Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Jan 10;65(Pt 2):o273. doi: 10.1107/S1600536809000403

1-(4-Bromo­phen­yl)-2-{5-[(3,5-dimethyl-1H-pyrazol-1-yl)meth­yl]-4-phenyl-4H-1,2,4-triazol-3-ylsulfan­yl}ethanone

Shan-Mei Xiao a,*
PMCID: PMC2968199  PMID: 21581887

Abstract

The title compound, C22H20BrN5OS, is a potent new fungicide. The planes of the phenyl and pyrozole rings are almost perpendicular, making a dihedral angle of 86.5 (4)°. There are two non-classical inter­molecular C—H⋯O and C—H⋯N hydrogen bonds in the crystal structure.

Related literature

For background to heterocyclic compounds, see: Gong et al. (2008); Liu et al. (2007). For the synthesis, see: He et al. (2008).graphic file with name e-65-0o273-scheme1.jpg

Experimental

Crystal data

  • C22H20BrN5OS

  • M r = 482.40

  • Triclinic, Inline graphic

  • a = 8.705 (2) Å

  • b = 9.173 (2) Å

  • c = 14.564 (4) Å

  • α = 94.561 (4)°

  • β = 97.659 (4)°

  • γ = 103.086 (4)°

  • V = 1115.3 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.96 mm−1

  • T = 294 (2) K

  • 0.28 × 0.24 × 0.20 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.592, T max = 0.674

  • 5704 measured reflections

  • 3914 independent reflections

  • 2419 reflections with I > 2σ(I)

  • R int = 0.021

Refinement

  • R[F 2 > 2σ(F 2)] = 0.041

  • wR(F 2) = 0.101

  • S = 1.02

  • 3914 reflections

  • 273 parameters

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.37 e Å−3

Data collection: SMART (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809000403/bq2115sup1.cif

e-65-0o273-sup1.cif (21.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809000403/bq2115Isup2.hkl

e-65-0o273-Isup2.hkl (191.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6B⋯O1i 0.97 2.45 3.365 (3) 157
C15—H15B⋯N4ii 0.97 2.50 3.429 (3) 161

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

supplementary crystallographic information

Comment

A variety of pyrazole and triazole heterocyclics could exhibit many activities. Meanwhile, heterocyclic compounds is an important developmental direction in medical (Gong et al., 2008) and pesticidal (Liu et al., 2007) chemistry.

In view of these facts and in continuation of our interest in the agriculture, we attempted to synthesize a series of amide derivatives, some of which have comparatively high fungicidal activity.

The molecular structure of title compound is showing in Fig.1. The x-ray analysis reveals that acetyl group is a planar with thio-ether group. The pyrozole ring is vertical with the benzene ring [dihedral angle 93.5 (4)°]. The packing of the structure is due to the weak intermolecular C-H..O and C-H..N H-bonds (Table 1. and Fig 2.).

Experimental

The compound 5-((3,5-Dimethyl-1H-pyrazol-1-yl)methyl)-4-phenyl-4H-1,2,4 -triazole-3-thiol was synthesized according to the reference (He et al., 2008). Then added p-bromo-phenacyl bromide, potassium carbonate anhydrous and N,N-Dimethyl formamide was stirred at room temperature for 5 h, giving the title compound. Colorless single crystals suitable for x-ray diffraction were obtained by recrystallization from a mixture of ethyl acetate and petroleum ether.

Refinement

The H atoms bonded to C and N atoms were positioned geometrically and refined using a riding model [aromatic C—H=0.93 Å, aliphatic C—H = 0.97 (2) Å, N—H=0.86 Å, Uiso(H) = 1.2Ueq(C)].

Figures

Fig. 1.

Fig. 1.

The structure of (I) with displacement ellipsoids drawn at the 30% probability level.

Fig. 2.

Fig. 2.

Partial packing diagram for (I). The dotted lines show the C—H–O bond.

Fig. 3.

Fig. 3.

The formation of the title compound.

Crystal data

C22H20BrN5OS Z = 2
Mr = 482.40 F(000) = 492
Triclinic, P1 Dx = 1.436 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 8.705 (2) Å Cell parameters from 1669 reflections
b = 9.173 (2) Å θ = 2.6–23.0°
c = 14.564 (4) Å µ = 1.96 mm1
α = 94.561 (4)° T = 294 K
β = 97.659 (4)° Rhombic, colorless
γ = 103.086 (4)° 0.28 × 0.24 × 0.20 mm
V = 1115.3 (5) Å3

Data collection

Bruker SMART CCD area-detector diffractometer 3914 independent reflections
Radiation source: fine-focus sealed tube 2419 reflections with I > 2σ(I)
graphite Rint = 0.021
φ and ω scans θmax = 25.0°, θmin = 1.4°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −10→10
Tmin = 0.592, Tmax = 0.674 k = −10→10
5704 measured reflections l = −17→6

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101 H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0351P)2 + 0.4689P] where P = (Fo2 + 2Fc2)/3
3914 reflections (Δ/σ)max = 0.001
273 parameters Δρmax = 0.39 e Å3
0 restraints Δρmin = −0.37 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 0.29289 (6) 0.67651 (6) −0.50744 (3) 0.0905 (2)
S1 0.55698 (11) 0.71293 (10) 0.09603 (6) 0.0490 (3)
O1 0.6651 (3) 0.6235 (2) −0.07550 (16) 0.0513 (6)
N1 1.0999 (3) 1.1534 (3) 0.3101 (2) 0.0510 (7)
N2 1.1688 (3) 1.0707 (3) 0.25343 (19) 0.0454 (7)
N3 0.8643 (4) 1.0825 (3) 0.07347 (19) 0.0501 (7)
N4 0.7096 (3) 0.9911 (3) 0.05655 (19) 0.0499 (7)
N5 0.8674 (3) 0.8715 (3) 0.13335 (16) 0.0364 (6)
C1 1.1192 (6) 1.2185 (5) 0.4789 (3) 0.0941 (15)
H1A 1.0703 1.2973 0.4597 0.141*
H1B 1.2134 1.2611 0.5236 0.141*
H1C 1.0455 1.1474 0.5066 0.141*
C2 1.1639 (5) 1.1397 (4) 0.3953 (3) 0.0590 (10)
C3 1.2727 (5) 1.0505 (4) 0.3942 (3) 0.0640 (11)
H3 1.3327 1.0254 0.4456 0.077*
C4 1.2744 (4) 1.0070 (4) 0.3029 (3) 0.0548 (10)
C5 1.3679 (5) 0.9113 (5) 0.2587 (3) 0.0835 (14)
H5A 1.2977 0.8172 0.2309 0.125*
H5B 1.4481 0.8926 0.3052 0.125*
H5C 1.4182 0.9623 0.2115 0.125*
C6 1.1288 (4) 1.0667 (4) 0.1533 (2) 0.0507 (9)
H6A 1.1863 1.0030 0.1228 0.061*
H6B 1.1632 1.1676 0.1360 0.061*
C7 0.9553 (4) 1.0093 (3) 0.1199 (2) 0.0405 (8)
C8 0.7156 (4) 0.8664 (3) 0.0931 (2) 0.0398 (8)
C9 0.9262 (4) 0.7495 (3) 0.1701 (2) 0.0363 (7)
C10 0.9932 (4) 0.6635 (4) 0.1140 (3) 0.0571 (10)
H10 1.0027 0.6845 0.0533 0.069*
C11 1.0469 (5) 0.5443 (4) 0.1486 (3) 0.0730 (12)
H11 1.0928 0.4846 0.1112 0.088*
C12 1.0322 (5) 0.5149 (4) 0.2383 (3) 0.0658 (11)
H12 1.0665 0.4340 0.2613 0.079*
C13 0.9675 (5) 0.6034 (4) 0.2940 (3) 0.0635 (11)
H13 0.9603 0.5840 0.3552 0.076*
C14 0.9126 (4) 0.7216 (4) 0.2602 (2) 0.0514 (9)
H14 0.8671 0.7813 0.2978 0.062*
C15 0.4513 (4) 0.7061 (4) −0.0201 (2) 0.0461 (9)
H15A 0.3481 0.6353 −0.0262 0.055*
H15B 0.4326 0.8047 −0.0291 0.055*
C16 0.5408 (4) 0.6597 (3) −0.0953 (2) 0.0395 (8)
C17 0.4720 (4) 0.6607 (3) −0.1940 (2) 0.0420 (8)
C18 0.3491 (4) 0.7294 (4) −0.2204 (2) 0.0509 (9)
H18 0.3023 0.7726 −0.1749 0.061*
C19 0.2954 (4) 0.7345 (4) −0.3134 (3) 0.0587 (10)
H19 0.2140 0.7820 −0.3308 0.070*
C20 0.3635 (5) 0.6689 (4) −0.3794 (2) 0.0557 (10)
C21 0.4837 (5) 0.5963 (4) −0.3557 (3) 0.0638 (11)
H21 0.5276 0.5505 −0.4015 0.077*
C22 0.5363 (4) 0.5937 (4) −0.2631 (3) 0.0547 (10)
H22 0.6173 0.5457 −0.2463 0.066*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.1110 (4) 0.1126 (4) 0.0534 (3) 0.0427 (3) 0.0014 (3) 0.0149 (3)
S1 0.0501 (6) 0.0487 (5) 0.0493 (5) 0.0125 (4) 0.0070 (4) 0.0112 (4)
O1 0.0395 (14) 0.0570 (15) 0.0614 (15) 0.0204 (12) 0.0066 (12) 0.0070 (12)
N1 0.0537 (19) 0.0510 (18) 0.0496 (19) 0.0163 (15) 0.0084 (15) 0.0027 (15)
N2 0.0429 (17) 0.0426 (16) 0.0494 (18) 0.0079 (14) 0.0068 (14) 0.0046 (14)
N3 0.067 (2) 0.0359 (16) 0.0486 (17) 0.0156 (16) 0.0042 (16) 0.0102 (14)
N4 0.058 (2) 0.0389 (17) 0.0548 (18) 0.0192 (16) 0.0013 (15) 0.0076 (14)
N5 0.0454 (17) 0.0327 (15) 0.0344 (15) 0.0150 (13) 0.0064 (13) 0.0061 (12)
C1 0.111 (4) 0.114 (4) 0.057 (3) 0.031 (3) 0.015 (3) −0.008 (3)
C2 0.063 (3) 0.059 (2) 0.052 (2) 0.011 (2) 0.007 (2) 0.005 (2)
C3 0.068 (3) 0.059 (3) 0.058 (3) 0.013 (2) −0.010 (2) 0.011 (2)
C4 0.045 (2) 0.043 (2) 0.074 (3) 0.0081 (18) 0.004 (2) 0.005 (2)
C5 0.067 (3) 0.070 (3) 0.117 (4) 0.033 (2) 0.003 (3) −0.001 (3)
C6 0.057 (2) 0.048 (2) 0.047 (2) 0.0074 (18) 0.0164 (18) 0.0065 (17)
C7 0.050 (2) 0.0356 (19) 0.0362 (18) 0.0082 (17) 0.0104 (16) 0.0041 (15)
C8 0.051 (2) 0.0351 (19) 0.0361 (18) 0.0185 (17) 0.0032 (16) 0.0019 (15)
C9 0.0392 (19) 0.0319 (17) 0.0402 (19) 0.0122 (15) 0.0063 (15) 0.0078 (15)
C10 0.072 (3) 0.056 (2) 0.052 (2) 0.033 (2) 0.012 (2) 0.0057 (19)
C11 0.085 (3) 0.059 (3) 0.085 (3) 0.043 (2) 0.010 (3) 0.000 (2)
C12 0.064 (3) 0.048 (2) 0.087 (3) 0.023 (2) −0.005 (2) 0.024 (2)
C13 0.076 (3) 0.063 (3) 0.055 (2) 0.020 (2) 0.006 (2) 0.027 (2)
C14 0.062 (2) 0.054 (2) 0.044 (2) 0.0220 (19) 0.0124 (18) 0.0119 (17)
C15 0.044 (2) 0.043 (2) 0.053 (2) 0.0147 (17) 0.0041 (17) 0.0054 (16)
C16 0.036 (2) 0.0261 (17) 0.055 (2) 0.0050 (15) 0.0059 (17) 0.0036 (15)
C17 0.040 (2) 0.0376 (19) 0.048 (2) 0.0095 (16) 0.0066 (17) 0.0050 (16)
C18 0.050 (2) 0.054 (2) 0.051 (2) 0.0198 (19) 0.0067 (18) −0.0005 (18)
C19 0.058 (2) 0.059 (2) 0.063 (3) 0.027 (2) −0.002 (2) 0.007 (2)
C20 0.061 (2) 0.058 (2) 0.048 (2) 0.013 (2) 0.006 (2) 0.0078 (19)
C21 0.069 (3) 0.077 (3) 0.052 (2) 0.029 (2) 0.014 (2) 0.002 (2)
C22 0.054 (2) 0.060 (2) 0.057 (2) 0.027 (2) 0.0087 (19) 0.0051 (19)

Geometric parameters (Å, °)

Br1—C20 1.896 (3) C6—H6B 0.9700
S1—C8 1.742 (3) C9—C10 1.365 (4)
S1—C15 1.803 (3) C9—C14 1.372 (4)
O1—C16 1.208 (3) C10—C11 1.387 (5)
N1—C2 1.319 (4) C10—H10 0.9300
N1—N2 1.362 (4) C11—C12 1.371 (5)
N2—C4 1.356 (4) C11—H11 0.9300
N2—C6 1.449 (4) C12—C13 1.363 (5)
N3—C7 1.306 (4) C12—H12 0.9300
N3—N4 1.395 (4) C13—C14 1.380 (5)
N4—C8 1.308 (4) C13—H13 0.9300
N5—C8 1.361 (4) C14—H14 0.9300
N5—C7 1.365 (4) C15—C16 1.514 (4)
N5—C9 1.443 (4) C15—H15A 0.9700
C1—C2 1.506 (5) C15—H15B 0.9700
C1—H1A 0.9600 C16—C17 1.484 (4)
C1—H1B 0.9600 C17—C22 1.382 (4)
C1—H1C 0.9600 C17—C18 1.387 (4)
C2—C3 1.385 (5) C18—C19 1.381 (5)
C3—C4 1.360 (5) C18—H18 0.9300
C3—H3 0.9300 C19—C20 1.363 (5)
C4—C5 1.491 (5) C19—H19 0.9300
C5—H5A 0.9600 C20—C21 1.382 (5)
C5—H5B 0.9600 C21—C22 1.369 (5)
C5—H5C 0.9600 C21—H21 0.9300
C6—C7 1.483 (5) C22—H22 0.9300
C6—H6A 0.9700
C8—S1—C15 98.77 (15) C10—C9—N5 119.1 (3)
C2—N1—N2 104.6 (3) C14—C9—N5 119.5 (3)
C4—N2—N1 111.8 (3) C9—C10—C11 119.2 (3)
C4—N2—C6 129.2 (3) C9—C10—H10 120.4
N1—N2—C6 118.9 (3) C11—C10—H10 120.4
C7—N3—N4 107.4 (3) C12—C11—C10 119.7 (4)
C8—N4—N3 106.9 (3) C12—C11—H11 120.1
C8—N5—C7 105.1 (2) C10—C11—H11 120.1
C8—N5—C9 127.1 (3) C13—C12—C11 120.4 (3)
C7—N5—C9 127.3 (3) C13—C12—H12 119.8
C2—C1—H1A 109.5 C11—C12—H12 119.8
C2—C1—H1B 109.5 C12—C13—C14 120.4 (4)
H1A—C1—H1B 109.5 C12—C13—H13 119.8
C2—C1—H1C 109.5 C14—C13—H13 119.8
H1A—C1—H1C 109.5 C9—C14—C13 118.9 (3)
H1B—C1—H1C 109.5 C9—C14—H14 120.6
N1—C2—C3 111.3 (3) C13—C14—H14 120.6
N1—C2—C1 120.7 (4) C16—C15—S1 112.9 (2)
C3—C2—C1 127.9 (4) C16—C15—H15A 109.0
C4—C3—C2 106.4 (3) S1—C15—H15A 109.0
C4—C3—H3 126.8 C16—C15—H15B 109.0
C2—C3—H3 126.8 S1—C15—H15B 109.0
N2—C4—C3 105.9 (3) H15A—C15—H15B 107.8
N2—C4—C5 123.3 (4) O1—C16—C17 120.9 (3)
C3—C4—C5 130.9 (4) O1—C16—C15 121.0 (3)
C4—C5—H5A 109.5 C17—C16—C15 118.1 (3)
C4—C5—H5B 109.5 C22—C17—C18 118.4 (3)
H5A—C5—H5B 109.5 C22—C17—C16 118.5 (3)
C4—C5—H5C 109.5 C18—C17—C16 123.1 (3)
H5A—C5—H5C 109.5 C19—C18—C17 120.7 (3)
H5B—C5—H5C 109.5 C19—C18—H18 119.6
N2—C6—C7 112.5 (3) C17—C18—H18 119.6
N2—C6—H6A 109.1 C20—C19—C18 119.0 (3)
C7—C6—H6A 109.1 C20—C19—H19 120.5
N2—C6—H6B 109.1 C18—C19—H19 120.5
C7—C6—H6B 109.1 C19—C20—C21 121.8 (3)
H6A—C6—H6B 107.8 C19—C20—Br1 119.6 (3)
N3—C7—N5 110.1 (3) C21—C20—Br1 118.6 (3)
N3—C7—C6 125.2 (3) C22—C21—C20 118.3 (3)
N5—C7—C6 124.7 (3) C22—C21—H21 120.9
N4—C8—N5 110.5 (3) C20—C21—H21 120.9
N4—C8—S1 127.3 (3) C21—C22—C17 121.7 (3)
N5—C8—S1 122.2 (2) C21—C22—H22 119.1
C10—C9—C14 121.4 (3) C17—C22—H22 119.1
C2—N1—N2—C4 −0.2 (4) C15—S1—C8—N5 −141.3 (3)
C2—N1—N2—C6 −177.5 (3) C8—N5—C9—C10 93.5 (4)
C7—N3—N4—C8 −0.5 (3) C7—N5—C9—C10 −76.7 (4)
N2—N1—C2—C3 0.3 (4) C8—N5—C9—C14 −86.0 (4)
N2—N1—C2—C1 179.0 (3) C7—N5—C9—C14 103.8 (4)
N1—C2—C3—C4 −0.2 (5) C14—C9—C10—C11 0.7 (5)
C1—C2—C3—C4 −178.9 (4) N5—C9—C10—C11 −178.7 (3)
N1—N2—C4—C3 0.0 (4) C9—C10—C11—C12 −0.1 (6)
C6—N2—C4—C3 177.0 (3) C10—C11—C12—C13 −1.1 (6)
N1—N2—C4—C5 −179.6 (3) C11—C12—C13—C14 1.5 (6)
C6—N2—C4—C5 −2.6 (5) C10—C9—C14—C13 −0.3 (5)
C2—C3—C4—N2 0.1 (4) N5—C9—C14—C13 179.2 (3)
C2—C3—C4—C5 179.7 (4) C12—C13—C14—C9 −0.9 (6)
C4—N2—C6—C7 124.9 (4) C8—S1—C15—C16 68.2 (2)
N1—N2—C6—C7 −58.3 (4) S1—C15—C16—O1 4.1 (4)
N4—N3—C7—N5 0.9 (3) S1—C15—C16—C17 −175.6 (2)
N4—N3—C7—C6 −179.1 (3) O1—C16—C17—C22 11.7 (5)
C8—N5—C7—N3 −0.9 (3) C15—C16—C17—C22 −168.6 (3)
C9—N5—C7—N3 171.0 (3) O1—C16—C17—C18 −166.4 (3)
C8—N5—C7—C6 179.0 (3) C15—C16—C17—C18 13.2 (4)
C9—N5—C7—C6 −9.0 (5) C22—C17—C18—C19 −1.8 (5)
N2—C6—C7—N3 122.0 (3) C16—C17—C18—C19 176.3 (3)
N2—C6—C7—N5 −58.0 (4) C17—C18—C19—C20 0.9 (5)
N3—N4—C8—N5 −0.1 (3) C18—C19—C20—C21 0.6 (6)
N3—N4—C8—S1 178.2 (2) C18—C19—C20—Br1 −179.3 (3)
C7—N5—C8—N4 0.6 (3) C19—C20—C21—C22 −1.2 (6)
C9—N5—C8—N4 −171.4 (3) Br1—C20—C21—C22 178.8 (3)
C7—N5—C8—S1 −177.8 (2) C20—C21—C22—C17 0.3 (6)
C9—N5—C8—S1 10.3 (4) C18—C17—C22—C21 1.2 (5)
C15—S1—C8—N4 40.6 (3) C16—C17—C22—C21 −177.0 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C6—H6B···O1i 0.97 2.45 3.365 (3) 157
C15—H15B···N4ii 0.97 2.50 3.429 (3) 161

Symmetry codes: (i) −x+2, −y+2, −z; (ii) −x+1, −y+2, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BQ2115).

References

  1. Bruker. (2004). SAINT and SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Gong, Y., Barbay, J. K., Buntinx, M., Li, J., Van Wauweb, J., Claes, C., Van Lommen, G., Hornby, P. J. & He, W. (2008). Bioorg. Med. Chem. Lett.18, 3852–3855. [DOI] [PubMed]
  3. He, F. Q., Liu, X. H., Wang, B. L. & Li, Z. M. (2008). Heteroat. Chem.19, 21–27.
  4. Liu, X. H., Chen, P. Q., Wang, B. L., Li, Y. H., Wang, S. H. & Li, Z. M. (2007). Bioorg. Med. Chem. Lett.17, 3784–3788. [DOI] [PubMed]
  5. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809000403/bq2115sup1.cif

e-65-0o273-sup1.cif (21.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809000403/bq2115Isup2.hkl

e-65-0o273-Isup2.hkl (191.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES