Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Jan 28;65(Pt 2):o388. doi: 10.1107/S1600536809002724

Methyl N-(4-chlorophenyl)succinamate

B Thimme Gowda a,*, Sabine Foro b, B S Saraswathi a, Hiromitsu Terao c, Hartmut Fuess b
PMCID: PMC2968232  PMID: 21581983

Abstract

In the structure of the title compound {systematic name: methyl 3-[(4-chloro­phen­yl)amino­carbon­yl]propionate}, C11H12ClNO3, the conformations of the N—H and C=O bonds in the amide fragment are trans to each other and the conformations of the amide O atom and the carbonyl O atom of the ester fragment are also trans to the H atoms attached to the adjacent C atoms. Mol­ecules are linked into a centrosymmetric R 2 2(14) dimer by simple N—H⋯O inter­actions. Furthermore, a short intra­molecular C—H⋯O contact may stabilize the conformation adopted by the mol­ecule in the crystal.

Related literature

For background, see: Gowda et al. (2007); Gowda, Foro & Fuess (2008); Gowda, Foro, Sowmya et al. (2008); Jones et al. (1990); Wan et al. (2006). For related literature, see: Bernstein et al. (1995).graphic file with name e-65-0o388-scheme1.jpg

Experimental

Crystal data

  • C11H12ClNO3

  • M r = 241.67

  • Orthorhombic, Inline graphic

  • a = 14.190 (1) Å

  • b = 5.6370 (5) Å

  • c = 28.139 (3) Å

  • V = 2250.8 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.33 mm−1

  • T = 299 (2) K

  • 0.50 × 0.48 × 0.44 mm

Data collection

  • Oxford Diffraction Xcalibur diffractometer with Sapphire CCD detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007) T min = 0.852, T max = 0.868

  • 10377 measured reflections

  • 2272 independent reflections

  • 1649 reflections with I > 2σ(I)

  • R int = 0.043

Refinement

  • R[F 2 > 2σ(F 2)] = 0.050

  • wR(F 2) = 0.154

  • S = 1.19

  • 2272 reflections

  • 173 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.27 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2004); cell refinement: CrysAlis RED (Oxford Diffraction, 2007); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809002724/bx2194sup1.cif

e-65-0o388-sup1.cif (16.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809002724/bx2194Isup2.hkl

e-65-0o388-Isup2.hkl (111.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯O1 0.94 (3) 2.22 (3) 2.833 (4) 121 (3)
N1—H1N⋯O2i 0.82 (3) 2.22 (3) 3.020 (3) 163 (3)

Symmetry code: (i) Inline graphic.

Acknowledgments

BTG thanks the Alexander von Humboldt Foundation, Bonn, Germany, for extensions of his research fellowship.

supplementary crystallographic information

Comment

Amides are of interest as conjugation between the nitrogen lone pair electrons and the carbonyl pi-bond results in distinct physical and chemical properties. The amide moiety is also an important constituent of many biologically significant compounds. Thus, the structural studies of amides are of interest (see Gowda et al., 2007 and references therein; Gowda, Foro & Fuess, 2008; Gowda, Foro, Sowmya et al., 2008; Jones et al., 1990; Wan et al., 2006 as representative examples). As a part of studying the effect of ring and side-chain substitutions on the solid state geometry of this class of compounds, we report herein the crystal structure of N-(4-chlorophenyl)methylsuccinamate (N4CPMSA). The conformations of N—H and C=O bonds in the amide fragment are trans to each other and the conformations of the amide oxygen and the carbonyl oxygen of the ester segment are also trans to the H-atoms attached to the adjacent carbons (Fig. 1). The succinamido group and the benzene ring lie in the same plane with the Rms deviation of fitted atoms equal to 0.0720 Å. The molecules are linked into centrosymmetric R~2~^2^(14) dimer by simple N-H···O interactions (Bernstein et al., 1995). Furthermore, a short intramolecular C-H···.O contact may stabilize the conformation adopted by the molecule in the solid state (Table 1) is shown in Fig.2.

Experimental

The solution of succinic anhydride (0.025 mole) in toluene (25 cc) was treated dropwise with the solution of 4-chloroaniline (0.025 mole) in toluene (20 cc) with constant stirring. The resulting mixture was stirred for about one hour and set aside for an additional hour at room temperature for completion of the reaction. The mixture was then treated with dilute hydrochloric acid to remove the unreacted 4-chloroaniline. The resultant solid N-(4-chlorophenyl)-succinamic acid was filtered under suction and washed thoroughly with water to remove the unreacted succinic anhydride and succinic acid. The slow crystallization of N-(4-chlorophenyl)-succinamic acid in hot methanol resulted in N-(4-chlorophenyl)-methylsuccinamate. It was further recrystallized to constant melting point from methanol. The purity of the compound was checked by elemental analysis and characterized by recording its infrared and NMR spectra. The single crystals used in X-ray diffraction studies were grown in methanolic solution by slow evaporation at room temperature.

Refinement

The H atoms of the methyl group were positioned with idealized geometry using a riding model with C—H = 0.96 Å. The other H atoms were located in difference map, and their positional parameters were refined freely [N—H = 0.82 (3) Å, C—H = 0.90 (3)–1.01 (3) Å]. All H atoms were refined with isotropic displacement parameters with Uiso(H) = 1.2 Ueq(C-aromatic,N) or 1.5 Ueq (C-methyl).

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound, showing the atom labeling scheme. The displacement ellipsoids are drawn at the 50% probability level. The H atoms are represented as small spheres of arbitrary radii.

Fig. 2.

Fig. 2.

A fragment of the structure of (I) , viewed along the b axis , dashed lines. shown N-H···O and C-H···O interactions

Crystal data

C11H12ClNO3 F(000) = 1008
Mr = 241.67 Dx = 1.426 Mg m3
Orthorhombic, Pbca Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2ab Cell parameters from 3422 reflections
a = 14.190 (1) Å θ = 2.6–28.0°
b = 5.6370 (5) Å µ = 0.33 mm1
c = 28.139 (3) Å T = 299 K
V = 2250.8 (4) Å3 Prism, colourless
Z = 8 0.50 × 0.48 × 0.44 mm

Data collection

Oxford Diffraction Xcalibur diffractometer with Sapphire CCD detector 2272 independent reflections
Radiation source: fine-focus sealed tube 1649 reflections with I > 2σ(I)
graphite Rint = 0.043
Rotation method data acquisition using ω and φ scans θmax = 26.4°, θmin = 2.9°
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007) h = −17→17
Tmin = 0.852, Tmax = 0.868 k = −7→7
10377 measured reflections l = −33→35

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.050 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.154 w = 1/[σ2(Fo2) + (0.0501P)2 + 2.2683P] where P = (Fo2 + 2Fc2)/3
S = 1.19 (Δ/σ)max < 0.001
2272 reflections Δρmax = 0.28 e Å3
173 parameters Δρmin = −0.27 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0109 (13)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.63844 (7) 1.51417 (17) 0.23361 (3) 0.0671 (3)
O1 0.67752 (18) 1.1013 (4) 0.00684 (8) 0.0659 (7)
O2 0.56516 (16) 0.4234 (4) −0.09121 (8) 0.0591 (6)
O3 0.66393 (16) 0.6160 (5) −0.13895 (8) 0.0635 (7)
N1 0.58842 (17) 0.9188 (5) 0.06256 (8) 0.0436 (6)
H1N 0.554 (2) 0.804 (6) 0.0675 (12) 0.052*
C1 0.60124 (18) 1.0708 (5) 0.10151 (9) 0.0384 (6)
C2 0.5627 (2) 1.0015 (6) 0.14469 (11) 0.0485 (7)
H2 0.525 (2) 0.866 (6) 0.1470 (11) 0.058*
C3 0.5731 (2) 1.1346 (6) 0.18498 (11) 0.0526 (8)
H3 0.546 (2) 1.083 (6) 0.2168 (12) 0.063*
C4 0.6234 (2) 1.3447 (5) 0.18267 (10) 0.0444 (7)
C5 0.6611 (2) 1.4180 (5) 0.14030 (11) 0.0439 (7)
H5 0.693 (2) 1.555 (6) 0.1384 (11) 0.053*
C6 0.65037 (19) 1.2848 (5) 0.09955 (11) 0.0423 (6)
H6 0.677 (2) 1.336 (6) 0.0706 (11) 0.051*
C7 0.62722 (19) 0.9364 (5) 0.01857 (10) 0.0399 (6)
C8 0.6017 (2) 0.7370 (5) −0.01474 (10) 0.0418 (7)
H8A 0.532 (2) 0.724 (5) −0.0177 (10) 0.050*
H8B 0.621 (2) 0.584 (6) −0.0004 (11) 0.050*
C9 0.6451 (2) 0.7706 (6) −0.06280 (10) 0.0448 (7)
H9A 0.712 (2) 0.773 (6) −0.0601 (11) 0.054*
H9B 0.628 (2) 0.926 (6) −0.0768 (11) 0.054*
C10 0.61912 (19) 0.5841 (5) −0.09780 (10) 0.0417 (6)
C11 0.6445 (3) 0.4460 (7) −0.17585 (12) 0.0674 (10)
H11A 0.6541 0.2885 −0.1638 0.081*
H11B 0.6861 0.4731 −0.2022 0.081*
H11C 0.5804 0.4629 −0.1862 0.081*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0874 (7) 0.0637 (6) 0.0502 (5) −0.0054 (5) 0.0006 (4) −0.0139 (4)
O1 0.0876 (17) 0.0558 (13) 0.0542 (13) −0.0273 (13) 0.0239 (12) −0.0081 (11)
O2 0.0642 (14) 0.0613 (14) 0.0520 (13) −0.0215 (12) 0.0051 (10) −0.0043 (11)
O3 0.0656 (14) 0.0797 (16) 0.0453 (12) −0.0206 (13) 0.0149 (10) −0.0109 (12)
N1 0.0475 (13) 0.0430 (14) 0.0403 (13) −0.0096 (11) 0.0041 (10) 0.0028 (11)
C1 0.0374 (13) 0.0383 (14) 0.0396 (14) 0.0019 (11) −0.0017 (11) 0.0051 (11)
C2 0.0546 (17) 0.0442 (16) 0.0467 (16) −0.0106 (14) 0.0081 (13) 0.0033 (14)
C3 0.0629 (19) 0.0551 (19) 0.0398 (15) −0.0065 (15) 0.0114 (14) 0.0034 (14)
C4 0.0473 (15) 0.0424 (16) 0.0436 (15) 0.0063 (13) −0.0007 (12) −0.0023 (12)
C5 0.0423 (15) 0.0366 (15) 0.0527 (17) −0.0003 (12) 0.0028 (13) −0.0003 (13)
C6 0.0444 (14) 0.0382 (15) 0.0442 (15) −0.0025 (12) 0.0031 (12) 0.0071 (12)
C7 0.0392 (14) 0.0404 (15) 0.0401 (14) 0.0030 (12) 0.0031 (11) 0.0032 (12)
C8 0.0409 (14) 0.0426 (16) 0.0419 (15) −0.0018 (13) −0.0015 (12) 0.0014 (12)
C9 0.0440 (15) 0.0489 (17) 0.0415 (15) −0.0067 (13) 0.0010 (12) −0.0011 (13)
C10 0.0386 (14) 0.0468 (16) 0.0396 (14) 0.0019 (13) −0.0003 (11) 0.0000 (12)
C11 0.068 (2) 0.085 (3) 0.0490 (18) −0.007 (2) 0.0084 (16) −0.0178 (18)

Geometric parameters (Å, °)

Cl1—C4 1.736 (3) C4—C5 1.371 (4)
O1—C7 1.217 (3) C5—C6 1.379 (4)
O2—C10 1.200 (3) C5—H5 0.90 (3)
O3—C10 1.333 (3) C6—H6 0.94 (3)
O3—C11 1.440 (4) C7—C8 1.507 (4)
N1—C7 1.358 (4) C8—C9 1.498 (4)
N1—C1 1.403 (4) C8—H8A 1.00 (3)
N1—H1N 0.82 (3) C8—H8B 0.99 (3)
C1—C2 1.388 (4) C9—C10 1.487 (4)
C1—C6 1.395 (4) C9—H9A 0.95 (3)
C2—C3 1.367 (4) C9—H9B 0.99 (3)
C2—H2 0.94 (3) C11—H11A 0.9600
C3—C4 1.384 (4) C11—H11B 0.9600
C3—H3 1.01 (3) C11—H11C 0.9600
C10—O3—C11 116.4 (3) O1—C7—C8 122.8 (3)
C7—N1—C1 127.9 (2) N1—C7—C8 114.5 (2)
C7—N1—H1N 117 (2) C9—C8—C7 111.6 (2)
C1—N1—H1N 115 (2) C9—C8—H8A 110.0 (17)
C2—C1—C6 118.3 (3) C7—C8—H8A 110.2 (17)
C2—C1—N1 117.4 (3) C9—C8—H8B 111.4 (18)
C6—C1—N1 124.2 (2) C7—C8—H8B 109.3 (18)
C3—C2—C1 121.9 (3) H8A—C8—H8B 104 (2)
C3—C2—H2 117 (2) C10—C9—C8 114.0 (2)
C1—C2—H2 121 (2) C10—C9—H9A 108.0 (19)
C2—C3—C4 119.1 (3) C8—C9—H9A 109.9 (19)
C2—C3—H3 122.3 (19) C10—C9—H9B 107.4 (19)
C4—C3—H3 118.6 (19) C8—C9—H9B 111.6 (19)
C5—C4—C3 120.0 (3) H9A—C9—H9B 106 (3)
C5—C4—Cl1 120.3 (2) O2—C10—O3 122.7 (3)
C3—C4—Cl1 119.7 (2) O2—C10—C9 126.1 (3)
C4—C5—C6 121.0 (3) O3—C10—C9 111.2 (2)
C4—C5—H5 121 (2) O3—C11—H11A 109.5
C6—C5—H5 118 (2) O3—C11—H11B 109.5
C5—C6—C1 119.6 (3) H11A—C11—H11B 109.5
C5—C6—H6 120.5 (19) O3—C11—H11C 109.5
C1—C6—H6 119.9 (19) H11A—C11—H11C 109.5
O1—C7—N1 122.7 (3) H11B—C11—H11C 109.5
C7—N1—C1—C2 −172.7 (3) N1—C1—C6—C5 −178.2 (3)
C7—N1—C1—C6 6.9 (4) C1—N1—C7—O1 −3.2 (5)
C6—C1—C2—C3 −1.1 (5) C1—N1—C7—C8 177.7 (3)
N1—C1—C2—C3 178.6 (3) O1—C7—C8—C9 −0.4 (4)
C1—C2—C3—C4 0.0 (5) N1—C7—C8—C9 178.7 (3)
C2—C3—C4—C5 0.7 (5) C7—C8—C9—C10 −177.6 (2)
C2—C3—C4—Cl1 −179.2 (3) C11—O3—C10—O2 −0.1 (4)
C3—C4—C5—C6 −0.4 (4) C11—O3—C10—C9 −180.0 (3)
Cl1—C4—C5—C6 179.6 (2) C8—C9—C10—O2 3.6 (4)
C4—C5—C6—C1 −0.7 (4) C8—C9—C10—O3 −176.5 (3)
C2—C1—C6—C5 1.4 (4)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C6—H6···O1 0.94 (3) 2.22 (3) 2.833 (4) 121 (3)
N1—H1N···O2i 0.82 (3) 2.22 (3) 3.020 (3) 163 (3)

Symmetry codes: (i) −x+1, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BX2194).

References

  1. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl 34, 1555–1573.
  2. Gowda, B. T., Foro, S. & Fuess, H. (2008). Acta Cryst. E64, o828. [DOI] [PMC free article] [PubMed]
  3. Gowda, B. T., Foro, S., Sowmya, B. P. & Fuess, H. (2008). Acta Cryst. E64, o2247. [DOI] [PMC free article] [PubMed]
  4. Gowda, B. T., Kozisek, J., Svoboda, I. & Fuess, H. (2007). Z. Naturforsch. A, 62, 91–100.
  5. Jones, P. G., Kirby, A. J. & Lewis, R. J. (1990). Acta Cryst. C46, 78–81.
  6. Oxford Diffraction (2004). CrysAlis CCD Oxford Diffraction Ltd, Köln, Germany.
  7. Oxford Diffraction (2007). CrysAlis RED Oxford Diffraction Ltd, Köln, Germany.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  10. Wan, X., Ma, Z., Li, B., Zhang, K., Cao, S., Zhang, S. & Shi, Z. (2006). J. Am. Chem. Soc.128, 7416–7417. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809002724/bx2194sup1.cif

e-65-0o388-sup1.cif (16.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809002724/bx2194Isup2.hkl

e-65-0o388-Isup2.hkl (111.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES