Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Jan 17;65(Pt 2):o319. doi: 10.1107/S1600536809001329

Benzyl­tributyl­ammonium 6-hydroxy­naphthalene-2-sulfonate

Kazuya Uta a, Yohei Sato a, Jin Mizuguchi a,*
PMCID: PMC2968198  PMID: 21581924

Abstract

The title compound, C19H34N+·C10H7O4S, is a charge-control agent for toners used in electrophotography. Inter­moleclar O—H⋯O hydrogen bonding between the OH group of one anion and the sulfonate O atom of a neighboring anion leads to the formation of one-dimensional chains along the b axis. In addition, C—H⋯O hydrogen bonds are observed. One of the n-butyl chains of the cation is disordered over two sites in a 0.88:0.12 ratio.

Related literature

For general background to charge-control agents for toners, see: Nash et al. (2001). For a related structure, see: Mizuguchi et al. (2007).graphic file with name e-65-0o319-scheme1.jpg

Experimental

Crystal data

  • C19H34N+·C10H7O4S

  • M r = 499.70

  • Monoclinic, Inline graphic

  • a = 16.9616 (4) Å

  • b = 10.4422 (2) Å

  • c = 17.6700 (4) Å

  • β = 116.2570 (11)°

  • V = 2806.73 (11) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 1.28 mm−1

  • T = 296.1 K

  • 0.50 × 0.25 × 0.04 mm

Data collection

  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995) T min = 0.720, T max = 0.954

  • 24483 measured reflections

  • 5103 independent reflections

  • 2818 reflections with F 2 > 2σ(F 2)

  • R int = 0.032

Refinement

  • R[F 2 > 2σ(F 2)] = 0.055

  • wR(F 2) = 0.191

  • S = 1.10

  • 5103 reflections

  • 328 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.40 e Å−3

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2006); program(s) used to solve structure: SIR2004 (Burla et al., 2003); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: CrystalStructure.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809001329/ci2755sup1.cif

e-65-0o319-sup1.cif (28.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809001329/ci2755Isup2.hkl

e-65-0o319-Isup2.hkl (249.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4O⋯O2i 0.82 1.88 2.696 (3) 177
C12—H12B⋯O2ii 0.96 2.52 3.470 (4) 173
C16—H16B⋯O3i 0.98 2.34 3.251 (4) 155

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors express their sincere thanks to Mr O. Yamate at Orient Chemical Industries, Ltd. for the preparation of the sample.

supplementary crystallographic information

Comment

Quaternary ammonium salts (for example, benzyltributylammonium 4-hydroxynaphthalene-1-sulfonate: P-51 from Orient Chemical Industries) are well known charge-control agents (CCAs) for toners used in electrophotography. CCAs are usually added to toners to create a desired charge level and polarity (Nash et al., 2001). The above compounds are characterized by high melting point above 433 K. The present high thermal stability is required for the toner manufacturing process which includes kneading of various toner components such as polymer, colorant, wax and CCA at 403–453 K. However, ordinary quaternary ammonium salts used in electrochemistry as supporting electrolytes exhibit much lower melting points below 373 K. Previously, we have investigated why P-51 alone possesses such a high melting point from the standpoint of the crystal structure. Then, we found chains of O—H···O intermolecular hydrogen bonds between the OH group of one anion and the sulfonate O atom of the neighboring one (Mizuguchi et al., 2007). The formation of the hydrogen bond is found to be responsible for the high thermal stability of P-51. A s an extension of this study, the present paper deals with the structure of the title compound, which is one of the P-51 derivatives.

Fig. 1 shows the ORTEPIII plot (Burnett & Johnson, 19966) of the title molecule. The ions have no crystallographically imposed symmetry. Fig. 2 shows a hydrogen-bonded anionic chain along the b axis between the OH group of one anion and the sulfonate O atom of the neighboring one. In addition, C—H···O hydrogen bonds are observed in the crystal structure (Table 1). The hydrogen-bonding network is found to greatly contribute to the high melting point of the title compound (433 K), just as in the case of P-51 (462 K).

Experimental

The title compound was obtained from Orient Chemical Industries Ltd., and was recrystallized from a methanol solution. After 48 h, a number of colourless crystals were obtained in the form of platelets.

Refinement

Atom C11 was found to be disordered over two sites. The site occupancies for C11A/C11B were initially refined and later fixed at 0.88/0.12. These atoms were anisotropically refined. All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.93 Å (aromatic), 0.96 Å (methyl), or 0.97 Å (methylene), and O—H = 0.82 Å; Uiso(H) = 1.2–1.5Ueq(parent atom).

Figures

Fig. 1.

Fig. 1.

The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 30% probability level. Only the major disorder component is shown.

Fig. 2.

Fig. 2.

The formation of a hydrogen-bonded (dashed lines) chain. Only anions are shown for clarity.

Crystal data

C19H34N+·C10H7O4S F(000) = 1080.00
Mr = 499.70 Dx = 1.183 Mg m3
Monoclinic, P21/c Cu Kα radiation, λ = 1.54187 Å
Hall symbol: -P 2ybc Cell parameters from 15945 reflections
a = 16.9616 (4) Å θ = 3.0–68.2°
b = 10.4422 (2) Å µ = 1.28 mm1
c = 17.6700 (4) Å T = 296 K
β = 116.2570 (11)° Plate, colourless
V = 2806.73 (11) Å3 0.50 × 0.25 × 0.04 mm
Z = 4

Data collection

Rigaku R-AXIS RAPID diffractometer 2818 reflections with F2 > 2σ(F2)
Detector resolution: 10.00 pixels mm-1 Rint = 0.032
ω scans θmax = 68.2°
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) h = −20→20
Tmin = 0.720, Tmax = 0.954 k = −12→12
24483 measured reflections l = −21→21
5103 independent reflections

Refinement

Refinement on F2 H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.055 w = 1/[σ2(Fo2) + (0.07P)2 + 1.689P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.191 (Δ/σ)max = 0.001
S = 1.10 Δρmax = 0.27 e Å3
5103 reflections Δρmin = −0.40 e Å3
328 parameters

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
S1 0.72863 (6) −0.06500 (8) 0.72643 (5) 0.0673 (2)
O1 0.64931 (16) −0.0460 (2) 0.73670 (15) 0.0775 (6)
O2 0.79375 (17) −0.1418 (2) 0.79490 (15) 0.0840 (7)
O3 0.71380 (17) −0.1121 (2) 0.64457 (14) 0.0805 (7)
O4 0.89003 (16) 0.6746 (2) 0.76763 (17) 0.0837 (7)
N1 0.71413 (18) 0.5740 (2) 0.48646 (16) 0.0636 (6)
C1 0.5395 (2) 0.3823 (4) 0.4426 (2) 0.0829 (10)
C2 0.4932 (2) 0.2707 (5) 0.4115 (2) 0.0948 (12)
C3 0.5324 (3) 0.1552 (5) 0.4400 (3) 0.1058 (14)
C4 0.6187 (3) 0.1490 (4) 0.4993 (3) 0.1091 (15)
C5 0.6659 (2) 0.2610 (4) 0.5289 (2) 0.0922 (12)
C6 0.6279 (2) 0.3792 (3) 0.5014 (2) 0.0729 (9)
C7 0.6794 (2) 0.4989 (3) 0.5397 (2) 0.0729 (9)
C8 0.6398 (2) 0.6301 (3) 0.4083 (2) 0.0691 (8)
C9 0.5816 (2) 0.7256 (3) 0.4246 (2) 0.0849 (10)
C10 0.5138 (3) 0.7839 (4) 0.3429 (3) 0.1152 (14)
C11A 0.5529 (5) 0.8743 (7) 0.3027 (4) 0.145 (3) 0.88
C11B 0.499 (2) 0.774 (4) 0.2541 (10) 0.120 (8) 0.12
C12 0.7657 (2) 0.4880 (3) 0.4554 (2) 0.0701 (9)
C13 0.8520 (2) 0.4368 (4) 0.5213 (2) 0.0877 (11)
C14 0.8937 (3) 0.3471 (4) 0.4819 (3) 0.1095 (14)
C15 0.9840 (3) 0.3085 (6) 0.5412 (4) 0.148 (2)
C16 0.7723 (2) 0.6785 (3) 0.5429 (2) 0.0736 (9)
C17 0.8068 (2) 0.7742 (3) 0.5005 (2) 0.0821 (10)
C18 0.8740 (3) 0.8608 (4) 0.5651 (2) 0.1039 (14)
C19 0.8973 (4) 0.9751 (5) 0.5287 (3) 0.142 (2)
C20 0.7782 (2) 0.0872 (2) 0.73747 (19) 0.0591 (7)
C21 0.8585 (2) 0.0989 (3) 0.7323 (2) 0.0686 (8)
C22 0.8973 (2) 0.2154 (3) 0.7391 (2) 0.0711 (9)
C23 0.8581 (2) 0.3286 (3) 0.75144 (19) 0.0607 (7)
C24 0.8940 (2) 0.4517 (3) 0.7557 (2) 0.0662 (8)
C25 0.8535 (2) 0.5573 (3) 0.7660 (2) 0.0657 (8)
C26 0.7749 (2) 0.5462 (3) 0.7738 (2) 0.0679 (8)
C27 0.7390 (2) 0.4290 (3) 0.7700 (2) 0.0694 (8)
C28 0.7778 (2) 0.3164 (2) 0.75807 (19) 0.0600 (7)
C29 0.7396 (2) 0.1939 (3) 0.7505 (2) 0.0637 (8)
H1 0.5117 0.4606 0.4249 0.107*
H2 0.4349 0.2744 0.3713 0.121*
H3 0.5001 0.0806 0.4187 0.134*
H4 0.6455 0.0700 0.5191 0.138*
H4O 0.8599 0.7308 0.7740 0.134*
H5 0.7246 0.2558 0.5688 0.117*
H7A 0.7295 0.4774 0.5924 0.094*
H7B 0.6427 0.5573 0.5532 0.094*
H8A 0.6026 0.5591 0.3754 0.092*
H8B 0.6643 0.6697 0.3744 0.092*
H9A 0.6195 0.7924 0.4617 0.110*
H9B 0.5529 0.6833 0.4544 0.110*
H10A 0.4837 0.7156 0.3035 0.138* 0.88
H10B 0.4704 0.8296 0.3544 0.138* 0.88
H10C 0.4579 0.7594 0.3413 0.138* 0.12
H10D 0.5190 0.8753 0.3539 0.138* 0.12
H11A 0.5899 0.8275 0.2843 0.217* 0.88
H11B 0.5871 0.9381 0.3430 0.217* 0.88
H11C 0.5066 0.9151 0.2551 0.217* 0.88
H11D 0.4736 0.6916 0.2320 0.180* 0.12
H11E 0.5535 0.7830 0.2511 0.180* 0.12
H11F 0.4590 0.8400 0.2214 0.180* 0.12
H12A 0.7296 0.4148 0.4277 0.090*
H12B 0.7775 0.5346 0.4148 0.090*
H13A 0.8416 0.3936 0.5644 0.112*
H13B 0.8904 0.5097 0.5475 0.112*
H14A 0.8585 0.2700 0.4617 0.144*
H14B 0.8968 0.3876 0.4337 0.144*
H15A 1.0082 0.2512 0.5147 0.233*
H15B 0.9832 0.2656 0.5898 0.233*
H15C 1.0206 0.3832 0.5609 0.233*
H16A 0.8213 0.6398 0.5893 0.096*
H16B 0.7382 0.7251 0.5667 0.096*
H17A 0.8322 0.7307 0.4688 0.104*
H17B 0.7582 0.8275 0.4611 0.104*
H18A 0.8514 0.8896 0.6034 0.128*
H18B 0.9261 0.8096 0.5965 0.128*
H19A 0.9420 1.0211 0.5738 0.226*
H19B 0.8478 1.0235 0.4979 0.226*
H19C 0.9225 0.9420 0.4920 0.226*
H21 0.8853 0.0268 0.7241 0.087*
H22 0.9508 0.2212 0.7367 0.091*
H24 0.9464 0.4604 0.7511 0.085*
H26 0.7479 0.6192 0.7816 0.089*
H27 0.6870 0.4229 0.7760 0.089*
H29 0.6873 0.1859 0.7549 0.083*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0846 (6) 0.0493 (4) 0.0677 (5) −0.0029 (4) 0.0336 (4) −0.0039 (3)
O1 0.0811 (15) 0.0723 (15) 0.0930 (17) −0.0088 (12) 0.0512 (13) −0.0066 (12)
O2 0.1071 (18) 0.0523 (13) 0.0804 (16) 0.0101 (13) 0.0304 (14) 0.0063 (11)
O3 0.1080 (18) 0.0711 (15) 0.0679 (14) −0.0156 (13) 0.0438 (13) −0.0229 (12)
O4 0.0858 (16) 0.0560 (14) 0.1050 (19) −0.0103 (12) 0.0383 (14) −0.0062 (13)
N1 0.0717 (16) 0.0652 (17) 0.0576 (15) −0.0036 (13) 0.0320 (13) −0.0055 (13)
C1 0.081 (2) 0.090 (2) 0.080 (2) −0.012 (2) 0.038 (2) −0.003 (2)
C2 0.091 (2) 0.104 (3) 0.087 (2) −0.029 (2) 0.036 (2) −0.012 (2)
C3 0.127 (4) 0.093 (3) 0.095 (3) −0.036 (3) 0.047 (3) −0.016 (2)
C4 0.135 (4) 0.074 (2) 0.102 (3) −0.013 (2) 0.037 (3) 0.005 (2)
C5 0.104 (3) 0.079 (2) 0.080 (2) −0.011 (2) 0.029 (2) 0.003 (2)
C6 0.089 (2) 0.071 (2) 0.0592 (19) −0.013 (2) 0.0332 (18) −0.0043 (17)
C7 0.084 (2) 0.078 (2) 0.062 (2) −0.0089 (19) 0.0364 (18) −0.0029 (17)
C8 0.073 (2) 0.073 (2) 0.0627 (19) 0.0024 (17) 0.0304 (17) 0.0008 (16)
C9 0.086 (2) 0.085 (2) 0.094 (2) 0.009 (2) 0.048 (2) 0.002 (2)
C10 0.097 (3) 0.115 (3) 0.115 (3) 0.029 (2) 0.030 (2) −0.003 (2)
C11A 0.181 (6) 0.158 (6) 0.108 (4) 0.075 (4) 0.077 (4) 0.051 (4)
C11B 0.106 (16) 0.120 (18) 0.102 (5) 0.004 (16) 0.017 (11) 0.009 (13)
C12 0.079 (2) 0.070 (2) 0.066 (2) 0.0034 (18) 0.0360 (18) −0.0059 (17)
C13 0.088 (2) 0.094 (2) 0.076 (2) 0.014 (2) 0.032 (2) −0.001 (2)
C14 0.103 (3) 0.107 (3) 0.105 (3) 0.029 (2) 0.034 (2) −0.003 (2)
C15 0.106 (3) 0.157 (5) 0.168 (5) 0.037 (3) 0.050 (3) 0.019 (4)
C16 0.081 (2) 0.071 (2) 0.070 (2) −0.0148 (18) 0.0341 (18) −0.0136 (18)
C17 0.088 (2) 0.079 (2) 0.084 (2) −0.016 (2) 0.041 (2) −0.015 (2)
C18 0.116 (3) 0.102 (3) 0.102 (3) −0.043 (2) 0.055 (2) −0.025 (2)
C19 0.157 (4) 0.117 (4) 0.144 (4) −0.057 (3) 0.060 (3) −0.012 (3)
C20 0.0646 (18) 0.0539 (18) 0.0538 (16) 0.0011 (14) 0.0217 (14) −0.0009 (14)
C21 0.071 (2) 0.057 (2) 0.080 (2) 0.0049 (16) 0.0356 (18) −0.0071 (16)
C22 0.0642 (19) 0.062 (2) 0.084 (2) 0.0008 (16) 0.0307 (18) −0.0062 (17)
C23 0.0586 (17) 0.0566 (19) 0.0607 (18) 0.0021 (15) 0.0208 (14) −0.0031 (14)
C24 0.0625 (19) 0.057 (2) 0.073 (2) −0.0037 (15) 0.0250 (16) −0.0088 (16)
C25 0.072 (2) 0.0512 (19) 0.0646 (19) −0.0051 (16) 0.0217 (16) −0.0048 (15)
C26 0.078 (2) 0.0503 (19) 0.078 (2) 0.0024 (16) 0.0371 (18) −0.0069 (16)
C27 0.074 (2) 0.0540 (19) 0.085 (2) 0.0023 (16) 0.0389 (18) −0.0032 (17)
C28 0.0641 (18) 0.0514 (18) 0.0622 (18) 0.0035 (14) 0.0259 (15) −0.0006 (14)
C29 0.0685 (19) 0.0508 (18) 0.073 (2) 0.0033 (15) 0.0320 (16) 0.0022 (15)

Geometric parameters (Å, °)

S1—O1 1.449 (3) C5—H5 0.933
S1—O2 1.465 (2) C7—H7A 0.969
S1—O3 1.441 (2) C7—H7B 0.972
S1—C20 1.768 (3) C8—H8A 0.981
O4—C25 1.367 (4) C8—H8B 0.961
N1—C7 1.530 (5) C9—H9A 0.978
N1—C8 1.517 (3) C9—H9B 0.967
N1—C12 1.515 (5) C10—H10A 0.970
N1—C16 1.513 (4) C10—H10B 0.970
C1—C2 1.376 (6) C10—H10C 0.970
C1—C6 1.398 (4) C10—H10D 0.970
C2—C3 1.361 (7) C11A—H11A 0.960
C3—C4 1.375 (6) C11A—H11B 0.960
C4—C5 1.383 (6) C11A—H11C 0.960
C5—C6 1.377 (5) C11B—H11D 0.960
C6—C7 1.503 (5) C11B—H11E 0.960
C8—C9 1.518 (6) C11B—H11F 0.960
C9—C10 1.519 (5) C12—H12A 0.966
C10—C11A 1.500 (10) C12—H12B 0.959
C10—C11B 1.48 (2) C13—H13A 0.966
C12—C13 1.509 (4) C13—H13B 0.975
C13—C14 1.515 (7) C14—H14A 0.971
C14—C15 1.478 (6) C14—H14B 0.974
C16—C17 1.513 (6) C15—H15A 0.957
C17—C18 1.507 (5) C15—H15B 0.973
C18—C19 1.490 (8) C15—H15C 0.962
C20—C21 1.410 (5) C16—H16A 0.960
C20—C29 1.362 (4) C16—H16B 0.982
C21—C22 1.362 (5) C17—H17A 0.959
C22—C23 1.419 (5) C17—H17B 0.983
C23—C24 1.410 (4) C18—H18A 0.961
C23—C28 1.423 (5) C18—H18B 0.969
C24—C25 1.355 (5) C19—H19A 0.952
C25—C26 1.406 (6) C19—H19B 0.923
C26—C27 1.354 (4) C19—H19C 0.983
C27—C28 1.408 (5) C21—H21 0.924
C28—C29 1.413 (4) C22—H22 0.930
O4—H4O 0.817 C24—H24 0.932
C1—H1 0.926 C26—H26 0.930
C2—H2 0.930 C27—H27 0.936
C3—H3 0.931 C29—H29 0.928
C4—H4 0.931
O2···O4i 2.696 (3) C11B···H2iv 2.896
O4···O2ii 2.696 (3) C25···H7A 2.970
C2···C11Biii 2.99 (3) H2···O1v 2.993
C11B···C2iv 2.99 (3) H2···O3v 2.947
S1···H4Oi 2.925 H2···C11Biii 2.896
O1···H2v 2.993 H3···O1v 2.817
O1···H3v 2.817 H4···O3 2.757
O1···H8Avi 2.893 H4O···S1ii 2.925
O1···H8Bvi 2.665 H4O···O2ii 1.880
O1···H10Bvii 2.989 H7A···C25 2.970
O1···H12Bvi 2.930 H8A···O1ix 2.893
O2···H4Oi 1.880 H8B···O1ix 2.665
O2···H12Bvi 2.516 H9B···C1vii 2.961
O2···H17Avi 2.992 H9B···C2vii 2.846
O2···H26i 2.593 H10B···O1vii 2.989
O3···H2v 2.947 H11D···C2iv 2.949
O3···H4 2.757 H11E···C2iv 2.624
O3···H16Bi 2.336 H11F···C1iv 2.942
O3···H18Ai 2.736 H11F···C2iv 2.895
O4···H15Bviii 2.661 H12B···O1ix 2.930
O4···H16A 2.859 H12B···O2ix 2.516
O4···H22viii 2.777 H15B···O4x 2.661
C1···H9Bvii 2.961 H16A···O4 2.859
C1···H11Fiii 2.942 H16B···O3ii 2.336
C2···H9Bvii 2.846 H17A···O2ix 2.992
C2···H11Diii 2.949 H18A···O3ii 2.736
C2···H11Eiii 2.624 H22···O4x 2.777
C2···H11Fiii 2.895 H26···O2ii 2.593
O1—S1—O2 111.98 (17) C9—C10—H10B 108.9
O1—S1—O3 114.40 (15) C9—C10—H10C 104.0
O1—S1—C20 106.62 (16) C9—C10—H10D 103.9
O2—S1—O3 112.04 (15) C11A—C10—H10A 108.9
O2—S1—C20 104.67 (13) C11A—C10—H10B 108.9
O3—S1—C20 106.32 (17) C11B—C10—H10C 103.9
C7—N1—C8 111.5 (2) C11B—C10—H10D 103.9
C7—N1—C12 111.1 (2) H10A—C10—H10B 107.7
C7—N1—C16 106.3 (2) H10C—C10—H10D 105.4
C8—N1—C12 106.2 (2) C10—C11A—H11A 109.5
C8—N1—C16 111.0 (2) C10—C11A—H11B 109.5
C12—N1—C16 110.7 (2) C10—C11A—H11C 109.5
C2—C1—C6 120.8 (3) H11A—C11A—H11B 109.5
C1—C2—C3 120.3 (3) H11A—C11A—H11C 109.5
C2—C3—C4 120.3 (4) H11B—C11A—H11C 109.5
C3—C4—C5 119.4 (4) C10—C11B—H11D 109.5
C4—C5—C6 121.5 (3) C10—C11B—H11E 109.5
C1—C6—C5 117.6 (3) C10—C11B—H11F 109.5
C1—C6—C7 122.3 (3) H11D—C11B—H11E 109.5
C5—C6—C7 119.9 (2) H11D—C11B—H11F 109.5
N1—C7—C6 117.0 (3) H11E—C11B—H11F 109.5
N1—C8—C9 115.4 (3) N1—C12—H12A 108.4
C8—C9—C10 111.4 (3) N1—C12—H12B 108.4
C9—C10—C11A 113.3 (4) C13—C12—H12A 107.0
C9—C10—C11B 133.1 (18) C13—C12—H12B 107.8
N1—C12—C13 116.7 (3) H12A—C12—H12B 108.5
C12—C13—C14 110.8 (3) C12—C13—H13A 108.7
C13—C14—C15 113.0 (4) C12—C13—H13B 107.8
N1—C16—C17 115.6 (3) C14—C13—H13A 111.0
C16—C17—C18 110.5 (3) C14—C13—H13B 110.5
C17—C18—C19 114.2 (3) H13A—C13—H13B 107.9
S1—C20—C21 119.8 (2) C13—C14—H14A 110.2
S1—C20—C29 120.9 (2) C13—C14—H14B 110.5
C21—C20—C29 119.4 (3) C15—C14—H14A 108.0
C20—C21—C22 120.9 (3) C15—C14—H14B 107.4
C21—C22—C23 121.1 (3) H14A—C14—H14B 107.4
C22—C23—C24 123.1 (3) C14—C15—H15A 111.0
C22—C23—C28 117.9 (3) C14—C15—H15B 109.7
C24—C23—C28 119.0 (3) C14—C15—H15C 109.6
C23—C24—C25 121.0 (3) H15A—C15—H15B 108.7
O4—C25—C24 118.7 (3) H15A—C15—H15C 109.6
O4—C25—C26 120.9 (3) H15B—C15—H15C 108.2
C24—C25—C26 120.4 (3) N1—C16—H16A 109.0
C25—C26—C27 119.6 (3) N1—C16—H16B 107.7
C26—C27—C28 122.2 (3) C17—C16—H16A 108.8
C23—C28—C27 117.7 (3) C17—C16—H16B 108.4
C23—C28—C29 119.2 (3) H16A—C16—H16B 107.2
C27—C28—C29 123.1 (3) C16—C17—H17A 110.4
C20—C29—C28 121.5 (3) C16—C17—H17B 109.7
C25—O4—H4O 109.9 C18—C17—H17A 110.0
C2—C1—H1 119.9 C18—C17—H17B 108.2
C6—C1—H1 119.3 H17A—C17—H17B 107.9
C1—C2—H2 119.7 C17—C18—H18A 108.5
C3—C2—H2 120.0 C17—C18—H18B 107.1
C2—C3—H3 119.3 C19—C18—H18A 108.6
C4—C3—H3 120.4 C19—C18—H18B 109.9
C3—C4—H4 120.4 H18A—C18—H18B 108.4
C5—C4—H4 120.2 C18—C19—H19A 107.9
C4—C5—H5 118.8 C18—C19—H19B 110.3
C6—C5—H5 119.7 C18—C19—H19C 106.2
N1—C7—H7A 107.2 H19A—C19—H19B 113.4
N1—C7—H7B 107.0 H19A—C19—H19C 108.2
C6—C7—H7A 109.2 H19B—C19—H19C 110.6
C6—C7—H7B 108.9 C20—C21—H21 119.8
H7A—C7—H7B 107.2 C22—C21—H21 119.3
N1—C8—H8A 107.8 C21—C22—H22 119.8
N1—C8—H8B 108.6 C23—C22—H22 119.1
C9—C8—H8A 107.9 C23—C24—H24 119.5
C9—C8—H8B 109.4 C25—C24—H24 119.5
H8A—C8—H8B 107.4 C25—C26—H26 119.8
C8—C9—H9A 107.8 C27—C26—H26 120.6
C8—C9—H9B 109.2 C26—C27—H27 118.8
C10—C9—H9A 110.3 C28—C27—H27 119.0
C10—C9—H9B 110.4 C20—C29—H29 119.3
H9A—C9—H9B 107.5 C28—C29—H29 119.2
C9—C10—H10A 108.9
O1—S1—C20—C21 178.7 (2) C8—C9—C10—C11A −70.7 (5)
O1—S1—C20—C29 −1.7 (2) C8—C9—C10—C11B −6(2)
O2—S1—C20—C21 59.9 (3) N1—C12—C13—C14 177.0 (3)
O2—S1—C20—C29 −120.5 (2) C12—C13—C14—C15 171.9 (4)
O3—S1—C20—C21 −58.9 (2) N1—C16—C17—C18 −171.6 (3)
O3—S1—C20—C29 120.8 (2) C16—C17—C18—C19 −167.4 (4)
C7—N1—C8—C9 61.7 (3) S1—C20—C21—C22 178.9 (2)
C8—N1—C7—C6 65.9 (3) S1—C20—C29—C28 −178.9 (2)
C7—N1—C12—C13 −68.0 (3) C21—C20—C29—C28 0.7 (4)
C12—N1—C7—C6 −52.5 (3) C29—C20—C21—C22 −0.8 (4)
C7—N1—C16—C17 −173.9 (3) C20—C21—C22—C23 −0.2 (4)
C16—N1—C7—C6 −173.0 (2) C21—C22—C23—C24 −177.5 (3)
C8—N1—C12—C13 170.5 (3) C21—C22—C23—C28 1.3 (4)
C12—N1—C8—C9 −177.1 (3) C22—C23—C24—C25 178.8 (3)
C8—N1—C16—C17 −52.4 (4) C22—C23—C28—C27 −179.8 (2)
C16—N1—C8—C9 −56.6 (4) C22—C23—C28—C29 −1.3 (4)
C12—N1—C16—C17 65.3 (3) C24—C23—C28—C27 −1.1 (4)
C16—N1—C12—C13 49.8 (4) C24—C23—C28—C29 177.5 (2)
C2—C1—C6—C5 −2.0 (7) C28—C23—C24—C25 0.1 (3)
C2—C1—C6—C7 −177.1 (4) C23—C24—C25—O4 −178.4 (2)
C6—C1—C2—C3 2.3 (8) C23—C24—C25—C26 0.8 (4)
C1—C2—C3—C4 −0.7 (9) O4—C25—C26—C27 178.5 (3)
C2—C3—C4—C5 −1.0 (9) C24—C25—C26—C27 −0.8 (4)
C3—C4—C5—C6 1.2 (9) C25—C26—C27—C28 −0.2 (4)
C4—C5—C6—C1 0.3 (7) C26—C27—C28—C23 1.1 (4)
C4—C5—C6—C7 175.5 (5) C26—C27—C28—C29 −177.4 (3)
C1—C6—C7—N1 −79.8 (5) C23—C28—C29—C20 0.3 (4)
C5—C6—C7—N1 105.2 (4) C27—C28—C29—C20 178.8 (3)
N1—C8—C9—C10 175.5 (3)

Symmetry codes: (i) x, y−1, z; (ii) x, y+1, z; (iii) −x+1, y−1/2, −z+1/2; (iv) −x+1, y+1/2, −z+1/2; (v) −x+1, −y, −z+1; (vi) x, −y+1/2, z+1/2; (vii) −x+1, −y+1, −z+1; (viii) −x+2, y+1/2, −z+3/2; (ix) x, −y+1/2, z−1/2; (x) −x+2, y−1/2, −z+3/2.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O4—H4O···O2ii 0.82 1.88 2.696 (3) 177
C12—H12B···O2ix 0.96 2.52 3.470 (4) 173
C16—H16B···O3ii 0.98 2.34 3.251 (4) 155

Symmetry codes: (ii) x, y+1, z; (ix) x, −y+1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2755).

References

  1. Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst.36, 1103.
  2. Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII Report ORNL-6895. Oak Ridge National Laboratory. Tennessee, USA.
  3. Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  4. Mizuguchi, J., Sato, Y., Uta, K. & Sato, K. (2007). Acta Cryst. E63, o2509–o2510.
  5. Nash, R. J., Grande, M. L. & Muller, R. N. (2001). Proceedings of the 7th International Conference on Advances in Non-Impact Printing Technology, pp. 358–364.
  6. Rigaku (1998). PROCESS-AUTO Rigaku Corporation, Tokyo, Japan.
  7. Rigaku/MSC (2006). CrystalStructure Rigaku/MSC, The Woodlands, Texas, USA.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809001329/ci2755sup1.cif

e-65-0o319-sup1.cif (28.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809001329/ci2755Isup2.hkl

e-65-0o319-Isup2.hkl (249.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES