Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Jan 23;65(Pt 2):o357. doi: 10.1107/S1600536809001196

2-(1H-Benzotriazol-1-yl)-1-(3-methoxy­benzo­yl)ethyl isonicotinate

Wei Wang a, Zhen-Hua Mei a,*
PMCID: PMC2968212  PMID: 21581956

Abstract

In the title compound, C22H18N4O4, mol­ecules are linked to each other by C—H⋯N and C—H⋯O inter­molecular hydrogen-bonding inter­actions. The crystal packing is further stabilized by C—H⋯π, and π–π inter­actions with a distance of 3.783 (3) Å between the centroids of the benzene rings of the benzotriazole system.

Related literature

For general background on benzotriazole and its derivatives, see: Chen & Wu (2005). For details of the synthesis, see: Wan et al. (2006). For bond-length data, see: Allen et al. (1987).graphic file with name e-65-0o357-scheme1.jpg

Experimental

Crystal data

  • C22H18N4O4

  • M r = 402.40

  • Triclinic, Inline graphic

  • a = 9.4839 (18) Å

  • b = 10.3611 (19) Å

  • c = 11.276 (2) Å

  • α = 109.342 (3)°

  • β = 102.664 (3)°

  • γ = 97.985 (3)°

  • V = 992.8 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 (2) K

  • 0.33 × 0.16 × 0.08 mm

Data collection

  • Siemens SMART 1000 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.969, T max = 0.992

  • 5605 measured reflections

  • 3819 independent reflections

  • 2822 reflections with I > 2σ(I)

  • R int = 0.013

Refinement

  • R[F 2 > 2σ(F 2)] = 0.046

  • wR(F 2) = 0.119

  • S = 1.04

  • 3819 reflections

  • 271 parameters

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.19 e Å−3

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 2003).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809001196/at2705sup1.cif

e-65-0o357-sup1.cif (21.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809001196/at2705Isup2.hkl

e-65-0o357-Isup2.hkl (187.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg3 and Cg4 are the centroids of the C1–C6 and C10–C15 benzene rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3B⋯N3i 0.93 2.48 3.328 (3) 151
C9—H9B⋯O1ii 0.97 2.56 3.471 (2) 157
C15—H15A⋯O1ii 0.93 2.46 3.368 (3) 164
C20—H20ACg3iii 0.93 2.85 3.767 168
C22—H22CCg4iv 0.96 2.87 3.530 127

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

This project was supported by the Natural Science Foundation of Shandong Province (grant No. Y2006B07).

supplementary crystallographic information

Comment

Benzotriazole and its derivatives exhibit an excellent pharmacological activities, such as antifungal, antitumor and antineoplastic activities (Chen & Wu, 2005). In order to find a new benzotriazole compound with higher bioactivity, the title compound, (I) (Fig. 1), was synthesized and its crystal structure was presented here.

In (I), all bond lengths and angles are within normal ranges (Allen et al., 1987). The benzotriazole ring is mostly planar with a dihedral angle of 1.75 (1)° between the N1—N3/C10/C11 triazole and C10—C15 benzene rings. The mean plane makes dihedral angles of 70.93 (1) and 19.8 (1)° with the N4/C17—C21 pyridine and C1—C6 benzene rings, respectively, and the dihedral angle between the latter two aromatic rings is 80.08 (1)°.

In the crystal structure, molecules of (I) are linked to each other by C3—H3B···N3, and further linked by C—H···O intermolecular hydrogen bonding interactions (C9—H9B···O1 and C15—H15A···O1), and stabilized by C—H···π interactions (Table 1). The distances of 3.783 Å between the centroids of the rings C10—C15 related by the symmetry code (-x, 1 - y, 1 - z) suggests a possible π–π interaction.

Experimental

The title compound was prepared according to the literature method of Wan et al. (20067). Single crystals suitable for X-ray diffraction were obtained by slow evaporation of an ethyl acetate solution at room temperature over a period of one week.

Refinement

All H atoms were located in difference Fourier maps and constrained to ride on their parent atoms, with C—H distances in the range 0.93–0.97 Å, and with Uiso(H) = 1.2 Ueq(C) and 1.5 Ueq(methyl C).

Figures

Fig. 1.

Fig. 1.

The structure of the compound (I) showing 50% probability displacement ellipsoids and the atom numbering scheme.

Fig. 2.

Fig. 2.

A packing diagram of (I), viewed down the a axis. Hydrogen bonds are indicated by dashed lines.

Crystal data

C22H18N4O4 Z = 2
Mr = 402.40 F(000) = 420
Triclinic, P1 Dx = 1.346 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 9.4839 (18) Å Cell parameters from 1711 reflections
b = 10.3611 (19) Å θ = 2.6–24.7°
c = 11.276 (2) Å µ = 0.10 mm1
α = 109.342 (3)° T = 293 K
β = 102.664 (3)° Plate, colourless
γ = 97.985 (3)° 0.33 × 0.16 × 0.08 mm
V = 992.8 (3) Å3

Data collection

Siemens SMART 1000 CCD area-detector diffractometer 3819 independent reflections
Radiation source: fine-focus sealed tube 2822 reflections with I > 2σ(I)
graphite Rint = 0.013
Detector resolution: 8.33 pixels mm-1 θmax = 26.1°, θmin = 2.0°
ω scans h = −11→11
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) k = −12→10
Tmin = 0.969, Tmax = 0.992 l = −12→13
5605 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119 H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0502P)2 + 0.1574P] where P = (Fo2 + 2Fc2)/3
3819 reflections (Δ/σ)max < 0.001
271 parameters Δρmax = 0.15 e Å3
0 restraints Δρmin = −0.19 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O2 0.21549 (13) 0.94145 (12) 0.45684 (11) 0.0511 (3)
O3 0.40290 (15) 1.11047 (14) 0.47141 (13) 0.0639 (4)
N1 0.22089 (16) 0.73861 (15) 0.58935 (14) 0.0498 (4)
C7 0.23974 (18) 1.12532 (18) 0.66726 (18) 0.0474 (4)
C6 0.31816 (18) 1.19911 (18) 0.80934 (17) 0.0457 (4)
C17 0.23003 (19) 0.97219 (18) 0.26265 (17) 0.0481 (4)
C1 0.2728 (2) 1.31472 (19) 0.88006 (18) 0.0526 (5)
H1A 0.1952 1.3441 0.8379 0.063*
C16 0.29418 (19) 1.01773 (19) 0.40669 (18) 0.0487 (4)
O1 0.15281 (15) 1.17332 (14) 0.60783 (13) 0.0691 (4)
C8 0.26559 (19) 0.98062 (18) 0.59616 (17) 0.0474 (4)
H8A 0.3712 0.9811 0.6233 0.057*
N2 0.34386 (18) 0.72584 (18) 0.66902 (16) 0.0642 (5)
C10 0.16172 (19) 0.61663 (18) 0.48299 (17) 0.0457 (4)
C21 0.2851 (2) 1.0500 (2) 0.19695 (19) 0.0556 (5)
H21A 0.3604 1.1310 0.2422 0.067*
C9 0.1742 (2) 0.86971 (18) 0.62674 (18) 0.0498 (4)
H9A 0.1837 0.9040 0.7199 0.060*
H9B 0.0704 0.8535 0.5805 0.060*
C15 0.0363 (2) 0.57215 (19) 0.37579 (18) 0.0524 (5)
H15A −0.0264 0.6310 0.3634 0.063*
N3 0.36612 (19) 0.60040 (18) 0.61744 (17) 0.0687 (5)
O4 0.28449 (18) 1.49647 (15) 1.07256 (15) 0.0812 (5)
C11 0.2550 (2) 0.52895 (19) 0.50226 (18) 0.0522 (5)
C5 0.4361 (2) 1.1570 (2) 0.87303 (19) 0.0565 (5)
H5A 0.4675 1.0791 0.8273 0.068*
C2 0.3411 (2) 1.38696 (19) 1.01200 (19) 0.0551 (5)
N4 0.1207 (2) 0.8890 (2) −0.00867 (17) 0.0771 (5)
C3 0.4587 (2) 1.3456 (2) 1.0743 (2) 0.0626 (5)
H3B 0.5059 1.3944 1.1632 0.075*
C12 0.2266 (2) 0.3910 (2) 0.4131 (2) 0.0615 (5)
H12A 0.2887 0.3316 0.4253 0.074*
C14 0.0107 (2) 0.4364 (2) 0.28959 (19) 0.0604 (5)
H14A −0.0717 0.4024 0.2164 0.072*
C4 0.5054 (2) 1.2319 (2) 1.0041 (2) 0.0670 (6)
H4B 0.5854 1.2052 1.0460 0.080*
C13 0.1044 (2) 0.3469 (2) 0.3078 (2) 0.0627 (5)
H13A 0.0826 0.2555 0.2466 0.075*
C20 0.2260 (2) 1.0049 (2) 0.0634 (2) 0.0680 (6)
H20A 0.2622 1.0593 0.0207 0.082*
C19 0.0693 (3) 0.8157 (3) 0.0559 (2) 0.0825 (7)
H19A −0.0042 0.7339 0.0076 0.099*
C22 0.3532 (3) 1.5758 (2) 1.2089 (2) 0.0840 (7)
H22A 0.3031 1.6493 1.2391 0.126*
H22B 0.4555 1.6163 1.2223 0.126*
H22C 0.3471 1.5151 1.2570 0.126*
C18 0.1180 (2) 0.8531 (2) 0.1897 (2) 0.0695 (6)
H18A 0.0762 0.7991 0.2302 0.083*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O2 0.0529 (7) 0.0520 (7) 0.0458 (7) 0.0072 (6) 0.0145 (6) 0.0166 (6)
O3 0.0558 (8) 0.0645 (9) 0.0632 (9) −0.0020 (7) 0.0069 (7) 0.0265 (7)
N1 0.0547 (9) 0.0462 (9) 0.0449 (9) 0.0113 (7) 0.0066 (7) 0.0176 (7)
C7 0.0417 (9) 0.0488 (10) 0.0528 (11) 0.0117 (8) 0.0111 (8) 0.0213 (8)
C6 0.0435 (9) 0.0445 (10) 0.0490 (11) 0.0063 (8) 0.0119 (8) 0.0196 (8)
C17 0.0463 (10) 0.0511 (11) 0.0494 (11) 0.0166 (8) 0.0176 (8) 0.0172 (8)
C1 0.0477 (10) 0.0533 (11) 0.0565 (12) 0.0135 (8) 0.0109 (9) 0.0219 (9)
C16 0.0473 (10) 0.0476 (10) 0.0546 (11) 0.0149 (9) 0.0175 (9) 0.0199 (9)
O1 0.0717 (9) 0.0700 (9) 0.0587 (9) 0.0335 (8) 0.0025 (7) 0.0186 (7)
C8 0.0464 (10) 0.0486 (10) 0.0451 (10) 0.0114 (8) 0.0100 (8) 0.0165 (8)
N2 0.0651 (10) 0.0611 (11) 0.0550 (10) 0.0141 (8) −0.0021 (8) 0.0197 (8)
C10 0.0511 (10) 0.0447 (10) 0.0426 (10) 0.0100 (8) 0.0128 (8) 0.0187 (8)
C21 0.0563 (11) 0.0538 (11) 0.0557 (12) 0.0126 (9) 0.0174 (9) 0.0185 (9)
C9 0.0546 (10) 0.0456 (10) 0.0479 (10) 0.0106 (8) 0.0146 (8) 0.0162 (8)
C15 0.0529 (11) 0.0565 (11) 0.0493 (11) 0.0154 (9) 0.0121 (9) 0.0221 (9)
N3 0.0723 (11) 0.0633 (11) 0.0633 (11) 0.0238 (9) 0.0017 (9) 0.0226 (9)
O4 0.0977 (11) 0.0704 (10) 0.0664 (10) 0.0311 (9) 0.0243 (9) 0.0088 (8)
C11 0.0577 (11) 0.0528 (11) 0.0476 (11) 0.0157 (9) 0.0101 (9) 0.0226 (9)
C5 0.0577 (11) 0.0552 (11) 0.0558 (12) 0.0196 (9) 0.0119 (9) 0.0196 (9)
C2 0.0593 (11) 0.0491 (11) 0.0535 (12) 0.0076 (9) 0.0178 (9) 0.0154 (9)
N4 0.0788 (12) 0.0912 (14) 0.0529 (11) 0.0082 (11) 0.0183 (10) 0.0213 (10)
C3 0.0667 (13) 0.0630 (13) 0.0483 (12) 0.0062 (10) 0.0070 (10) 0.0178 (10)
C12 0.0742 (13) 0.0531 (12) 0.0641 (13) 0.0248 (10) 0.0225 (11) 0.0245 (10)
C14 0.0603 (12) 0.0626 (13) 0.0485 (11) 0.0075 (10) 0.0118 (9) 0.0135 (9)
C4 0.0646 (13) 0.0745 (14) 0.0564 (13) 0.0205 (11) 0.0018 (10) 0.0258 (11)
C13 0.0761 (14) 0.0468 (11) 0.0595 (13) 0.0099 (10) 0.0231 (11) 0.0120 (9)
C20 0.0751 (14) 0.0726 (15) 0.0586 (13) 0.0117 (12) 0.0235 (11) 0.0266 (11)
C19 0.0799 (16) 0.0866 (17) 0.0563 (14) −0.0113 (13) 0.0136 (12) 0.0116 (12)
C22 0.1063 (19) 0.0643 (14) 0.0660 (15) 0.0046 (13) 0.0360 (14) 0.0037 (11)
C18 0.0672 (13) 0.0733 (14) 0.0575 (13) −0.0036 (11) 0.0170 (11) 0.0194 (11)

Geometric parameters (Å, °)

O2—C16 1.349 (2) C15—H15A 0.9300
O2—C8 1.434 (2) N3—C11 1.375 (2)
O3—C16 1.204 (2) O4—C2 1.363 (2)
N1—N2 1.359 (2) O4—C22 1.428 (2)
N1—C10 1.362 (2) C11—C12 1.396 (3)
N1—C9 1.445 (2) C5—C4 1.375 (3)
C7—O1 1.212 (2) C5—H5A 0.9300
C7—C6 1.488 (2) C2—C3 1.382 (3)
C7—C8 1.531 (2) N4—C19 1.327 (3)
C6—C1 1.384 (2) N4—C20 1.329 (3)
C6—C5 1.395 (2) C3—C4 1.376 (3)
C17—C18 1.382 (3) C3—H3B 0.9300
C17—C21 1.385 (3) C12—C13 1.361 (3)
C17—C16 1.487 (2) C12—H12A 0.9300
C1—C2 1.378 (3) C14—C13 1.403 (3)
C1—H1A 0.9300 C14—H14A 0.9300
C8—C9 1.519 (2) C4—H4B 0.9300
C8—H8A 0.9800 C13—H13A 0.9300
N2—N3 1.304 (2) C20—H20A 0.9300
C10—C11 1.387 (2) C19—C18 1.378 (3)
C10—C15 1.392 (2) C19—H19A 0.9300
C21—C20 1.375 (3) C22—H22A 0.9600
C21—H21A 0.9300 C22—H22B 0.9600
C9—H9A 0.9700 C22—H22C 0.9600
C9—H9B 0.9700 C18—H18A 0.9300
C15—C14 1.371 (3)
C16—O2—C8 115.78 (13) C2—O4—C22 117.93 (18)
N2—N1—C10 109.89 (14) N3—C11—C10 108.94 (16)
N2—N1—C9 118.99 (14) N3—C11—C12 130.21 (18)
C10—N1—C9 131.12 (15) C10—C11—C12 120.83 (17)
O1—C7—C6 122.39 (16) C4—C5—C6 119.33 (18)
O1—C7—C8 119.34 (16) C4—C5—H5A 120.3
C6—C7—C8 118.21 (15) C6—C5—H5A 120.3
C1—C6—C5 119.12 (17) O4—C2—C1 115.94 (18)
C1—C6—C7 118.39 (15) O4—C2—C3 124.37 (18)
C5—C6—C7 122.49 (16) C1—C2—C3 119.69 (18)
C18—C17—C21 117.82 (18) C19—N4—C20 116.16 (19)
C18—C17—C16 122.72 (18) C4—C3—C2 119.54 (19)
C21—C17—C16 119.45 (17) C4—C3—H3B 120.2
C2—C1—C6 120.96 (17) C2—C3—H3B 120.2
C2—C1—H1A 119.5 C13—C12—C11 117.29 (18)
C6—C1—H1A 119.5 C13—C12—H12A 121.4
O3—C16—O2 123.70 (17) C11—C12—H12A 121.4
O3—C16—C17 124.81 (18) C15—C14—C13 122.40 (19)
O2—C16—C17 111.49 (15) C15—C14—H14A 118.8
O2—C8—C9 106.06 (13) C13—C14—H14A 118.8
O2—C8—C7 110.80 (14) C5—C4—C3 121.34 (19)
C9—C8—C7 109.81 (14) C5—C4—H4B 119.3
O2—C8—H8A 110.0 C3—C4—H4B 119.3
C9—C8—H8A 110.0 C12—C13—C14 121.34 (18)
C7—C8—H8A 110.0 C12—C13—H13A 119.3
N3—N2—N1 109.04 (15) C14—C13—H13A 119.3
N1—C10—C11 104.25 (15) N4—C20—C21 124.4 (2)
N1—C10—C15 133.49 (16) N4—C20—H20A 117.8
C11—C10—C15 122.22 (16) C21—C20—H20A 117.8
C20—C21—C17 118.61 (19) N4—C19—C18 124.2 (2)
C20—C21—H21A 120.7 N4—C19—H19A 117.9
C17—C21—H21A 120.7 C18—C19—H19A 117.9
N1—C9—C8 111.93 (14) O4—C22—H22A 109.5
N1—C9—H9A 109.2 O4—C22—H22B 109.5
C8—C9—H9A 109.2 H22A—C22—H22B 109.5
N1—C9—H9B 109.2 O4—C22—H22C 109.5
C8—C9—H9B 109.2 H22A—C22—H22C 109.5
H9A—C9—H9B 107.9 H22B—C22—H22C 109.5
C14—C15—C10 115.92 (17) C19—C18—C17 118.8 (2)
C14—C15—H15A 122.0 C19—C18—H18A 120.6
C10—C15—H15A 122.0 C17—C18—H18A 120.6
N2—N3—C11 107.87 (15)
O1—C7—C6—C1 10.4 (3) N1—C10—C15—C14 −177.61 (19)
C8—C7—C6—C1 −166.80 (16) C11—C10—C15—C14 −0.4 (3)
O1—C7—C6—C5 −168.84 (18) N1—N2—N3—C11 −0.5 (2)
C8—C7—C6—C5 13.9 (3) N2—N3—C11—C10 0.6 (2)
C5—C6—C1—C2 −0.9 (3) N2—N3—C11—C12 −177.9 (2)
C7—C6—C1—C2 179.82 (17) N1—C10—C11—N3 −0.4 (2)
C8—O2—C16—O3 2.3 (2) C15—C10—C11—N3 −178.31 (17)
C8—O2—C16—C17 −177.93 (13) N1—C10—C11—C12 178.28 (18)
C18—C17—C16—O3 170.73 (19) C15—C10—C11—C12 0.4 (3)
C21—C17—C16—O3 −8.3 (3) C1—C6—C5—C4 −0.6 (3)
C18—C17—C16—O2 −9.0 (2) C7—C6—C5—C4 178.69 (18)
C21—C17—C16—O2 172.00 (15) C22—O4—C2—C1 −179.05 (18)
C16—O2—C8—C9 −172.79 (13) C22—O4—C2—C3 1.4 (3)
C16—O2—C8—C7 68.10 (18) C6—C1—C2—O4 −178.11 (17)
O1—C7—C8—O2 18.0 (2) C6—C1—C2—C3 1.5 (3)
C6—C7—C8—O2 −164.64 (14) O4—C2—C3—C4 178.9 (2)
O1—C7—C8—C9 −98.8 (2) C1—C2—C3—C4 −0.6 (3)
C6—C7—C8—C9 78.53 (19) N3—C11—C12—C13 178.3 (2)
C10—N1—N2—N3 0.3 (2) C10—C11—C12—C13 −0.1 (3)
C9—N1—N2—N3 −179.98 (16) C10—C15—C14—C13 0.2 (3)
N2—N1—C10—C11 0.1 (2) C6—C5—C4—C3 1.5 (3)
C9—N1—C10—C11 −179.61 (17) C2—C3—C4—C5 −0.9 (3)
N2—N1—C10—C15 177.64 (19) C11—C12—C13—C14 −0.1 (3)
C9—N1—C10—C15 −2.1 (3) C15—C14—C13—C12 0.0 (3)
C18—C17—C21—C20 −0.1 (3) C19—N4—C20—C21 1.4 (3)
C16—C17—C21—C20 178.95 (17) C17—C21—C20—N4 −1.5 (3)
N2—N1—C9—C8 79.2 (2) C20—N4—C19—C18 0.2 (4)
C10—N1—C9—C8 −101.1 (2) N4—C19—C18—C17 −1.7 (4)
O2—C8—C9—N1 74.36 (17) C21—C17—C18—C19 1.6 (3)
C7—C8—C9—N1 −165.87 (14) C16—C17—C18—C19 −177.42 (19)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C3—H3B···N3i 0.93 2.48 3.328 (3) 151
C9—H9B···O1ii 0.97 2.56 3.471 (2) 157
C15—H15A···O1ii 0.93 2.46 3.368 (3) 164
C20—H20A···Cg3iii 0.93 2.85 3.767 168
C22—H22C···Cg4iv 0.96 2.87 3.530 127

Symmetry codes: (i) −x+1, −y+2, −z+2; (ii) −x, −y+2, −z+1; (iii) x, y, z−1; (iv) x, y+1, z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2705).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Chen, Z.-Y. & Wu, M.-T. (2005). Org. Lett.7, 475–477. [DOI] [PubMed]
  3. Nardelli, M. (1995). J. Appl. Cryst.28, 659.
  4. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Siemens (1996). SMART and SAINT Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
  7. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  8. Wan, J., Peng, Z.-Z., Li, X.-M. & Zhang, S.-S. (2006). Acta Cryst. E62, o634–o636.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809001196/at2705sup1.cif

e-65-0o357-sup1.cif (21.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809001196/at2705Isup2.hkl

e-65-0o357-Isup2.hkl (187.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES