Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Jan 10;65(Pt 2):o282. doi: 10.1107/S1600536809000634

tert-Butyl 3-carbamoyl-4-methoxy­imino-3-methyl­piperidine-1-carboxyl­ate

Yun Chai a, Zhi-Long Wan a, Hui-Yuan Guo a, Ming-Liang Liu a,*
PMCID: PMC2968237  PMID: 21581895

Abstract

In the title compound, C13H23N3O4, the piperidine ring adopts a chair conformation. An intra­molecular N—H⋯O hydrogen bond is observed between the carbamoyl and carboxyl­ate groups. In the crystal structure, mol­ecules form inversion dimers linked by pairs of N—H⋯O hydrogen bonds.

Related literature

For the synthesis and properties of quinolone derivatives, see: Anderson & Osheroff (2001); Ball et al. (1998); Choi et al. (2004); Ray et al. (2005); Wang, Guo & Wang (2008); Wang, Liu & Cao (2008).graphic file with name e-65-0o282-scheme1.jpg

Experimental

Crystal data

  • C13H23N3O4

  • M r = 285.34

  • Triclinic, Inline graphic

  • a = 7.3750 (14) Å

  • b = 10.0132 (16) Å

  • c = 11.3383 (18) Å

  • α = 79.5710 (10)°

  • β = 73.0340 (10)°

  • γ = 84.973 (2)°

  • V = 787.1 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 (2) K

  • 0.50 × 0.45 × 0.44 mm

Data collection

  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.946, T max = 0.963

  • 4100 measured reflections

  • 2727 independent reflections

  • 1535 reflections with I > 2σ(I)

  • R int = 0.041

Refinement

  • R[F 2 > 2σ(F 2)] = 0.056

  • wR(F 2) = 0.176

  • S = 1.04

  • 2727 reflections

  • 187 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.18 e Å−3

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809000634/is2378sup1.cif

e-65-0o282-sup1.cif (19.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809000634/is2378Isup2.hkl

e-65-0o282-Isup2.hkl (133.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2B⋯O2 0.86 2.25 3.026 (3) 150
N2—H2A⋯O3i 0.86 2.06 2.913 (3) 173

Symmetry code: (i) Inline graphic.

Acknowledgments

This work was supported by the IMB Research Foundation.

supplementary crystallographic information

Comment

Quinolone antibacterial agents have emerged as one of the dominant classes of chemotherapeutic drugs for the treatment of various bacterial infections in both community and hospital settings (Ray et al., 2005; Ball et al., 1998). In general, 5- and 6 -membered nitrogen heterocycles including piperazinyl, pyrrolidinyl and piperidinyl type side chains have been proven to be the optimal substituents (Anderson & Osheroff, 2001; Choi et al., 2004). Recently, as part of an ongoing program to find potent new quinolones displaying strong Gram-positive activity, we have focused our attention on introducing new functional groups to the piperidine ring (Wang, Guo & Wang, 2008; Wang, Liu & Cao, 2008). We report here the crystal structure of the title compound, which is a key intermediate of 3-amino-4-methoxyimino-3-methylpiperidine, a novel C-7 substituent of the quinolones.

In the molecule of the title compound (Fig. 1), the N1—C1 [1.352 (3) Å] and N2—C7 [1.320 (3) Å] bond lengths are significantly shorter than the normal C—N single bond (1.47 Å), indicating some conjugation with the C1═O2 and C7═O3 carbonyl groups, respectively. The six-membered piperidine ring adopts a chair conformation. In the crystal structure, the molecules have an intramolecular N—H···O and an intermolecular N—H···O hydrogen bond (Table 1 & Fig. 2)

Experimental

The title compound was prepared from methyl N-tert-butoxycarbonyl-4- methoxyimino-3-methylpiperidine-3-carboxylate. To a stirring solution of methyl N-tert-butoxycarbonyl-4-methoxyimino-3-methylpiperidine-3-carboxylate (17.00 g, 56.6 mmol) in methanol (100 ml) was added dropwise a solution of sodium hydroxide (4.53 g, 113.2 mmol) dissolved in distilled water (20 ml) at room temperature. The reaction mixture was heated to 50 °C and stirred for 2 h at the same temperature. After removal of the methanol under reduced pressure, the reaction mixture was diluted with distilled water (30 ml), adjusted to pH 6.0–6.5 with acetic acid. The solid collected by suction was dissolved in methylene chloride (150 ml), and to this solution was added triethylamine (8.8 ml, 63.6 mmol). The reaction mixture was cooled to -14 °C, using an ice-salt bath, isobutyl chloroformate (9.0 ml, 69.2 mmol) was added and stirred for 0.5 h at the same temperature, pumped ammonia gas cautiously at 0–5 °C for 0.5 h, washed with 1 N HCl and saturated brine, respectively, dried over anhydrous sodium sulfate and concentrated under reduced pressure. The resulting yellow residue was recrystallized from ethyl acetate to give the title compound (13.50 g, 83.6%; m.p. 126–127 °C) as a white solid. Single crystals suitable for X-ray analysis were obtained by slow evaporation of an ethyl acetate solution. 1H NMR (CDCl3, δ): 1.37 (3H, s, CH3), 1.47 (9H, s, CH3), 2.14–3.86 (4H, m, C5, C6), 3.89 (3H, s, OCH3), 4.35–4.37 (2H, m,C2), 5.37 (1H, br, CONH), 6.19 (1H, br, CONH). MS (ESI, m/z): 286 (M+H)+.

Refinement

All H atoms were placed at calculated positions, with C—H = 0.96–0.97Å and N—H= 0.86 Å, and were included in the final cycles of refinement using a riding model, with Uiso(H) = 1.2Ueq(C, N) or 1.5Ueq(methyl C), allowing for free rotation of the methyl groups.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I), showing 40% probability displacement ellipsoids and the atom-numbering scheme.

Fig. 2.

Fig. 2.

The crystal packing of the title compound.

Crystal data

C13H23N3O4 Z = 2
Mr = 285.34 F(000) = 308
Triclinic, P1 Dx = 1.204 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 7.3750 (14) Å Cell parameters from 1147 reflections
b = 10.0132 (16) Å θ = 2.6–23.6°
c = 11.3383 (18) Å µ = 0.09 mm1
α = 79.571 (1)° T = 298 K
β = 73.034 (1)° Block, colorless
γ = 84.973 (2)° 0.50 × 0.45 × 0.44 mm
V = 787.1 (2) Å3

Data collection

Bruker SMART APEX CCD diffractometer 2727 independent reflections
Radiation source: fine-focus sealed tube 1535 reflections with I > 2σ(I)
graphite Rint = 0.041
φ and ω scans θmax = 25.0°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −7→8
Tmin = 0.946, Tmax = 0.963 k = −11→10
4100 measured reflections l = −12→13

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.056 H-atom parameters constrained
wR(F2) = 0.176 w = 1/[σ2(Fo2) + (0.0793P)2] where P = (Fo2 + 2Fc2)/3
S = 1.04 (Δ/σ)max = 0.001
2727 reflections Δρmax = 0.22 e Å3
187 parameters Δρmin = −0.18 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.052 (9)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.3951 (3) 0.3430 (2) 0.4995 (2) 0.0486 (6)
N2 0.0625 (3) 0.1810 (2) 0.4744 (2) 0.0647 (8)
H2A 0.0302 0.1251 0.4355 0.078*
H2B 0.0918 0.2623 0.4374 0.078*
N3 0.1916 (3) 0.1524 (2) 0.8514 (2) 0.0485 (6)
O1 0.6155 (3) 0.3495 (2) 0.31633 (18) 0.0636 (6)
O2 0.3110 (3) 0.4119 (2) 0.32090 (19) 0.0649 (6)
O3 0.0266 (4) 0.0264 (2) 0.6479 (2) 0.0825 (8)
O4 0.3333 (3) 0.0907 (2) 0.90663 (17) 0.0580 (6)
C1 0.4323 (4) 0.3706 (3) 0.3737 (3) 0.0504 (7)
C2 0.2080 (4) 0.3727 (3) 0.5782 (3) 0.0502 (7)
H2C 0.1290 0.4149 0.5257 0.060*
H2D 0.2180 0.4373 0.6301 0.060*
C3 0.1121 (4) 0.2457 (3) 0.6625 (2) 0.0453 (7)
C4 0.2516 (4) 0.1757 (3) 0.7326 (2) 0.0426 (7)
C5 0.4480 (4) 0.1488 (3) 0.6534 (3) 0.0533 (8)
H5A 0.4454 0.0802 0.6036 0.064*
H5B 0.5289 0.1142 0.7067 0.064*
C6 0.5292 (4) 0.2785 (3) 0.5672 (3) 0.0549 (8)
H6A 0.5545 0.3409 0.6163 0.066*
H6B 0.6480 0.2567 0.5082 0.066*
C7 0.0673 (4) 0.1420 (3) 0.5911 (3) 0.0523 (7)
C8 −0.0772 (4) 0.2898 (3) 0.7492 (3) 0.0632 (9)
H8A −0.1396 0.2111 0.8017 0.095*
H8B −0.1565 0.3366 0.6999 0.095*
H8C −0.0538 0.3494 0.8003 0.095*
C9 0.2502 (5) 0.0608 (4) 1.0379 (3) 0.0750 (10)
H9A 0.2237 0.1438 1.0719 0.112*
H9B 0.3364 0.0036 1.0756 0.112*
H9C 0.1342 0.0148 1.0548 0.112*
C10 0.6835 (5) 0.3554 (3) 0.1795 (3) 0.0698 (10)
C11 0.5789 (7) 0.2537 (4) 0.1411 (4) 0.1179 (17)
H11A 0.5946 0.1648 0.1865 0.177*
H11B 0.6297 0.2525 0.0530 0.177*
H11C 0.4464 0.2796 0.1594 0.177*
C12 0.6609 (5) 0.4976 (3) 0.1139 (3) 0.0817 (11)
H12A 0.5286 0.5235 0.1307 0.123*
H12B 0.7158 0.5015 0.0255 0.123*
H12C 0.7241 0.5588 0.1436 0.123*
C13 0.8911 (6) 0.3152 (5) 0.1616 (4) 0.1190 (17)
H13A 0.9503 0.3801 0.1898 0.179*
H13B 0.9521 0.3132 0.0746 0.179*
H13C 0.9025 0.2267 0.2090 0.179*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0479 (14) 0.0503 (14) 0.0474 (14) −0.0055 (11) −0.0176 (11) 0.0010 (11)
N2 0.088 (2) 0.0558 (15) 0.0618 (17) −0.0246 (13) −0.0409 (15) 0.0035 (12)
N3 0.0467 (14) 0.0515 (14) 0.0507 (15) 0.0004 (10) −0.0223 (12) −0.0041 (11)
O1 0.0670 (15) 0.0675 (14) 0.0497 (13) −0.0009 (11) −0.0118 (11) −0.0012 (10)
O2 0.0748 (15) 0.0634 (13) 0.0592 (13) −0.0091 (11) −0.0332 (12) 0.0098 (10)
O3 0.130 (2) 0.0610 (15) 0.0685 (15) −0.0418 (14) −0.0493 (15) 0.0113 (11)
O4 0.0497 (12) 0.0750 (14) 0.0472 (12) 0.0076 (10) −0.0202 (9) 0.0013 (10)
C1 0.060 (2) 0.0407 (16) 0.0516 (18) −0.0073 (14) −0.0207 (16) 0.0003 (13)
C2 0.0539 (18) 0.0430 (16) 0.0570 (18) 0.0003 (13) −0.0233 (15) −0.0048 (13)
C3 0.0460 (16) 0.0454 (15) 0.0483 (16) −0.0040 (12) −0.0214 (13) −0.0028 (12)
C4 0.0469 (16) 0.0385 (14) 0.0454 (17) −0.0041 (12) −0.0180 (13) −0.0050 (12)
C5 0.0521 (17) 0.0562 (18) 0.0506 (17) 0.0067 (14) −0.0195 (14) −0.0023 (14)
C6 0.0487 (17) 0.0651 (19) 0.0513 (18) −0.0047 (14) −0.0197 (14) −0.0001 (14)
C7 0.0566 (18) 0.0502 (18) 0.0550 (19) −0.0094 (14) −0.0271 (15) 0.0013 (14)
C8 0.0476 (18) 0.072 (2) 0.066 (2) 0.0032 (15) −0.0190 (15) −0.0008 (16)
C9 0.067 (2) 0.106 (3) 0.0469 (19) 0.0100 (19) −0.0218 (17) 0.0019 (18)
C10 0.091 (3) 0.061 (2) 0.0489 (19) −0.0032 (18) −0.0078 (18) −0.0056 (15)
C11 0.183 (5) 0.084 (3) 0.081 (3) −0.036 (3) −0.008 (3) −0.031 (2)
C12 0.109 (3) 0.071 (2) 0.059 (2) −0.018 (2) −0.020 (2) 0.0060 (17)
C13 0.123 (4) 0.124 (4) 0.072 (3) 0.029 (3) 0.012 (3) 0.001 (2)

Geometric parameters (Å, °)

N1—C1 1.352 (3) C5—H5B 0.9700
N1—C2 1.447 (3) C6—H6A 0.9700
N1—C6 1.461 (3) C6—H6B 0.9700
N2—C7 1.320 (3) C8—H8A 0.9600
N2—H2A 0.8600 C8—H8B 0.9600
N2—H2B 0.8600 C8—H8C 0.9600
N3—C4 1.274 (3) C9—H9A 0.9600
N3—O4 1.412 (3) C9—H9B 0.9600
O1—C1 1.334 (3) C9—H9C 0.9600
O1—C10 1.477 (4) C10—C12 1.502 (4)
O2—C1 1.220 (3) C10—C13 1.512 (5)
O3—C7 1.234 (3) C10—C11 1.522 (5)
O4—C9 1.421 (3) C11—H11A 0.9600
C2—C3 1.534 (3) C11—H11B 0.9600
C2—H2C 0.9700 C11—H11C 0.9600
C2—H2D 0.9700 C12—H12A 0.9600
C3—C4 1.526 (3) C12—H12B 0.9600
C3—C8 1.536 (4) C12—H12C 0.9600
C3—C7 1.537 (4) C13—H13A 0.9600
C4—C5 1.496 (4) C13—H13B 0.9600
C5—C6 1.528 (4) C13—H13C 0.9600
C5—H5A 0.9700
C1—N1—C2 120.1 (2) O3—C7—N2 122.2 (3)
C1—N1—C6 125.2 (2) O3—C7—C3 118.3 (2)
C2—N1—C6 114.7 (2) N2—C7—C3 119.4 (2)
C7—N2—H2A 120.0 C3—C8—H8A 109.5
C7—N2—H2B 120.0 C3—C8—H8B 109.5
H2A—N2—H2B 120.0 H8A—C8—H8B 109.5
C4—N3—O4 112.3 (2) C3—C8—H8C 109.5
C1—O1—C10 121.1 (2) H8A—C8—H8C 109.5
N3—O4—C9 108.1 (2) H8B—C8—H8C 109.5
O2—C1—O1 125.0 (3) O4—C9—H9A 109.5
O2—C1—N1 123.0 (3) O4—C9—H9B 109.5
O1—C1—N1 112.0 (3) H9A—C9—H9B 109.5
N1—C2—C3 112.9 (2) O4—C9—H9C 109.5
N1—C2—H2C 109.0 H9A—C9—H9C 109.5
C3—C2—H2C 109.0 H9B—C9—H9C 109.5
N1—C2—H2D 109.0 O1—C10—C12 110.4 (3)
C3—C2—H2D 109.0 O1—C10—C13 101.3 (3)
H2C—C2—H2D 107.8 C12—C10—C13 110.6 (3)
C4—C3—C2 106.7 (2) O1—C10—C11 109.4 (3)
C4—C3—C8 113.3 (2) C12—C10—C11 112.3 (3)
C2—C3—C8 108.6 (2) C13—C10—C11 112.2 (3)
C4—C3—C7 107.2 (2) C10—C11—H11A 109.5
C2—C3—C7 114.1 (2) C10—C11—H11B 109.5
C8—C3—C7 107.1 (2) H11A—C11—H11B 109.5
N3—C4—C5 127.1 (2) C10—C11—H11C 109.5
N3—C4—C3 117.0 (2) H11A—C11—H11C 109.5
C5—C4—C3 115.8 (2) H11B—C11—H11C 109.5
C4—C5—C6 110.8 (2) C10—C12—H12A 109.5
C4—C5—H5A 109.5 C10—C12—H12B 109.5
C6—C5—H5A 109.5 H12A—C12—H12B 109.5
C4—C5—H5B 109.5 C10—C12—H12C 109.5
C6—C5—H5B 109.5 H12A—C12—H12C 109.5
H5A—C5—H5B 108.1 H12B—C12—H12C 109.5
N1—C6—C5 110.2 (2) C10—C13—H13A 109.5
N1—C6—H6A 109.6 C10—C13—H13B 109.5
C5—C6—H6A 109.6 H13A—C13—H13B 109.5
N1—C6—H6B 109.6 C10—C13—H13C 109.5
C5—C6—H6B 109.6 H13A—C13—H13C 109.5
H6A—C6—H6B 108.1 H13B—C13—H13C 109.5
C4—N3—O4—C9 −176.3 (2) C2—C3—C4—C5 −51.9 (3)
C10—O1—C1—O2 −9.5 (4) C8—C3—C4—C5 −171.3 (2)
C10—O1—C1—N1 171.7 (2) C7—C3—C4—C5 70.7 (3)
C2—N1—C1—O2 −5.1 (4) N3—C4—C5—C6 −124.0 (3)
C6—N1—C1—O2 172.4 (3) C3—C4—C5—C6 52.5 (3)
C2—N1—C1—O1 173.8 (2) C1—N1—C6—C5 −122.0 (3)
C6—N1—C1—O1 −8.8 (4) C2—N1—C6—C5 55.6 (3)
C1—N1—C2—C3 119.1 (3) C4—C5—C6—N1 −50.8 (3)
C6—N1—C2—C3 −58.6 (3) C4—C3—C7—O3 47.7 (3)
N1—C2—C3—C4 52.9 (3) C2—C3—C7—O3 165.5 (3)
N1—C2—C3—C8 175.4 (2) C8—C3—C7—O3 −74.2 (3)
N1—C2—C3—C7 −65.3 (3) C4—C3—C7—N2 −136.3 (3)
O4—N3—C4—C5 −2.0 (4) C2—C3—C7—N2 −18.5 (4)
O4—N3—C4—C3 −178.5 (2) C8—C3—C7—N2 101.7 (3)
C2—C3—C4—N3 124.9 (2) C1—O1—C10—C12 66.9 (3)
C8—C3—C4—N3 5.5 (3) C1—O1—C10—C13 −175.9 (3)
C7—C3—C4—N3 −112.4 (3) C1—O1—C10—C11 −57.2 (4)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N2—H2B···O2 0.86 2.25 3.026 (3) 150
N2—H2A···O3i 0.86 2.06 2.913 (3) 173

Symmetry codes: (i) −x, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2378).

References

  1. Anderson, V. E. & Osheroff, N. (2001). Curr. Pharnm. Des.7, 337–353. [DOI] [PubMed]
  2. Ball, P., Tilloston, G. & Fernald, A. (1998). Exp. Opin. Invest. Drugs, 7, 761–783. [DOI] [PubMed]
  3. Bruker (1998). SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Bruker (1999). SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Choi, D.-R., Shin, J.-H. & Yang, J. (2004). Bioorg. Med. Chem. Lett.14, 1273–1277. [DOI] [PubMed]
  6. Ray, S., Pathak, S. R. & Chaturvedi, D. (2005). Drugs Future, 30, 161-180.
  7. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Wang, X.-Y., Guo, Q. & Wang, Y.-C. (2008). Acta Pharm. Sin.43, 819–827.
  10. Wang, J., Liu, M., Cao, J. & Wang, Y. (2008). Acta Cryst. E64, o2294. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809000634/is2378sup1.cif

e-65-0o282-sup1.cif (19.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809000634/is2378Isup2.hkl

e-65-0o282-Isup2.hkl (133.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES