Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Jan 23;65(Pt 2):o376–o377. doi: 10.1107/S1600536809002384

4′-[2-(Trifluoro­meth­yl)phen­yl]-2,2′:6′,2′′-terpyridine

Peter Ledwaba a, Orde Q Munro a, Kirsty Stewart a,*
PMCID: PMC2968217  PMID: 21581974

Abstract

The title compound, C22H14F3N3, is a versatile tridentate N-donor ligand consisting of a terpyridyl (terpy) molecule substituted in the 4′-position by a phenyl group, itself substituted in an ortho-position by a bulky trifluoro­methyl group. The phenyl ring is twisted as a result of steric inter­actions involving the bulky trifluoro­methyl substituent. This is reflected in the dihedral angle between the mean plane through the C atoms of the phenyl ring and the terpyridyl unit being 69.2 (1)°. The crystal structure contains no short van der Waals contacts. However, the terpy units stack in a head-to-tail orientation perpendicular to the c axis. The structure is is loosely stabilized by π–π inter­actions between the terminal pyridine rings of adjacent mol­ecules along the stack. The perpendicular distance between the mean planes through the terpy moieties of adjacent mol­ecules is 3.4 (1) Å.

Related literature

For related structures, see: Bessel et al. (1992); Brandt et al. (1954); Dwyer & Mellor (1964); Field et al. (2002); Gillard (1983); Lindoy & Livingstone (1967); Morgan & Burstall (1932, 1934, 1938); Serpone et al. (1983); Storrier et al. (1997). For background, see Constable et al. (1990, 1992); Hunter & Sanders (1990); Kröhnke (1976); Thummel & Jahng (1985).graphic file with name e-65-0o376-scheme1.jpg

Experimental

Crystal data

  • C22H14F3N3

  • M r = 377.36

  • Triclinic, Inline graphic

  • a = 7.767 (5) Å

  • b = 10.923 (3) Å

  • c = 11.748 (3) Å

  • α = 75.64 (2)°

  • β = 74.03 (4)°

  • γ = 72.93 (4)°

  • V = 900.8 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 293 (2) K

  • 0.60 × 0.30 × 0.30 mm

Data collection

  • Oxford Diffraction Xcalibur2 CCD diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2003) T min = 0.930, T max = 0.969

  • 3953 measured reflections

  • 3155 independent reflections

  • 2840 reflections with I > 2σ(I)

  • R int = 0.032

Refinement

  • R[F 2 > 2σ(F 2)] = 0.052

  • wR(F 2) = 0.148

  • S = 1.06

  • 3155 reflections

  • 254 parameters

  • H-atom parameters constrained

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.32 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2003); cell refinement: CrysAlis RED (Oxford Diffraction, 2003); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809002384/hg2469sup1.cif

e-65-0o376-sup1.cif (20.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809002384/hg2469Isup2.hkl

e-65-0o376-Isup2.hkl (151.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge financial support from the South African National Research Foundation and the Department of Labour. We also extend our appreciation to Professor John Field for helpful discussions and guidance.

supplementary crystallographic information

Comment

The tridentate coordinating ligand 2,2':6',2''-terpyridine (terpy) was first isolated by Morgan & Burstall (1932, 1934, 1938) as one of the numerous products from the reaction of pyridine with iron(III) chloride.

Since the 1930s, numerous groups have examined terpy, prompted by the use of related ligands 2,2'-bipyridine (bipy) and 1,10-phenanthroline (phen), in photochemical and photophysical processes (Brandt et al., 1954; Dwyer & Mellor, 1964; Gillard, 1983; Lindoy & Livingstone, 1967; Serpone et al., 1983).

Reported here is the crystal structure of the tridentate terpyridyl ligand substituted in the 4'-position by a phenyl group, itself substituted in an ortho-position by a bulky trifluoromethyl group. Ortho-substitution of the 4'-phenyl ring was chosen since steric interactions between the bulky group and the 3'(5')-proton on the central pyridine ring are expected to force the 4'-substituent to rotate around the interannular bond i.e. the ligand will become non-planar.

In the crystal structure of 4'-(2'''-trifluoromethylphenyl)-2, 2':6',2''-terpyridine, the three pyridyl rings of the terpyridyl moiety are essentially co-planar as is preferred for maximum conjugative interaction (Thummel & Jahng, 1985). This is reflected by torsion angles between the two outer rings and the central ring of -6.5 (2)° and 9.9 (2)° for N1—C1—C6—C7 and C9—C10—C11—N3 respectively.

The terminal pyridine rings adopt a transtrans conformation about the interannular bonds C1—C6 and C10—C11. Several derivatized terpy ligands have been found to adopt this transtrans geometry by X-ray crystal analysis (Constable et al., 1990) which is more energetically favourable when compared to other conformations as a result of the minimal nitrogen lone pair repulsions (Thummel & Jahng, 1985).

The interannular bond distances C1—C6 and C10—C11 are 1.493 (2) Å and 1.484 (2) Å respectively; these distances are comparable with the averaged values of 1.49 (1) Å and 1.49 (1) Å measured for the terpy (Bessel et al., 1992) and 4'-(Ph)-terpy (Constable et al., 1990) ligands respectively.

As previously postulated, the o-tolyl moiety is twisted about the interannular bond C8—C16, as reflected in a dihedral angle between the mean plane through the carbon atoms of the 4'-substituted and the terpyridyl moiety of 69.2 (1)°. This angle may be compared with those adopted by terpyridyl ligands containing similar substituents in the 4'-position of the terpy moiety in molecules such as the free 4'-phenyl-terpyridine (10.9°) (Constable et al., 1990), 6,6''-dibromo-4'-phenyl-terpyridine (35.1°) (Constable et al, 1992) and 4'-(4-anilino)-terpyridine (27.2°) (Storrier et al., 1997). The larger angle witnessed in the title compound is consistent with the bulky nature of the trifluoro group and the fact that it substitutes the ortho-position of the phenyl moiety. Clearly, substitution of a trifluoro group in the ortho-position of the 4'-phenyl group causes a larger rotation about the interannular bond because of steric interactions between the CF3 group and a hydrogen atom of the central pyridine ring that is also ortho with respect to the interannular bond.

There are no short van der Waals contacts less than the sum of the van der Waals radii in this system. However it is worth noting, that the terpy units stack in a head to tail orientation perpendicular to the [c]-axis, presumably as a result of minimizing steric interactions between the bulky trifluoromethyl substituents on adjacent molecules. However it is clear that this arrangement is not entirely successful and that poor packing does result from the presence of these bulky substituents reflected in the large solvent accessible void of 31 Å3. This packing orientation allows for π–π interactions between the terminal pyridine rings of adjacent molecules along the stack. The perpendicular distance between the mean planes through the terpy moieties of adjacent molecules is 3.4 (1)Å which is short enough to support π–π interactions being well within the upper distance limit of 3.8 Å for π–π interactions between organic molecules (Hunter & Sanders, 1990).

The stucture of the title compound is shown in Fig. 1. Fig. 2 shows a view perpendicular to the mean plane through the atoms comprising the terpyridyl (terpy) moiety of two adjacent terpy units in the crystals of the 4'-(2'''-trifluoromethylphenyl)-2, 2':6', 2''-terpyridine ligand. Note that the successive molecules are related by a centre of inversion.

Experimental

4'-(2'''-trifluoromethylphenyl)-2,2':6',2''-terpyridine was synthesized by the method of Kröhnke (Field et al., 2002; Kröhnke, 1976).

N-{1-(2'-pyridyl)-1-oxo-2-ethyl}pyridinium iodide (0.68 g, 2.2 mmol) and ammonium acetate (10 g, excess) were added to a suspension of 2-R-{3-(2-pyridyl)-3-oxopropenyl}benzene (2.0 mmol) in absolute ethanol (8 ml) and the mixture heated at reflux for 40 min. An off-white solid precipitated on cooling. This was collected by filtration, washed with 50% aqueous ethanol and dried in vacuo. Recrystallization from ethanol afforded colourless crystals of the desired ligands.

Yield: (0.41 g, 54%). m.p. (148 °C). Anal. (Calcd. For C22H14F3N3: C 70.0; H 3.7; N 11.1. Found: C 69.9; H 3.9; N 11.0%). MS(EI) m/z: 377, M+). 1H NMR (CDCl3): [δ 8.72 (m, 2H, H6,6''); 8.70 (m, 2H, H3,3''); 8.54 (s, 2H, H3',5'); 7.84 (m, 2H, H4,4''); 7.54 (m, 4H, C6H4); 7.35 (m, 2 H, H5,5'')]. UV/vis (CH3CN): λmax/nm (ε/M-1 cm-1): [303 (sh, 1.3 × 104); 277 (2.9 × 104); 239 (3.4 × 104); 208 (3.6 × 104)].

Refinement

All H atoms were positioned in geometrically idealized positions and constrained to ride on their parent atoms with C—H distances in the range 0.95–1.00 Å. and Uiso(H) = 1.2–1.5Ueq(C).

Figures

Fig. 1.

Fig. 1.

Molecular structure of 4'-(2'''-trifluoromethylphenyl)-2,2':6',2''-terpyridine, showing 50% probability displacement ellipsoids and atomic numbering.

Fig. 2.

Fig. 2.

A view perpendicular to the mean plane through the atoms comprising the terpyridyl (terpy) moiety of two adjacent terpy units in the crystals of the 4'-(2'''-trifluoromethylphenyl)-2, 2':6', 2''-terpyridine ligand. Note that the successive molecules are related by a centre of inversion.

Crystal data

C22H14F3N3 Z = 2
Mr = 377.36 F(000) = 388
Triclinic, P1 Dx = 1.391 Mg m3
Hall symbol: -P 1 Melting point: 421.15 K
a = 7.767 (5) Å Mo Kα radiation, λ = 0.71073 Å
b = 10.923 (3) Å Cell parameters from 3155 reflections
c = 11.748 (3) Å θ = 2.4–25°
α = 75.64 (2)° µ = 0.11 mm1
β = 74.03 (4)° T = 293 K
γ = 72.93 (4)° Square planar, colourless
V = 900.8 (7) Å3 0.60 × 0.30 × 0.30 mm

Data collection

Oxford Diffraction Xcalibur2 CCD diffractometer 3155 independent reflections
Radiation source: Enhance (Mo)X-Ray Source 2840 reflections with I > 2σ(I)
graphite Rint = 0.032
Detector resolution: 8.4190 pixels mm-1 θmax = 25.0°, θmin = 2.4°
ω/2θ scans h = −4→9
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2003) k = −12→12
Tmin = 0.930, Tmax = 0.969 l = −13→13
3953 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.148 H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0902P)2 + 0.255P] where P = (Fo2 + 2Fc2)/3
3155 reflections (Δ/σ)max < 0.001
254 parameters Δρmax = 0.43 e Å3
0 restraints Δρmin = −0.31 e Å3

Special details

Experimental. CrysAlis RED, Oxford Diffraction Ltd., Version 170. Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
F1 0.5317 (2) 0.91636 (13) 0.35582 (14) 0.0845 (5)
F2 0.71339 (15) 0.74840 (14) 0.42847 (12) 0.0725 (4)
F3 0.4702 (2) 0.83636 (18) 0.54344 (13) 0.0926 (6)
N1 1.1281 (2) 0.32563 (14) 0.24320 (14) 0.0467 (4)
N2 1.02318 (17) 0.64584 (13) 0.06447 (11) 0.0340 (3)
N3 0.79020 (19) 0.97634 (14) −0.03608 (13) 0.0426 (4)
C1 1.1511 (2) 0.42440 (15) 0.15132 (14) 0.0357 (4)
C2 1.3124 (2) 0.41901 (18) 0.06241 (16) 0.0429 (4)
H2 1.3249 0.4894 −0.0002 0.0564 (15)*
C3 1.4538 (2) 0.30759 (19) 0.06833 (18) 0.0511 (5)
H3 1.5638 0.3026 0.0106 0.0564 (15)*
C4 1.4302 (3) 0.20463 (19) 0.1601 (2) 0.0536 (5)
H4 1.5217 0.1275 0.1648 0.0564 (15)*
C5 1.2666 (3) 0.21853 (19) 0.2456 (2) 0.0549 (5)
H5 1.2518 0.1491 0.3088 0.0564 (15)*
C6 0.9941 (2) 0.54241 (15) 0.14861 (13) 0.0333 (3)
C7 0.8263 (2) 0.54237 (16) 0.23130 (14) 0.0363 (4)
H7 0.8088 0.4674 0.2867 0.0564 (15)*
C8 0.6857 (2) 0.65547 (16) 0.22996 (13) 0.0341 (4)
C9 0.7156 (2) 0.76331 (15) 0.14389 (14) 0.0345 (4)
H9 0.6248 0.8409 0.1413 0.0564 (15)*
C10 0.8849 (2) 0.75402 (15) 0.06062 (13) 0.0328 (4)
C11 0.9179 (2) 0.86326 (15) −0.04004 (14) 0.0334 (4)
C12 1.0712 (2) 0.84656 (17) −0.13472 (15) 0.0410 (4)
H12 1.1568 0.7666 −0.1354 0.0564 (15)*
C13 1.0949 (2) 0.94940 (19) −0.22719 (16) 0.0476 (4)
H13 1.1972 0.9404 −0.2909 0.0564 (15)*
C14 0.9649 (3) 1.06607 (18) −0.22414 (17) 0.0495 (4)
H14 0.9767 1.1375 −0.2856 0.0564 (15)*
C15 0.8167 (3) 1.07390 (18) −0.12736 (17) 0.0492 (4)
H15 0.7290 1.1529 −0.1257 0.0564 (15)*
C16 0.5028 (2) 0.65338 (15) 0.31581 (13) 0.0341 (4)
C17 0.4308 (2) 0.72287 (15) 0.41048 (14) 0.0351 (4)
C18 0.2588 (2) 0.71521 (17) 0.48555 (15) 0.0414 (4)
H18 0.2120 0.7612 0.5488 0.0564 (15)*
C19 0.1581 (2) 0.64052 (19) 0.46690 (16) 0.0473 (4)
H19 0.0426 0.6373 0.5163 0.0564 (15)*
C20 0.2281 (3) 0.5707 (2) 0.37529 (17) 0.0526 (5)
H20 0.1606 0.5192 0.3631 0.0564 (15)*
C21 0.3993 (2) 0.57662 (19) 0.30069 (16) 0.0459 (4)
H21 0.4459 0.5282 0.2392 0.0564 (15)*
C22 0.5349 (2) 0.80526 (19) 0.43493 (16) 0.0481 (4)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
F1 0.1039 (11) 0.0570 (8) 0.1051 (11) −0.0432 (8) −0.0206 (9) −0.0113 (7)
F2 0.0405 (6) 0.1046 (10) 0.0925 (10) −0.0248 (6) −0.0147 (6) −0.0448 (8)
F3 0.0829 (10) 0.1468 (14) 0.0763 (9) −0.0633 (10) 0.0233 (7) −0.0738 (10)
N1 0.0386 (8) 0.0444 (8) 0.0533 (9) −0.0056 (6) −0.0115 (6) −0.0057 (7)
N2 0.0272 (6) 0.0400 (7) 0.0361 (7) −0.0077 (5) −0.0057 (5) −0.0112 (6)
N3 0.0359 (7) 0.0409 (8) 0.0466 (8) −0.0062 (6) −0.0045 (6) −0.0089 (6)
C1 0.0325 (8) 0.0396 (9) 0.0391 (8) −0.0072 (6) −0.0108 (6) −0.0128 (7)
C2 0.0349 (8) 0.0485 (10) 0.0443 (9) −0.0048 (7) −0.0064 (7) −0.0154 (7)
C3 0.0331 (9) 0.0588 (11) 0.0607 (11) −0.0009 (8) −0.0070 (8) −0.0257 (9)
C4 0.0388 (9) 0.0459 (10) 0.0775 (13) 0.0035 (8) −0.0220 (9) −0.0197 (9)
C5 0.0469 (10) 0.0452 (10) 0.0688 (13) −0.0050 (8) −0.0202 (9) −0.0027 (9)
C6 0.0296 (8) 0.0401 (8) 0.0333 (8) −0.0085 (6) −0.0074 (6) −0.0113 (6)
C7 0.0326 (8) 0.0414 (9) 0.0351 (8) −0.0102 (6) −0.0063 (6) −0.0071 (6)
C8 0.0277 (7) 0.0436 (9) 0.0335 (8) −0.0112 (6) −0.0034 (6) −0.0121 (6)
C9 0.0268 (7) 0.0377 (8) 0.0393 (8) −0.0069 (6) −0.0043 (6) −0.0120 (6)
C10 0.0268 (7) 0.0396 (8) 0.0353 (8) −0.0099 (6) −0.0053 (6) −0.0119 (6)
C11 0.0267 (7) 0.0396 (8) 0.0372 (8) −0.0093 (6) −0.0081 (6) −0.0105 (6)
C12 0.0301 (8) 0.0476 (9) 0.0420 (9) −0.0079 (7) −0.0043 (6) −0.0081 (7)
C13 0.0384 (9) 0.0601 (11) 0.0399 (9) −0.0157 (8) −0.0014 (7) −0.0046 (8)
C14 0.0521 (10) 0.0501 (10) 0.0454 (10) −0.0181 (8) −0.0133 (8) 0.0029 (8)
C15 0.0485 (10) 0.0401 (9) 0.0533 (10) −0.0060 (8) −0.0103 (8) −0.0053 (8)
C16 0.0275 (7) 0.0402 (8) 0.0340 (8) −0.0107 (6) −0.0053 (6) −0.0043 (6)
C17 0.0270 (7) 0.0403 (8) 0.0362 (8) −0.0086 (6) −0.0045 (6) −0.0058 (6)
C18 0.0302 (8) 0.0497 (9) 0.0382 (8) −0.0086 (7) −0.0001 (6) −0.0070 (7)
C19 0.0303 (8) 0.0657 (11) 0.0426 (9) −0.0209 (8) −0.0033 (7) 0.0019 (8)
C20 0.0468 (10) 0.0716 (13) 0.0498 (10) −0.0368 (9) −0.0091 (8) −0.0042 (9)
C21 0.0462 (9) 0.0571 (11) 0.0415 (9) −0.0253 (8) −0.0032 (7) −0.0132 (8)
C22 0.0403 (9) 0.0588 (11) 0.0489 (10) −0.0186 (8) 0.0036 (7) −0.0235 (9)

Geometric parameters (Å, °)

F1—C22 1.331 (2) C9—C10 1.400 (2)
F2—C22 1.332 (2) C9—H9 0.9300
F3—C22 1.325 (2) C10—C11 1.484 (2)
N1—C5 1.337 (2) C11—C12 1.390 (2)
N1—C1 1.338 (2) C12—C13 1.372 (2)
N2—C6 1.333 (2) C12—H12 0.9300
N2—C10 1.344 (2) C13—C14 1.376 (3)
N3—C15 1.330 (2) C13—H13 0.9300
N3—C11 1.340 (2) C14—C15 1.377 (3)
C1—C2 1.389 (2) C14—H14 0.9300
C1—C6 1.493 (2) C15—H15 0.9300
C2—C3 1.381 (3) C16—C21 1.388 (2)
C2—H2 0.9300 C16—C17 1.398 (2)
C3—C4 1.368 (3) C17—C18 1.397 (2)
C3—H3 0.9300 C17—C22 1.493 (2)
C4—C5 1.381 (3) C18—C19 1.372 (3)
C4—H4 0.9300 C18—H18 0.9300
C5—H5 0.9300 C19—C20 1.370 (3)
C6—C7 1.395 (2) C19—H19 0.9300
C7—C8 1.388 (2) C20—C21 1.387 (3)
C7—H7 0.9300 C20—H20 0.9300
C8—C9 1.380 (2) C21—H21 0.9300
C8—C16 1.501 (2)
C5—N1—C1 117.21 (16) C13—C12—C11 119.27 (16)
C6—N2—C10 118.17 (13) C13—C12—H12 120.4
C15—N3—C11 116.89 (15) C11—C12—H12 120.4
N1—C1—C2 122.33 (15) C12—C13—C14 118.93 (16)
N1—C1—C6 116.64 (15) C12—C13—H13 120.5
C2—C1—C6 121.03 (15) C14—C13—H13 120.5
C3—C2—C1 119.02 (17) C13—C14—C15 118.00 (16)
C3—C2—H2 120.5 C13—C14—H14 121.0
C1—C2—H2 120.5 C15—C14—H14 121.0
C4—C3—C2 119.23 (17) N3—C15—C14 124.54 (17)
C4—C3—H3 120.4 N3—C15—H15 117.7
C2—C3—H3 120.4 C14—C15—H15 117.7
C3—C4—C5 118.07 (17) C21—C16—C17 117.94 (14)
C3—C4—H4 121.0 C21—C16—C8 117.85 (14)
C5—C4—H4 121.0 C17—C16—C8 124.21 (14)
N1—C5—C4 124.10 (19) C18—C17—C16 120.11 (15)
N1—C5—H5 118.0 C18—C17—C22 118.44 (15)
C4—C5—H5 118.0 C16—C17—C22 121.44 (14)
N2—C6—C7 122.53 (15) C19—C18—C17 120.60 (16)
N2—C6—C1 116.83 (14) C19—C18—H18 119.7
C7—C6—C1 120.63 (15) C17—C18—H18 119.7
C8—C7—C6 119.27 (15) C20—C19—C18 119.89 (15)
C8—C7—H7 120.4 C20—C19—H19 120.1
C6—C7—H7 120.4 C18—C19—H19 120.1
C9—C8—C7 118.43 (14) C19—C20—C21 120.07 (16)
C9—C8—C16 122.38 (14) C19—C20—H20 120.0
C7—C8—C16 119.04 (15) C21—C20—H20 120.0
C8—C9—C10 118.93 (14) C20—C21—C16 121.37 (17)
C8—C9—H9 120.5 C20—C21—H21 119.3
C10—C9—H9 120.5 C16—C21—H21 119.3
N2—C10—C9 122.57 (15) F3—C22—F2 105.78 (17)
N2—C10—C11 116.41 (13) F3—C22—F1 107.02 (17)
C9—C10—C11 120.99 (14) F2—C22—F1 104.80 (16)
N3—C11—C12 122.37 (15) F3—C22—C17 112.81 (14)
N3—C11—C10 116.52 (14) F2—C22—C17 113.43 (15)
C12—C11—C10 121.08 (14) F1—C22—C17 112.38 (16)
C5—N1—C1—C2 −1.2 (2) C9—C10—C11—C12 −168.23 (14)
C5—N1—C1—C6 178.95 (15) N3—C11—C12—C13 0.7 (2)
N1—C1—C2—C3 0.4 (2) C10—C11—C12—C13 178.79 (15)
C6—C1—C2—C3 −179.75 (14) C11—C12—C13—C14 −0.7 (3)
C1—C2—C3—C4 1.2 (3) C12—C13—C14—C15 0.3 (3)
C2—C3—C4—C5 −2.0 (3) C11—N3—C15—C14 0.0 (3)
C1—N1—C5—C4 0.4 (3) C13—C14—C15—N3 0.1 (3)
C3—C4—C5—N1 1.2 (3) C9—C8—C16—C21 109.60 (18)
C10—N2—C6—C7 0.5 (2) C7—C8—C16—C21 −65.9 (2)
C10—N2—C6—C1 −179.33 (12) C9—C8—C16—C17 −70.9 (2)
N1—C1—C6—N2 173.37 (13) C7—C8—C16—C17 113.59 (18)
C2—C1—C6—N2 −6.5 (2) C21—C16—C17—C18 −0.8 (2)
N1—C1—C6—C7 −6.5 (2) C8—C16—C17—C18 179.76 (14)
C2—C1—C6—C7 173.69 (14) C21—C16—C17—C22 178.55 (16)
N2—C6—C7—C8 −2.7 (2) C8—C16—C17—C22 −0.9 (2)
C1—C6—C7—C8 177.13 (13) C16—C17—C18—C19 −0.5 (2)
C6—C7—C8—C9 1.9 (2) C22—C17—C18—C19 −179.83 (16)
C6—C7—C8—C16 177.55 (13) C17—C18—C19—C20 1.3 (3)
C7—C8—C9—C10 0.9 (2) C18—C19—C20—C21 −0.7 (3)
C16—C8—C9—C10 −174.63 (13) C19—C20—C21—C16 −0.6 (3)
C6—N2—C10—C9 2.5 (2) C17—C16—C21—C20 1.3 (3)
C6—N2—C10—C11 −175.44 (12) C8—C16—C21—C20 −179.21 (17)
C8—C9—C10—N2 −3.2 (2) C18—C17—C22—F3 15.5 (2)
C8—C9—C10—C11 174.63 (13) C16—C17—C22—F3 −163.81 (17)
C15—N3—C11—C12 −0.4 (2) C18—C17—C22—F2 135.79 (17)
C15—N3—C11—C10 −178.53 (14) C16—C17—C22—F2 −43.6 (2)
N2—C10—C11—N3 −172.12 (13) C18—C17—C22—F1 −105.57 (18)
C9—C10—C11—N3 9.9 (2) C16—C17—C22—F1 75.1 (2)
N2—C10—C11—C12 9.7 (2)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2469).

References

  1. Bessel, C. A., See, R. F., Jameson, D. L., Churchill, M. R. & Takeuchi, K. J. (1992). J. Chem. Soc. Dalton Trans. pp. 3223–3228.
  2. Brandt, W. W., Dwyer, F. P. & Gyarfas, E. C. (1954). Chem. Rev.54, 959–1017.
  3. Constable, E. C., Khan, F. K., Marquez, V. E. & Raithby, P. R. (1992). Acta Cryst. C48, 932–934.
  4. Constable, E. C., Lewis, J., Liptrot, M. C. & Raithby, P. R. (1990). Inorg. Chim. Acta, 178, 47–54.
  5. Dwyer, F. P. & Mellor, D. P. (1964). In Chelating Agents and Metal Chelates Orlando: Academic Press.
  6. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  7. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  8. Field, J. S., Haines, R. J., McMillin, D. R. & Summerton, G. C. (2002). J. Chem. Soc. Dalton Trans. pp. 1369–1376.
  9. Gillard, R. D. (1983). Coord. Chem. Rev.50, 303–309.
  10. Hunter, C. A. & Sanders, J. K. M. (1990). J. Am. Chem. Soc.112, 5525–5534.
  11. Kröhnke, F. (1976). Synthesis, pp. 1–24.
  12. Lindoy, L. F. & Livingstone, S. E. (1967). Coord. Chem. Rev.2, 173–193.
  13. Morgan, G. T. & Burstall, F. H. (1932). J. Chem. Soc. pp. 20–30.
  14. Morgan, G. T. & Burstall, F. H. (1934). J. Chem. Soc. pp. 1498–1500.
  15. Morgan, G. T. & Burstall, F. H. (1938). J. Chem. Soc. pp. 1675–1678.
  16. Oxford Diffraction (2003). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Abingdon, England.
  17. Serpone, N., Ponterini, G., Jamieson, M. A., Bolletta, F. & Maestri, M. (1983). Coord. Chem. Rev.50, 209–302.
  18. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  19. Storrier, G. D., Colbran, S. B. & Craig, D. C. (1997). J. Chem. Soc. Dalton Trans. pp. 3011–3028.
  20. Thummel, R. P. & Jahng, Y. (1985). J. Org. Chem.50, 2407–2013.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809002384/hg2469sup1.cif

e-65-0o376-sup1.cif (20.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809002384/hg2469Isup2.hkl

e-65-0o376-Isup2.hkl (151.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES