Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Jan 31;65(Pt 2):o441. doi: 10.1107/S1600536809003134

2-(4-Bromo­phen­oxy)propanohydrazide

Tashfeen Akhtar a, M Khawar Rauf a, Masahiro Ebihara b, Shahid Hameed a,*
PMCID: PMC2968209  PMID: 21582026

Abstract

The title compound, C9H11BrN2O2, is an important inter­mediate for the synthesis of heterocyclic compounds such as azoles, 2,5-disubstituted-1,3,4-oxadiazo­les and 5-substituted 2-mercapto-1,3,4-oxadiazo­les. The bromo­phen­oxy group subtends a dihedral angle of 82.81 (7)° with the plane passing through the propanohydrazide moiety. The crystal structure is stabilized by inter­molecular N—H⋯O hydrogen bonds that form columns extending along the b axis.

Related literature

For carboxy­hydrazide derivatives with biological activities, see: Belkadi & Othman (2006); Goswami et al. (1984); Akhtar et al. (2008); Akhtar, Hameed et al. (2007); Ahmad et al. (1996); Akhtar et al. (2006); For related structures, see: Akhtar, Khawar Rauf et al. (2007); Zheng (2008).graphic file with name e-65-0o441-scheme1.jpg

Experimental

Crystal data

  • C9H11BrN2O2

  • M r = 259.11

  • Monoclinic, Inline graphic

  • a = 10.2598 (14) Å

  • b = 4.8009 (7) Å

  • c = 23.322 (3) Å

  • β = 112.712 (6)°

  • V = 1059.7 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.86 mm−1

  • T = 113 (2) K

  • 0.50 × 0.30 × 0.20 mm

Data collection

  • Rigaku/MSC Mercury CCD diffractometer

  • Absorption correction: integration (NUMABS; Higashi, 1999) T min = 0.531, T max = 0.759

  • 8296 measured reflections

  • 2418 independent reflections

  • 2201 reflections with I > 2σ(I)

  • R int = 0.039

Refinement

  • R[F 2 > 2σ(F 2)] = 0.048

  • wR(F 2) = 0.076

  • S = 1.20

  • 2418 reflections

  • 137 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.59 e Å−3

  • Δρmin = −0.75 e Å−3

Data collection: CrystalClear (Molecular Structure Corporation & Rigaku, 2001); cell refinement: CrystalClear; data reduction: TEXSAN (Molecular Structure Corporation & Rigaku, 2004); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97 and TEXSAN.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809003134/si2151sup1.cif

e-65-0o441-sup1.cif (15.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809003134/si2151Isup2.hkl

e-65-0o441-Isup2.hkl (118.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.85 (3) 1.97 (3) 2.812 (3) 170 (3)
N2—H2A⋯O1ii 0.83 (3) 2.33 (3) 3.127 (3) 161 (3)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

MKR is grateful to the HEC–Pakistan for financial support for a PhD program under scholarship No. ILC-0363104.

supplementary crystallographic information

Comment

Carboxylic acid hydrazides are important biological agents and intermediates in the synthesis of biologically active heterocycles with two nitrogen atoms at adjacent positions (Belkadi & Othman, 2006). The hydrazides when treated with isocyanates or isothiocyanates afford semicarbazides and thiosemicarbazides, respectively (Goswami et al., 1984). These are important intermediates in the synthesis of azoles under acidic or basic conditions (Akhtar et al., 2007a; Ahmad et al., 1996). In continuation of our previous studies (Akhtar et al., 2006; Akhtar et al., 2007b), the title compound, 2-(4-bromophenoxy)propane hydrazide,was synthesized as an intermediate in the synthesis of certain azole derivatives (Akhtar et al., 2008). The C—N bond length of 1.330 (3)Å is similar to C—N 1.321 (3) Å, indicating the single bond character.The N1—N2 bond length of 1.415 (3) Å in the title compound is longer than the N—N distance [1.366 (3)Å] in the crystal structure of N-propionyl-N'-(3-hydroxy-2-naphthoyl)hydrazide (Zheng, 2008). The Bromo group is coplanar with the phenyl plane C3/C4/C5/C6/C7/C8 with deviation from the plane of 0.030 (4) Å. The molecular packing diagram (Fig. 2) shows the presence of two intermolecular N—H···O hydrogen bonds, (Table 1), one of which is generated via translation along [0 1 0], the other via inversion symmetry.

Experimental

Methyl 2-(4-bromophenoxy)propionate (5.0 g, 0.0193 mol) was dissolved in methanol (20 ml) and hydrazine hydrate (80%, 3.50 mL, 0.0679 mol) added slowly with stirring. The reaction mixture was set to reflux. After completion of the reaction (TLC, 6 hrs), the reaction mixture was concentrated and poured to water. The precipitated solid was filtered and recrystallized from ethanol/ water. The spectroscopic and physical characterization data will be reported separately.

Refinement

The H atoms on the N atoms were refined isotropically. Other H atoms were placed in idealized positions and treated as riding atoms with C—H distance in the range 0.95–1.000 Å and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I) showing the atom labelling and displacement ellipsoids drawn at the 50% probability level.

Fig. 2.

Fig. 2.

View of the N—H···O hydrogen bonded molecules. The unit cell has been omitted for clarity.

Crystal data

C9H11BrN2O2 F(000) = 520
Mr = 259.11 Dx = 1.624 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.7107 Å
Hall symbol: -P 2ybc Cell parameters from 2804 reflections
a = 10.2598 (14) Å θ = 3.4–27.5°
b = 4.8009 (7) Å µ = 3.86 mm1
c = 23.322 (3) Å T = 113 K
β = 112.712 (6)° Block, colorless
V = 1059.7 (3) Å3 0.50 × 0.30 × 0.20 mm
Z = 4

Data collection

Rigaku/MSC Mercury CCD diffractometer 2201 reflections with I > 2σ(I)
Detector resolution: 14.62 pixels mm-1 Rint = 0.039
ω scans θmax = 27.5°, θmin = 3.4°
Absorption correction: integration (NUMABS; Higashi, 1999) h = −13→11
Tmin = 0.531, Tmax = 0.759 k = −6→4
8296 measured reflections l = −26→30
2418 independent reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.076 H atoms treated by a mixture of independent and constrained refinement
S = 1.20 w = 1/[σ2(Fo2) + (0.0037P)2 + 1.6325P] where P = (Fo2 + 2Fc2)/3
2418 reflections (Δ/σ)max = 0.001
137 parameters Δρmax = 0.59 e Å3
0 restraints Δρmin = −0.75 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.4780 (3) 0.1909 (5) 0.40801 (12) 0.0143 (5)
O1 0.4868 (2) −0.0616 (4) 0.41874 (9) 0.0203 (4)
N1 0.5635 (2) 0.3771 (4) 0.44658 (11) 0.0162 (5)
H1 0.551 (3) 0.551 (6) 0.4399 (14) 0.019*
N2 0.6750 (3) 0.3047 (5) 0.50307 (11) 0.0200 (5)
H2A 0.643 (3) 0.205 (7) 0.5240 (15) 0.024*
H2B 0.740 (3) 0.209 (6) 0.4928 (14) 0.024*
C2 0.3698 (3) 0.3120 (6) 0.34780 (13) 0.0188 (6)
H2 0.3260 0.4839 0.3568 0.023*
O2 0.2635 (2) 0.1095 (4) 0.31761 (9) 0.0199 (4)
C3 0.1643 (3) 0.0534 (5) 0.34207 (13) 0.0164 (5)
C4 0.0672 (3) −0.1518 (6) 0.31070 (12) 0.0180 (5)
H4 0.0761 −0.2460 0.2766 0.022*
C5 −0.0425 (3) −0.2199 (6) 0.32900 (13) 0.0205 (6)
H5 −0.1092 −0.3595 0.3076 0.025*
C6 −0.0528 (3) −0.0808 (6) 0.37882 (14) 0.0222 (6)
C7 0.0439 (3) 0.1215 (6) 0.41093 (14) 0.0218 (6)
H7 0.0353 0.2140 0.4453 0.026*
C8 0.1534 (3) 0.1881 (6) 0.39257 (13) 0.0190 (6)
H8 0.2208 0.3256 0.4145 0.023*
Br1 −0.20430 (4) −0.16915 (9) 0.403569 (18) 0.04154 (13)
C9 0.4395 (4) 0.3772 (7) 0.30247 (15) 0.0332 (8)
H9A 0.4827 0.2076 0.2943 0.050*
H9B 0.5125 0.5194 0.3204 0.050*
H9C 0.3682 0.4466 0.2634 0.050*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0158 (13) 0.0134 (12) 0.0163 (13) −0.0004 (10) 0.0090 (11) 0.0010 (10)
O1 0.0227 (11) 0.0116 (9) 0.0254 (11) −0.0004 (8) 0.0079 (9) 0.0015 (8)
N1 0.0194 (12) 0.0079 (10) 0.0167 (12) 0.0010 (9) 0.0020 (10) 0.0014 (9)
N2 0.0196 (12) 0.0209 (12) 0.0168 (12) 0.0003 (10) 0.0041 (10) 0.0026 (10)
C2 0.0176 (13) 0.0184 (13) 0.0176 (14) −0.0041 (11) 0.0035 (11) 0.0023 (11)
O2 0.0209 (10) 0.0220 (10) 0.0152 (10) −0.0090 (8) 0.0053 (8) −0.0031 (8)
C3 0.0145 (13) 0.0166 (13) 0.0146 (13) 0.0008 (10) 0.0017 (11) 0.0041 (10)
C4 0.0186 (13) 0.0177 (13) 0.0140 (13) 0.0000 (11) 0.0023 (11) −0.0006 (11)
C5 0.0178 (14) 0.0194 (14) 0.0194 (15) −0.0039 (11) 0.0018 (11) 0.0008 (11)
C6 0.0165 (14) 0.0272 (15) 0.0218 (15) 0.0005 (11) 0.0062 (12) 0.0047 (12)
C7 0.0212 (15) 0.0216 (15) 0.0200 (15) 0.0031 (11) 0.0049 (12) −0.0021 (11)
C8 0.0159 (13) 0.0182 (13) 0.0176 (14) −0.0010 (11) 0.0006 (11) −0.0019 (11)
Br1 0.02723 (18) 0.0649 (3) 0.0383 (2) −0.01613 (17) 0.01901 (15) −0.01174 (19)
C9 0.0321 (18) 0.043 (2) 0.0216 (16) −0.0163 (15) 0.0075 (14) 0.0044 (14)

Geometric parameters (Å, °)

C1—O1 1.234 (3) C4—C5 1.389 (4)
C1—N1 1.330 (3) C4—H4 0.9500
C1—C2 1.529 (4) C5—C6 1.379 (4)
N1—N2 1.415 (3) C5—H5 0.9500
N1—H1 0.85 (3) C6—C7 1.384 (4)
N2—H2A 0.83 (3) C6—Br1 1.903 (3)
N2—H2B 0.92 (3) C7—C8 1.385 (4)
C2—O2 1.427 (3) C7—H7 0.9500
C2—C9 1.520 (4) C8—H8 0.9500
C2—H2 1.0000 C9—H9A 0.9800
O2—C3 1.372 (3) C9—H9B 0.9800
C3—C8 1.385 (4) C9—H9C 0.9800
C3—C4 1.392 (4)
O1—C1—N1 123.1 (2) C5—C4—H4 119.8
O1—C1—C2 122.0 (2) C3—C4—H4 119.8
N1—C1—C2 114.9 (2) C6—C5—C4 118.7 (3)
C1—N1—N2 123.4 (2) C6—C5—H5 120.7
C1—N1—H1 121 (2) C4—C5—H5 120.7
N2—N1—H1 115 (2) C5—C6—C7 121.6 (3)
N1—N2—H2A 109 (2) C5—C6—Br1 119.0 (2)
N1—N2—H2B 107 (2) C7—C6—Br1 119.4 (2)
H2A—N2—H2B 111 (3) C6—C7—C8 119.5 (3)
O2—C2—C9 105.8 (2) C6—C7—H7 120.3
O2—C2—C1 109.9 (2) C8—C7—H7 120.3
C9—C2—C1 110.3 (2) C3—C8—C7 119.8 (3)
O2—C2—H2 110.3 C3—C8—H8 120.1
C9—C2—H2 110.3 C7—C8—H8 120.1
C1—C2—H2 110.3 C2—C9—H9A 109.5
C3—O2—C2 118.5 (2) C2—C9—H9B 109.5
O2—C3—C8 125.4 (2) H9A—C9—H9B 109.5
O2—C3—C4 114.6 (2) C2—C9—H9C 109.5
C8—C3—C4 120.1 (3) H9A—C9—H9C 109.5
C5—C4—C3 120.4 (3) H9B—C9—H9C 109.5
O1—C1—N1—N2 1.5 (4) O2—C3—C4—C5 −177.1 (2)
C2—C1—N1—N2 −176.7 (2) C8—C3—C4—C5 1.1 (4)
O1—C1—C2—O2 15.9 (4) C3—C4—C5—C6 −0.2 (4)
N1—C1—C2—O2 −165.9 (2) C4—C5—C6—C7 −0.6 (4)
O1—C1—C2—C9 −100.3 (3) C4—C5—C6—Br1 179.2 (2)
N1—C1—C2—C9 77.9 (3) C5—C6—C7—C8 0.4 (4)
C9—C2—O2—C3 −166.8 (2) Br1—C6—C7—C8 −179.3 (2)
C1—C2—O2—C3 74.1 (3) O2—C3—C8—C7 176.8 (2)
C2—O2—C3—C8 3.5 (4) C4—C3—C8—C7 −1.3 (4)
C2—O2—C3—C4 −178.3 (2) C6—C7—C8—C3 0.5 (4)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1···O1i 0.85 (3) 1.97 (3) 2.812 (3) 170 (3)
N2—H2A···O1ii 0.83 (3) 2.33 (3) 3.127 (3) 161 (3)

Symmetry codes: (i) x, y+1, z; (ii) −x+1, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SI2151).

References

  1. Ahmad, R., Zia-ul-Haq, M., Jabeen, R. & Duddeck, H. (1996). Turk. J. Chem.20, 186–193.
  2. Akhtar, T., Hameed, S., Al-Masoudi, N. A. & Khan, K. M. (2007). Heteroat. Chem.18, 316–322.
  3. Akhtar, T., Hameed, S., Al-Masoudi, N. A., Loddo, R. & La Colla, P. (2008). Acta Pharm.58, 135–149. [DOI] [PubMed]
  4. Akhtar, T., Hameed, S., Lu, X., Yasin, K. A. & Khan, M. H. (2006). Anal. Sci.22, 307–308.
  5. Akhtar, T., Khawar Rauf, M., Ebihara, M. & Hameed, S. (2007). Acta Cryst. E63, o2590–o2592. [DOI] [PMC free article] [PubMed]
  6. Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst.32, 115–119.
  7. Belkadi, M. & Othman, A. A. (2006). ARKIVOC, part xi, pp. 183–195.
  8. Goswami, B. N., Kataky, J. C. S. & Baruah, J. N. (1984). J. Heterocycl. Chem.21, 1225–1229.
  9. Higashi, T. (1999). NUMABS Rigaku Corporation, Tokyo, Japan.
  10. Johnson, C. K. (1976). ORTEPII Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
  11. Molecular Structure Corporation & Rigaku (2001). CrystalClear MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.
  12. Molecular Structure Corporation & Rigaku (2004). TEXSAN MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.
  13. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  14. Zheng, Y.-Y. (2008). Z. Kristallogr. New Cryst. Struct.223, 295–296.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809003134/si2151sup1.cif

e-65-0o441-sup1.cif (15.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809003134/si2151Isup2.hkl

e-65-0o441-Isup2.hkl (118.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES