0.044 (2) | 0.051 (2) | 0.032 (2) | −0.0016 (19) | 0.0128 (17) | 0.0011 (19) |
| C17 | 0.0339 (19) | 0.044 (2) | 0.0269 (19) | 0.0051 (17) | 0.0078 (15) | 0.0047 (17) |
| C18 | 0.0342 (19) | 0.041 (2) | 0.0257 (19) | 0.0034 (17) | 0.0065 (15) | 0.0021 (17) |
| C6 | 0.047 (2) | 0.050 (2) | 0.025 (2) | 0.0076 (19) | 0.0090 (16) | −0.0031 (18) |
| N1 | 0.0344 (16) | 0.049 (2) | 0.0300 (17) | −0.0013 (15) | 0.0053 (13) | −0.0018 (15) |
| N2 | 0.0379 (17) | 0.050 (2) | 0.0283 (16) | 0.0001 (15) | 0.0129 (13) | 0.0004 (14) |
| N3 | 0.0396 (17) | 0.054 (2) | 0.0307 (17) | 0.0027 (15) | 0.0128 (14) | −0.0028 (15) |
| N4 | 0.0452 (18) | 0.052 (2) | 0.0317 (17) | 0.0017 (15) | 0.0091 (14) | −0.0061 (15) |
| Mn | 0.0351 (4) | 0.0540 (6) | 0.0273 (4) | 0.000 | 0.0113 (3) | 0.000 |
| Cl | 0.0432 (6) | 0.0631 (7) | 0.0448 (6) | 0.0003 (5) | 0.0081 (4) | −0.0096 (5) |
Geometric parameters (Å, °)
| C1—N1 | 1.330 (4) | C11—C6 | 1.429 (5) |
| C1—C2 | 1.390 (5) | C12—N4 | 1.323 (4) |
| C1—H1 | 1.01 (4) | C12—C13 | 1.467 (4) |
| C2—C3 | 1.365 (5) | C13—C17 | 1.383 (4) |
| C2—H2 | 1.08 (4) | C13—C14 | 1.399 (5) |
| C3—C4 | 1.397 (5) | C14—C15 | 1.372 (5) |
| C3—H3 | 0.92 (4) | C14—H14 | 0.92 (4) |
| C4—C18 | 1.402 (4) | C15—C16 | 1.385 (5) |
| C4—C5 | 1.453 (4) | C15—H15 | 1.04 (4) |
| C5—N3 | 1.330 (4) | C16—N2 | 1.339 (4) |
| C5—C12 | 1.434 (4) | C16—H16 | 1.03 (3) |
| C7—C8 | 1.339 (5) | C17—N2 | 1.354 (4) |
| C7—C6 | 1.418 (5) | C17—C18 | 1.468 (4) |
| C7—H7 | 0.96 (3) | C18—N1 | 1.351 (4) |
| C8—C9 | 1.406 (5) | C6—N3 | 1.356 (4) |
| C8—H8 | 0.95 (4) | Mn—N1 | 2.283 (3) |
| C9—C10 | 1.377 (5) | Mn—N2 | 2.316 (3) |
| C9—H9 | 1.02 (4) | Mn—Cl | 2.4644 (12) |
| C10—C11 | 1.409 (5) | Mn—N1i | 2.283 (3) |
| C10—H10 | 0.97 (4) | Mn—N2i | 2.316 (3) |
| C11—N4 | 1.357 (4) | Mn—Cli | 2.4644 (12) |
| N1—C1—C2 | 123.4 (4) | C14—C15—C16 | 119.0 (3) |
| N1—C1—H1 | 119 (2) | C14—C15—H15 | 122 (2) |
| C2—C1—H1 | 118 (2) | C16—C15—H15 | 118.7 (19) |
| C3—C2—C1 | 118.1 (4) | N2—C16—C15 | 123.1 (3) |
| C3—C2—H2 | 123.9 (19) | N2—C16—H16 | 117.5 (19) |
| C1—C2—H2 | 118.0 (19) | C15—C16—H16 | 119 (2) |
| C2—C3—C4 | 120.7 (3) | N2—C17—C13 | 123.1 (3) |
| C2—C3—H3 | 123 (2) | N2—C17—C18 | 116.2 (3) |
| C4—C3—H3 | 117 (2) | C13—C17—C18 | 120.6 (3) |
| C3—C4—C18 | 117.1 (3) | N1—C18—C4 | 122.4 (3) |
| C3—C4—C5 | 122.9 (3) | N1—C18—C17 | 117.5 (3) |
| C18—C4—C5 | 119.9 (3) | C4—C18—C17 | 120.1 (3) |
| N3—C5—C12 | 121.5 (3) | N3—C6—C7 | 120.1 (3) |
| N3—C5—C4 | 118.7 (3) | N3—C6—C11 | 121.4 (3) |
| C12—C5—C4 | 119.8 (3) | C7—C6—C11 | 118.5 (3) |
| C8—C7—C6 | 120.8 (4) | C1—N1—C18 | 118.2 (3) |
| C8—C7—H7 | 125 (2) | C1—N1—Mn | 124.7 (2) |
| C6—C7—H7 | 114 (2) | C18—N1—Mn | 116.7 (2) |
| C7—C8—C9 | 121.4 (4) | C16—N2—C17 | 117.5 (3) |
| C7—C8—H8 | 121 (2) | C16—N2—Mn | 125.4 (2) |
| C9—C8—H8 | 118 (2) | C17—N2—Mn | 116.0 (2) |
| C10—C9—C8 | 120.0 (4) | C5—N3—C6 | 116.8 (3) |
| C10—C9—H9 | 118 (2) | C12—N4—C11 | 116.6 (3) |
| C8—C9—H9 | 122 (2) | N1i—Mn—N1 | 156.48 (15) |
| C9—C10—C11 | 120.1 (4) | N1i—Mn—N2 | 91.01 (10) |
| C9—C10—H10 | 120 (2) | N1—Mn—N2 | 71.63 (10) |
| C11—C10—H10 | 119 (2) | N1i—Mn—N2i | 71.63 (10) |
| N4—C11—C10 | 119.5 (3) | N1—Mn—N2i | 91.01 (10) |
| N4—C11—C6 | 121.3 (3) | N2—Mn—N2i | 86.22 (14) |
| C10—C11—C6 | 119.2 (3) | N1i—Mn—Cl | 100.04 (7) |
| N4—C12—C5 | 122.5 (3) | N1—Mn—Cl | 94.86 (8) |
| N4—C12—C13 | 118.1 (3) | N2—Mn—Cl | 165.09 (7) |
| C5—C12—C13 | 119.3 (3) | N2i—Mn—Cl | 87.79 (8) |
| C17—C13—C14 | 118.0 (3) | N1i—Mn—Cli | 94.86 (8) |
| C17—C13—C12 | 120.1 (3) | N1—Mn—Cli | 100.04 (7) |
| C14—C13—C12 | 121.9 (3) | N2—Mn—Cli | 87.79 (8) |
| C15—C14—C13 | 119.4 (4) | N2i—Mn—Cli | 165.09 (7) |
| C15—C14—H14 | 119 (2) | Cl—Mn—Cli | 101.09 (6) |
| C13—C14—H14 | 122 (2) |
Symmetry codes: (i) −x+2, y, −z+1/2.
Hydrogen-bond geometry (Å, °)
| D—H···A | D—H | H···A | D···A | D—H···A |
| C2—H2···Clii | 1.09 (3) | 2.67 (3) | 3.737 (4) | 168 (2) |
| C15—H15···Cliii | 1.04 (3) | 2.64 (3) | 3.648 (4) | 163 (3) |
Symmetry codes: (ii) −x+1, y, −z+1/2; (iii) −x+5/2, y+1/2, −z+1/2.
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2884).
References
- Bruker (2002). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
- Che, G.-B., Li, W.-L., Kong, Z.-G., Su, Z.-S., Chu, B., Li, B., Zhang, Z.-Q., Hu, Z.-Z. & Chi, H.-J. (2006). Synth. Commun.36, 2519–2524.
- Che, G.-B., Liu, C.-B., Liu, B., Wang, Q.-W. & Xu, Z.-L. (2008). CrystEngComm, 10, 184–191.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Xu, Z.-L., Li, X.-Y., Che, G.-B., Liu, C.-B. & Wang, Q.-W. (2008). Chin. J. Struct. Chem.27, 593–597.
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808043468/hb2884sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536808043468/hb2884Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report


