Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Jan 8;65(Pt 2):o248. doi: 10.1107/S1600536808043894

Perhydro­benzimidazole-2-thione

YingChun Liu a,*, XiaoYu Li a
PMCID: PMC2968239  PMID: 21581864

Abstract

The studied crystal of the title compound, C7H12N2S, is a racemic mixture of two isomers, viz. S,S and R,R. The two isomers share the same position on a mirror plane in the space group P21/m; thus all atoms except one are disordered between two positions in a 1:1 ratio. Inter­molecular N—H⋯S hydrogen bonds link the mol­ecules into chains propagating in the [010] direction.

Related literature

For details of the synthesis, see: Allen et al. (1946). For useful applications of thio­urea derivetives, see: Schroeder (2006); Amos et al. (2007).graphic file with name e-65-0o248-scheme1.jpg

Experimental

Crystal data

  • C7H12N2S

  • M r = 156.25

  • Monoclinic, Inline graphic

  • a = 5.7459 (16) Å

  • b = 8.543 (2) Å

  • c = 8.816 (2) Å

  • β = 98.208 (4)°

  • V = 428.3 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.31 mm−1

  • T = 293 (2) K

  • 0.20 × 0.10 × 0.10 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.931, T max = 0.970

  • 4541 measured reflections

  • 934 independent reflections

  • 740 reflections with I > 2σ(I)

  • R int = 0.019

Refinement

  • R[F 2 > 2σ(F 2)] = 0.047

  • wR(F 2) = 0.154

  • S = 1.03

  • 934 reflections

  • 91 parameters

  • 6 restraints

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.14 e Å−3

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808043894/cv2499sup1.cif

e-65-0o248-sup1.cif (15.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808043894/cv2499Isup2.hkl

e-65-0o248-Isup2.hkl (46.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1A—H1A⋯S1Ai 0.86 2.53 3.367 (11) 166
N1B—H1B⋯S1Bii 0.86 2.76 3.483 (11) 142

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors are grateful to Zhongshan Torch Polytechnic for financial support.

supplementary crystallographic information

Comment

Thiourea and its derivatives are used in dyes, photographic film, elastomers, plastics, textiles, insecticides, preservatives, rodenticides and pharmaceuticals (Schroeder et al., 2006; Amos et al., 2007)

The title molecule consists of one thioimidazole five-membered ring and one six-membered ring which display chair conformation. The studied crystal is a racemic mixture of two isomers - (S,S) and (R,R), respectively - which share the same position on a mirror plane in space group P21/m, thus all atoms except one are disordered between two positions in a ratio 1:1. In the crystal, intermolecular N—H···S hydrogen bonds (Table 1) link the molecules into chains propagating in direction [010].

Experimental

The title compound was prepared according to the reported method (Allen et al.,1946). Crystals of (I) suitable for X-ray data collection were obtained by slow evaporation of a CH2Cl2 and MeOH solution in a ratio of 4:1 at 293 K.

Refinement

All H atoms were geometrically positioned (C–H 0.97-0.98 Å, N–H 0.86 Å) and refined as riding, with Uiso(H) = 1.2 Ueq(C, N). The crystal structure was refined in two space groups - P21 and P21/m, respectively. In both groups the severe disorder has been observed with almost identical values of final R-factors, so the preference has been made for P21/m.

Figures

Fig. 1.

Fig. 1.

View (S,S)-isomer of (I) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.

Crystal data

C7H12N2S F(000) = 168
Mr = 156.25 Dx = 1.211 Mg m3
Monoclinic, P21/m Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yb Cell parameters from 1728 reflections
a = 5.7459 (16) Å θ = 2.3–24.6°
b = 8.543 (2) Å µ = 0.31 mm1
c = 8.816 (2) Å T = 293 K
β = 98.208 (4)° Block, colourless
V = 428.3 (2) Å3 0.20 × 0.10 × 0.10 mm
Z = 2

Data collection

Bruker SMART CCD area-detector diffractometer 934 independent reflections
Radiation source: fine-focus sealed tube 740 reflections with I > 2σ(I)
graphite Rint = 0.019
φ and ω scans θmax = 26.5°, θmin = 2.3°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −7→7
Tmin = 0.931, Tmax = 0.970 k = −9→10
4541 measured reflections l = −11→11

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.154 H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.1091P)2 + 0.0156P] where P = (Fo2 + 2Fc2)/3
934 reflections (Δ/σ)max = 0.009
91 parameters Δρmax = 0.19 e Å3
6 restraints Δρmin = −0.14 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
C2 0.8296 (4) 0.2500 0.9716 (3) 0.0734 (7)
S1A 1.0495 (14) 0.2500 1.1194 (10) 0.0811 (15) 0.50
N1A 0.746 (3) 0.1176 (10) 0.9007 (16) 0.095 (4) 0.50
H1A 0.8101 0.0266 0.9121 0.113* 0.50
C3A 0.534 (2) 0.1541 (15) 0.8039 (15) 0.102 (4) 0.50
H3A 0.4166 0.1316 0.8715 0.122* 0.50
C4A 0.4237 (9) 0.0818 (6) 0.6596 (6) 0.0974 (14) 0.50
H4A1 0.3843 −0.0258 0.6803 0.117* 0.50
H4A2 0.5382 0.0796 0.5887 0.117* 0.50
C5A 0.2070 (17) 0.1621 (11) 0.5834 (11) 0.119 (6) 0.50
H5A1 0.0758 0.1270 0.6327 0.143* 0.50
H5A2 0.1779 0.1270 0.4777 0.143* 0.50
S1B 1.0773 (15) 0.2500 1.0974 (10) 0.088 (2) 0.50
N1B 0.697 (2) 0.3722 (7) 0.9103 (13) 0.0720 (19) 0.50
H1B 0.7108 0.4663 0.9453 0.086* 0.50
C3B 0.5339 (13) 0.3261 (13) 0.7810 (14) 0.0718 (18) 0.50
H3B 0.6275 0.3463 0.6985 0.086* 0.50
C4B 0.3201 (9) 0.4183 (6) 0.7250 (7) 0.0994 (15) 0.50
H4B1 0.3630 0.5236 0.6986 0.119* 0.50
H4B2 0.2188 0.4249 0.8039 0.119* 0.50
C5B 0.1951 (16) 0.3360 (13) 0.5860 (11) 0.121 (6) 0.50
H5B1 0.0328 0.3707 0.5709 0.146* 0.50
H5B2 0.2648 0.3707 0.4979 0.146* 0.50

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C2 0.0817 (15) 0.0481 (12) 0.0918 (16) 0.000 0.0170 (12) 0.000
S1A 0.094 (2) 0.0635 (17) 0.0790 (14) 0.000 −0.010 (3) 0.000
N1A 0.079 (6) 0.063 (4) 0.136 (6) 0.015 (2) −0.001 (4) −0.013 (3)
C3A 0.141 (8) 0.044 (3) 0.118 (7) −0.013 (3) 0.008 (5) 0.009 (4)
C4A 0.096 (3) 0.074 (3) 0.119 (4) 0.003 (3) 0.000 (3) −0.018 (3)
C5A 0.112 (7) 0.091 (8) 0.134 (8) −0.016 (5) −0.050 (5) −0.018 (6)
S1B 0.105 (2) 0.0474 (14) 0.114 (4) 0.000 0.0191 (14) 0.000
N1B 0.077 (5) 0.0334 (19) 0.102 (3) −0.008 (2) 0.002 (3) −0.002 (2)
C3B 0.063 (3) 0.052 (3) 0.096 (3) 0.006 (2) −0.003 (2) −0.014 (3)
C4B 0.096 (4) 0.070 (3) 0.130 (4) 0.022 (3) 0.009 (3) 0.010 (3)
C5B 0.098 (7) 0.122 (11) 0.148 (9) −0.009 (5) 0.030 (5) −0.011 (6)

Geometric parameters (Å, °)

C2—N1A 1.348 (6) C5A—C5Ai 1.502 (19)
C2—N1Ai 1.348 (6) C5A—H5A1 0.9700
C2—N1B 1.357 (5) C5A—H5A2 0.9700
C2—N1Bi 1.357 (5) N1B—C3B 1.426 (7)
C2—S1B 1.675 (5) N1B—H1B 0.8600
C2—S1A 1.680 (4) C3B—C3Bi 1.30 (2)
N1A—C3A 1.420 (8) C3B—C4B 1.483 (7)
N1A—H1A 0.8600 C3B—H3B 0.9800
C3A—C4A 1.473 (8) C4B—C5B 1.504 (7)
C3A—C3Ai 1.64 (3) C4B—H4B1 0.9700
C3A—H3A 0.9800 C4B—H4B2 0.9700
C4A—C5A 1.494 (7) C5B—C5Bi 1.47 (2)
C4A—H4A1 0.9700 C5B—H5B1 0.9700
C4A—H4A2 0.9700 C5B—H5B2 0.9700
N1A—C2—N1Ai 114.2 (10) C4A—C5A—C5Ai 117.3 (4)
N1A—C2—N1B 108.6 (3) C4A—C5A—H5A1 108.0
N1Ai—C2—N1Bi 108.6 (3) C5Ai—C5A—H5A1 108.0
N1B—C2—N1Bi 100.6 (9) C4A—C5A—H5A2 108.0
N1A—C2—S1B 121.3 (5) C5Ai—C5A—H5A2 108.0
N1Ai—C2—S1B 121.3 (6) H5A1—C5A—H5A2 107.2
N1B—C2—S1B 129.6 (4) C2—N1B—C3B 111.9 (5)
N1Bi—C2—S1B 129.6 (4) C2—N1B—H1B 124.0
N1A—C2—S1A 122.6 (5) C3B—N1B—H1B 124.0
N1Ai—C2—S1A 122.6 (5) C3Bi—C3B—N1B 106.0 (4)
N1B—C2—S1A 128.7 (4) C3Bi—C3B—C4B 122.1 (5)
N1Bi—C2—S1A 128.7 (4) N1B—C3B—C4B 122.6 (11)
C2—N1A—C3A 108.2 (8) C3Bi—C3B—H3B 100.1
C2—N1A—H1A 125.9 N1B—C3B—H3B 100.1
C3A—N1A—H1A 125.9 C4B—C3B—H3B 100.1
N1A—C3A—C4A 130.7 (11) C3B—C4B—C5B 107.4 (7)
N1A—C3A—C3Ai 102.7 (5) C3B—C4B—H4B1 110.2
C4A—C3A—C3Ai 114.8 (6) C5B—C4B—H4B1 110.2
N1A—C3A—H3A 101.3 C3B—C4B—H4B2 110.2
C4A—C3A—H3A 101.3 C5B—C4B—H4B2 110.2
C3Ai—C3A—H3A 101.3 H4B1—C4B—H4B2 108.5
C3A—C4A—C5A 115.0 (7) C5Bi—C5B—C4B 117.9 (5)
C3A—C4A—H4A1 108.5 C5Bi—C5B—H5B1 107.8
C5A—C4A—H4A1 108.5 C4B—C5B—H5B1 107.8
C3A—C4A—H4A2 108.5 C5Bi—C5B—H5B2 107.8
C5A—C4A—H4A2 108.5 C4B—C5B—H5B2 107.8
H4A1—C4A—H4A2 107.5 H5B1—C5B—H5B2 107.2
N1Ai—C2—N1A—C3A −21 (2) N1A—C2—N1B—C3B −6.9 (9)
N1B—C2—N1A—C3A −7.6 (10) N1Ai—C2—N1B—C3B 110 (5)
N1Bi—C2—N1A—C3A 47 (3) N1Bi—C2—N1B—C3B −18 (2)
S1B—C2—N1A—C3A 179.0 (10) S1B—C2—N1B—C3B 165.7 (10)
S1A—C2—N1A—C3A 168.3 (11) S1A—C2—N1B—C3B 177.5 (9)
C2—N1A—C3A—C4A 151.0 (13) C2—N1B—C3B—C3Bi 11.8 (14)
C2—N1A—C3A—C3Ai 11.4 (13) C2—N1B—C3B—C4B 159.0 (10)
N1A—C3A—C4A—C5A −175.2 (15) C3Bi—C3B—C4B—C5B −39.2 (8)
C3Ai—C3A—C4A—C5A −39.3 (9) N1B—C3B—C4B—C5B 178.7 (11)
C3A—C4A—C5A—C5Ai 40.4 (9) C3B—C4B—C5B—C5Bi 37.3 (8)

Symmetry codes: (i) x, −y+1/2, z.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1A—H1A···S1Aii 0.86 2.53 3.367 (11) 166
N1B—H1B···S1Biii 0.86 2.76 3.483 (11) 142

Symmetry codes: (ii) −x+2, y−1/2, −z+2; (iii) −x+2, −y+1, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2499).

References

  1. Allen, C. F. H., Edens, C. O. & VanAllan, J. (1946). Org. Synth.26, 34–35.
  2. Amos, F. F., Morin, S. A., Streifer, J. A., Hamers, R. J. & Jin, S. (2007). J. Am. Chem. Soc 129, 14296–14302. [DOI] [PubMed]
  3. Bruker (1997). SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Bruker (1999). SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Schroeder, D. C. (1995). Chem. Rev.55, 181–228.
  6. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808043894/cv2499sup1.cif

e-65-0o248-sup1.cif (15.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808043894/cv2499Isup2.hkl

e-65-0o248-Isup2.hkl (46.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES