Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Jan 28;65(Pt 2):o407–o408. doi: 10.1107/S1600536809003031

3-(1,3-Dioxolan-2-yl)-2-hydrazino-7-methyl­quinoline

R Subashini a, Venkatesha R Hathwar b, P Nithya a, K Prabakaran a, F Nawaz Khan a,*
PMCID: PMC2968224  PMID: 21582000

Abstract

In the title mol­ecule, C13H15N3O2, the dihedral angle between the mean plane of the 1,3-dioxolane group and the 2-hydrazino-7-methyl­isoquinoline unit is 85.21 (5)°. The conformation of the mol­ecule is influenced by bifurcated N—H⋯(O,O) and N—H⋯N intra­molecular hydrogen bonds. In the crystal structure, mol­ecules are linked via inter­molecular N—H⋯O hydrogen bonds, forming extended chains along [001].

Related literature

For general background to hydrazine compounds, see: Broadhurst et al. (2001); Behrens (1999); Broadhurst (1991); Chao et al. (1999); Kametani (1968). For related crystal structures, see: Yang et al. (2008); Choudhury & Guru Row (2006); Choudhury et al. (2002); Hathwar et al. (2008); Cho et al. (2002); Manivel et al. (2009), and references therein. For bond-length data, see: Allen et al., 1987)graphic file with name e-65-0o407-scheme1.jpg

Experimental

Crystal data

  • C13H15N3O2

  • M r = 245.28

  • Monoclinic, Inline graphic

  • a = 13.1909 (17) Å

  • b = 10.1165 (13) Å

  • c = 9.7805 (13) Å

  • β = 109.956 (2)°

  • V = 1226.8 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 290 (2) K

  • 0.30 × 0.21 × 0.14 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.942, T max = 0.987

  • 8929 measured reflections

  • 2279 independent reflections

  • 1699 reflections with I > 2σ(I)

  • R int = 0.018

Refinement

  • R[F 2 > 2σ(F 2)] = 0.044

  • wR(F 2) = 0.129

  • S = 1.06

  • 2279 reflections

  • 176 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.14 e Å−3

Data collection: SMART (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: PLATON.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809003031/lh2748sup1.cif

e-65-0o407-sup1.cif (16.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809003031/lh2748Isup2.hkl

e-65-0o407-Isup2.hkl (112.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2N⋯O1 0.843 (19) 2.372 (18) 2.9329 (17) 124.5 (15)
N2—H2N⋯O2 0.843 (19) 2.653 (18) 3.0968 (19) 114.3 (14)
N3—H3NA⋯N1 0.94 (2) 2.35 (2) 2.691 (2) 100.9 (15)
N3—H3NB⋯O2i 0.92 (2) 2.44 (2) 3.207 (2) 141.2 (19)

Symmetry code: (i) Inline graphic.

Acknowledgments

We thank the Department of Science and Technology, India, for use of the CCD facility setup under the IRHPA-DST program at IISc. We thank Professor T. N. Guru Row, IISc, Bangalore, for useful crystallographic discussions. FNK thanks the DST for Fast Track Proposal funding.

supplementary crystallographic information

Comment

The title compound (I), belongs to the quinoline class. Quinolines and quinolinones are an integral part of many naturally occurring fused heterocycles and find application in synthetic and pharmaceutical chemistry (Kametani, 1968). Isoquinolinones and isoquinolineamines have been reported as cancer chemotherapeutic agents (Behrens, 1999) whereas quinolyl and isoquinolyl derivatives have been reported as insecticidal compounds (Broadhurst, 1991). 3-substituted isoquinolines have potent use in medicine (Chao et al., 1999) and in general, hydrazine derivatives can be used as medicaments (Broadhurst et al., 2001; Choudhury, et al., 2002; Choudhury & Guru Row, 2006; Yang, et al., 2008). Due to the importance of quinoline derivates (Cho et al., 2002) and in continuous of our research on quinolines and isoquinoline derivatives (Hathwar et al., 2008; Manivel et al., 2009) we present here crystal structure of the title compound.

In (I) the dihedral angle between 1,3-dioxolane moiety and 2 hyrazino-7-methyl isoquinoline unit is 85.21 (5)°. All bond lengths (Allen et al., 1987) and angles are within normal ranges. The conformation of the molecule is influenced by N—H···O and N—H···N intramolecular hydrogen bonds whereas the crystal structure is stabilized by intermolecular N—H···O hydrogen bonds forming exteded chains along [001].

Experimental

A solution of 2-chloro (3-(1,3-dioxolan-2-yl)-7-methylquinoline in ethanol was treated with hydrazine hydrate and stirred at 323 K for 3hr. The product was filtered. The solid was washed with water and diethyl ether and dried under vacuum. Single crystals were obtained by recrystalization of (I) from DMSO.

Refinement

All H atoms positioned geometrically and refined using a riding model with bond lengths C—H = 0.93 Å (for aromatic), 0.97 Å (for methylene) and 0.96 Å (for methyl). The Uiso(H) = 1.5Ueq(C) for methyl and Uiso(H) = 1.2Ueq(C) for all other carbon bound H atoms. H atoms bonded to N atoms were located in difference Fourier maps and refined isotropically.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I) with 50% probability displacement ellipsoids. Dashed lines indicate hydrogen bonds.

Fig. 2.

Fig. 2.

Part of the crystal structure of (I) showing hydrogen bonds as dashed lines. H atoms not involved in hydrogen bonds have been omitted.

Crystal data

C13H15N3O2 F(000) = 520
Mr = 245.28 Dx = 1.328 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 948 reflections
a = 13.1909 (17) Å θ = 1.8–24.6°
b = 10.1165 (13) Å µ = 0.09 mm1
c = 9.7805 (13) Å T = 290 K
β = 109.956 (2)° Block, brown
V = 1226.8 (3) Å3 0.30 × 0.21 × 0.14 mm
Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer 2279 independent reflections
Radiation source: fine-focus sealed tube 1699 reflections with I > 2σ(I)
graphite Rint = 0.018
φ and ω scans θmax = 25.5°, θmin = 1.6°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −15→15
Tmin = 0.942, Tmax = 0.987 k = −10→12
8929 measured reflections l = −11→11

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.129 H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.072P)2 + 0.1104P] where P = (Fo2 + 2Fc2)/3
2279 reflections (Δ/σ)max < 0.001
176 parameters Δρmax = 0.19 e Å3
0 restraints Δρmin = −0.14 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.10652 (9) 0.42297 (12) −0.28334 (11) 0.0621 (4)
O2 0.09919 (10) 0.22186 (13) −0.18872 (12) 0.0701 (4)
N1 0.32415 (10) 0.45872 (13) 0.15262 (13) 0.0524 (4)
N2 0.14264 (11) 0.45599 (16) 0.02767 (15) 0.0597 (4)
N3 0.12501 (13) 0.53613 (19) 0.13548 (18) 0.0664 (4)
C1 0.24495 (12) 0.42351 (15) 0.03448 (15) 0.0464 (4)
C2 0.26133 (12) 0.35152 (15) −0.08326 (15) 0.0480 (4)
C3 0.36404 (13) 0.31857 (15) −0.06896 (17) 0.0550 (4)
H3A 0.3772 0.2726 −0.1435 0.066*
C4 0.56033 (15) 0.32091 (18) 0.0793 (2) 0.0688 (5)
H4A 0.5778 0.2750 0.0080 0.083*
C5 0.64009 (14) 0.35734 (19) 0.2051 (2) 0.0732 (6)
H5A 0.7111 0.3344 0.2186 0.088*
C6 0.61719 (14) 0.4286 (2) 0.3145 (2) 0.0662 (5)
C7 0.51244 (13) 0.46184 (19) 0.29207 (17) 0.0615 (5)
H7A 0.4966 0.5107 0.3628 0.074*
C8 0.42773 (12) 0.42464 (15) 0.16556 (16) 0.0496 (4)
C9 0.45173 (12) 0.35270 (15) 0.05728 (17) 0.0533 (4)
C10 0.70689 (16) 0.4661 (3) 0.4525 (2) 0.0949 (8)
H10A 0.6767 0.4936 0.5244 0.142*
H10B 0.7481 0.5372 0.4329 0.142*
H10C 0.7530 0.3911 0.4882 0.142*
C11 0.17109 (13) 0.31376 (16) −0.21833 (17) 0.0540 (4)
H11A 0.2010 0.2745 −0.2879 0.065*
C12 −0.00343 (14) 0.2421 (2) −0.2979 (2) 0.0782 (6)
H12A −0.0588 0.2540 −0.2544 0.094*
H12B −0.0228 0.1675 −0.3640 0.094*
C13 0.00918 (15) 0.3653 (2) −0.37670 (19) 0.0764 (6)
H13A 0.0146 0.3440 −0.4706 0.092*
H13B −0.0513 0.4247 −0.3910 0.092*
H2N 0.0904 (15) 0.4447 (17) −0.050 (2) 0.064 (5)*
H3NB 0.1453 (18) 0.484 (2) 0.218 (2) 0.095 (7)*
H3NA 0.1821 (17) 0.597 (2) 0.158 (2) 0.078 (6)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0577 (7) 0.0724 (8) 0.0494 (6) 0.0026 (6) 0.0095 (5) 0.0034 (5)
O2 0.0667 (8) 0.0722 (8) 0.0642 (7) −0.0201 (6) 0.0130 (6) −0.0040 (6)
N1 0.0475 (8) 0.0647 (9) 0.0438 (7) −0.0047 (6) 0.0141 (6) −0.0015 (6)
N2 0.0476 (8) 0.0838 (11) 0.0443 (7) 0.0051 (7) 0.0114 (6) −0.0113 (7)
N3 0.0626 (10) 0.0782 (11) 0.0586 (9) 0.0087 (9) 0.0211 (7) −0.0131 (9)
C1 0.0467 (8) 0.0495 (9) 0.0426 (8) 0.0001 (7) 0.0145 (7) 0.0037 (6)
C2 0.0497 (9) 0.0465 (8) 0.0470 (8) 0.0006 (7) 0.0153 (7) 0.0012 (6)
C3 0.0580 (10) 0.0492 (9) 0.0589 (9) 0.0019 (7) 0.0214 (8) −0.0077 (7)
C4 0.0566 (10) 0.0607 (11) 0.0890 (13) 0.0055 (8) 0.0245 (9) −0.0053 (10)
C5 0.0424 (9) 0.0707 (12) 0.0974 (14) 0.0022 (8) 0.0122 (9) 0.0105 (11)
C6 0.0518 (10) 0.0774 (13) 0.0628 (11) −0.0136 (9) 0.0108 (8) 0.0122 (9)
C7 0.0526 (10) 0.0785 (12) 0.0512 (9) −0.0134 (8) 0.0148 (8) 0.0024 (8)
C8 0.0480 (9) 0.0526 (9) 0.0470 (8) −0.0057 (7) 0.0147 (7) 0.0065 (7)
C9 0.0474 (9) 0.0470 (9) 0.0629 (10) 0.0001 (7) 0.0156 (7) 0.0035 (7)
C10 0.0550 (11) 0.138 (2) 0.0771 (13) −0.0265 (12) 0.0040 (10) 0.0078 (13)
C11 0.0531 (9) 0.0597 (10) 0.0492 (9) −0.0007 (7) 0.0175 (7) −0.0083 (7)
C12 0.0554 (11) 0.0901 (15) 0.0852 (13) −0.0112 (10) 0.0188 (10) −0.0274 (12)
C13 0.0565 (11) 0.1135 (17) 0.0500 (9) 0.0012 (11) 0.0065 (8) −0.0119 (11)

Geometric parameters (Å, °)

O1—C11 1.4074 (19) C4—H4A 0.9300
O1—C13 1.422 (2) C5—C6 1.406 (3)
O2—C12 1.424 (2) C5—H5A 0.9300
O2—C11 1.427 (2) C6—C7 1.365 (3)
N1—C1 1.3151 (18) C6—C10 1.509 (2)
N1—C8 1.372 (2) C7—C8 1.406 (2)
N2—C1 1.3683 (19) C7—H7A 0.9300
N2—N3 1.411 (2) C8—C9 1.407 (2)
N2—H2N 0.843 (19) C10—H10A 0.9600
N3—H3NB 0.92 (2) C10—H10B 0.9600
N3—H3NA 0.94 (2) C10—H10C 0.9600
C1—C2 1.440 (2) C11—H11A 0.9800
C2—C3 1.355 (2) C12—C13 1.504 (3)
C2—C11 1.495 (2) C12—H12A 0.9700
C3—C9 1.417 (2) C12—H12B 0.9700
C3—H3A 0.9300 C13—H13A 0.9700
C4—C5 1.368 (3) C13—H13B 0.9700
C4—C9 1.411 (2)
C11—O1—C13 104.05 (14) N1—C8—C7 118.75 (15)
C12—O2—C11 106.35 (14) N1—C8—C9 122.22 (14)
C1—N1—C8 118.70 (13) C7—C8—C9 119.03 (15)
C1—N2—N3 120.87 (13) C8—C9—C4 118.70 (15)
C1—N2—H2N 120.1 (12) C8—C9—C3 117.09 (14)
N3—N2—H2N 117.4 (12) C4—C9—C3 124.20 (16)
N2—N3—H3NB 104.8 (14) C6—C10—H10A 109.5
N2—N3—H3NA 102.9 (12) C6—C10—H10B 109.5
H3NB—N3—H3NA 101.6 (18) H10A—C10—H10B 109.5
N1—C1—N2 116.89 (14) C6—C10—H10C 109.5
N1—C1—C2 123.28 (14) H10A—C10—H10C 109.5
N2—C1—C2 119.82 (13) H10B—C10—H10C 109.5
C3—C2—C1 117.35 (13) O1—C11—O2 105.16 (13)
C3—C2—C11 119.66 (14) O1—C11—C2 112.04 (13)
C1—C2—C11 122.99 (13) O2—C11—C2 111.79 (13)
C2—C3—C9 121.34 (15) O1—C11—H11A 109.2
C2—C3—H3A 119.3 O2—C11—H11A 109.2
C9—C3—H3A 119.3 C2—C11—H11A 109.2
C5—C4—C9 120.33 (18) O2—C12—C13 105.10 (14)
C5—C4—H4A 119.8 O2—C12—H12A 110.7
C9—C4—H4A 119.8 C13—C12—H12A 110.7
C4—C5—C6 121.55 (17) O2—C12—H12B 110.7
C4—C5—H5A 119.2 C13—C12—H12B 110.7
C6—C5—H5A 119.2 H12A—C12—H12B 108.8
C7—C6—C5 118.21 (16) O1—C13—C12 104.14 (14)
C7—C6—C10 121.57 (19) O1—C13—H13A 110.9
C5—C6—C10 120.22 (17) C12—C13—H13A 110.9
C6—C7—C8 122.15 (17) O1—C13—H13B 110.9
C6—C7—H7A 118.9 C12—C13—H13B 110.9
C8—C7—H7A 118.9 H13A—C13—H13B 108.9

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N2—H2N···O1 0.843 (19) 2.372 (18) 2.9329 (17) 124.5 (15)
N2—H2N···O2 0.843 (19) 2.653 (18) 3.0968 (19) 114.3 (14)
N3—H3NA···N1 0.94 (2) 2.35 (2) 2.691 (2) 100.9 (15)
N3—H3NB···O2i 0.92 (2) 2.44 (2) 3.207 (2) 141.2 (19)

Symmetry codes: (i) x, −y+1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2748).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Behrens, C. H. (1999). US Patent No. 4 942 163.
  3. Broadhurst, M. D. (1991). US Patent No. 5 070 097.
  4. Broadhurst, M. D., Michael, J. J., William, H. W. & Daryl, S. (2001). US Patent No. 6 235 787.
  5. Bruker (2004). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  6. Chao, Q., Deng, L., Shih, H., Leoni, L. M., Genini, D., Carson, D. A. & Cottam, H. B. (1999). J. Med. Chem.2, 3860–3873. [DOI] [PubMed]
  7. Cho, W., Kim, E., Park, I. Y., Jeong, E. Y., Kim, T. S., Le, T. N., Kim, D. & Leed, E. (2002). Bioorg. Med. Chem.10, 2953–2961. [DOI] [PubMed]
  8. Choudhury, A. R. & Guru Row, T. N. (2006). CrystEngComm, 8, 265–274.
  9. Choudhury, A. R., Urs, U. K., Guru Row, T. N. & Nagarajan, K. (2002). J. Mol. Struct.605, 71–77.
  10. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  11. Hathwar, V. R., Prabakaran, K., Subashini, R., Manivel, P. & Khan, F. N. (2008). Acta Cryst. E64, o2295. [DOI] [PMC free article] [PubMed]
  12. Kametani, T. (1968). The Chemistry of the Isoquinoline Alkaloids Tokyo, Amsterdam: Hirokawa, Elsevier.
  13. Manivel, P., Hathwar, V. R., Nithya, P., Prabakaran, K. & Khan, F. N. (2009). Acta Cryst. E65, o137–o138. [DOI] [PMC free article] [PubMed]
  14. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  15. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  16. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  17. Yang, Y., Yang, P., Zhang, C. & Wu, B. (2008). Anal. Sci.24, x97–x98.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809003031/lh2748sup1.cif

e-65-0o407-sup1.cif (16.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809003031/lh2748Isup2.hkl

e-65-0o407-Isup2.hkl (112.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES