Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Jan 8;65(Pt 2):m127–m128. doi: 10.1107/S1600536808043298

1-Acetyl-5-ferrocenyl-3-phenyl-2-pyrazoline

Nevzat Karadayı a, Günseli Turgut Cin b, Seda Demirel b, Abban Çakıcı b, Orhan Büyükgüngör c,*
PMCID: PMC2968248  PMID: 21581746

Abstract

In the title compound, [Fe(C5H5)(C16H15N2O)], the pyrazoline ring and the phenyl ring are nearly coplanar, making a dihedral angle of 6.54 (2)°, while the substituted cyclo­penta­dienyl ring is twisted out of the pyrazoline ring plane by 81.32 (1)°. The mol­ecules in the crystal structure are held together by weak C—H⋯O inter­molecular hydrogen bonds and two C—H⋯π inter­actions.

Related literature

For background to the applications of pyrazolines, see: Amr et al. (2006); Biot et al. (2004); Fang et al. (2003); Fouda et al. (2007); Guirado et al. (2004); Jaouen et al. (2004); Johnson et al. (2007); Küçükgüzel et al. (2000); Karthikeyan et al. (2007); Özdemir et al. (2007). For bond-length data, see: Jian et al. (2008). For related structures, see: Turgut Cin et al. (2008); Kudar et al. (2005); Köysal et al. (2005).graphic file with name e-65-0m127-scheme1.jpg

Experimental

Crystal data

  • [Fe(C5H5)(C16H15N2O)]

  • M r = 372.24

  • Monoclinic, Inline graphic

  • a = 6.0762 (4) Å

  • b = 43.155 (2) Å

  • c = 7.3512 (4) Å

  • β = 116.218 (4)°

  • V = 1729.33 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.88 mm−1

  • T = 296 (2) K

  • 0.49 × 0.33 × 0.05 mm

Data collection

  • STOE IPDS 2 diffractometer

  • Absorption correction: integration (X-RED32; Stoe & Cie, 2002) T min = 0.662, T max = 0.962

  • 15964 measured reflections

  • 3256 independent reflections

  • 2765 reflections with I > 2σ(I)

  • R int = 0.045

Refinement

  • R[F 2 > 2σ(F 2)] = 0.035

  • wR(F 2) = 0.093

  • S = 1.04

  • 3256 reflections

  • 227 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.46 e Å−3

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA; data reduction: X-RED (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2003).

Supplementary Material

Crystal structure: contains datablocks I. DOI: 10.1107/S1600536808043298/at2695sup1.cif

e-65-0m127-sup1.cif (30.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808043298/at2695Isup2.hkl

e-65-0m127-Isup2.hkl (156.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯O1i 0.93 2.70 3.599 (3) 163 (1)
C16—H16⋯O1ii 0.93 2.29 3.201 (3) 167 (1)
C17—H17⋯Cg1iii 0.93 2.71 3.64 (4) 174 (1)
C11—H11ACg2iv 0.96 2.60 3.51 (5) 158 (1)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic. Cg1 and Cg2 are the centroids of the C17—C21 and C1—C6 rings, respectively.

Acknowledgments

The authors acknowledge the Research Board of Akdeniz University (grant No. BAP-2007.01.0105.001) for financial support and the Faculty of Arts and Sciences, Ondokuz Mayıs University, for the Stoe IPDS 2 diffractometer (purchased under grand F.279 of the University Research Fund).

supplementary crystallographic information

Comment

Pyrazolines are well known nitrogen-containing five-membered heterocyclic compounds. Condensation of nitrogen-containing binucleophilic agents with α, β unsaturated ketones is one of the most suitable synthetic pathways for 2-pyrazolines (Kudar et al., 2005), which possess widespread pharmaceutical properties such as antimicrobial (Küçükgüzel et al., 2000), anticonvulsant (Karthikeyan et al., 2007), antidepressant (Özdemir et al., 2007), antiandrogenic (Amr et al., 2006), antifungal and anti-inflammatory (Guirado et al., 2004) activities. Furthermore, N-acetylated 2-pyrazolines are inhibitors of kinesin spindle protein (KSP); potentially useful for the treatment cancer (Johnson et al., 2007). Metallocenes are also known to exhibit a wide range of biological activity. Among them ferrocenyl compounds display interesting antibacterial (Fouda et al., 2007), antitumor (Jaouen et al., 2004), antimalarial and antifungal (Biot et al., 2004) activities. Therefore, incorporation of a ferrocene fragment into a heterocyclic ring may enhance their biological activities or generate new medicinal properties (Fang et al., 2003). As a part of an ongoing investigation of the chemistry of ferrocenyl pyrazolines, the title compound (I) was synthesized and its crystal structure was determined.

The molecular structure of the title compound is shown in Fig. 1. The dihedral angle of 6.54 (2)° between pyrazoline ring and the phenyl ring indicates that they are conjugated with each other; this is accord with the C1—C7 bond [1.474 (3) Å], which has double-bond character (Jian et al., 2008). Furthermore, N1—C7 bond length [1.286 (3) Å] increased as a result of this conjugation. This observation is in good agreement with those reported for 1-acetyl-3-ferrocenyl-5-(2-nitrophenyl)-2-pyrazoline (Turgut Cin et al., 2008), 5-ferrocenyl-3-(p-methoxyphenyl)-1-(2-pyridyl) -2-pyrazoline (Kudar et al., 2005) and 3-(4-fluorophenyl)-N-methyl-5- (4-methylphenyl)-2-pyrazoline-1-thiocarboxamide (Köysal et al., 2005).

The Fe—Cgs and Fe—Cgas distances are 1.6454 (13)Å and 1.6510 (15) Å, respectively, and the Cgs—Fe—Cgas angle is 178.90 (8)°, where Cgs and Cgas are the centroids of the substituted and unsubstituted Cp rings. The small dihedral angle of 3.2963 (2)° between the unsubstituted and substituted Cp rings exposes that the two Cp rings are parallel to each other. The average C12—CgsCgas—C20 torsion angle of 4.789 (2)° brings that the two Cp rings of the ferrocenyl group is nearly in an eclipsed conformation.

The pyrazoline ring and substituted Cp ring make a dihedral angle of 81.32 (1)°. The dihedral angle between the phenyl ring and substituted Cp ring is 75.82 (1)°, whereas the phenyl ring plane deviates from the unsubstituted Cp ring with an angle of 76.60 (1)°. The molecules in the crystal held together by two weak intermolecular C5—H5···O1 and C16—H16···O1 hydrogen bonds and two C—H···π interactions (Table 1, Fig. 2).

Experimental

A mixture of 3-ferrocenyl-1-phenyl-propen-2-one (0.32 mmol, 0.1 g), 80% hydrazine monohydrate (7.04 mmol, 0.45 g) and glacial acetic acid (10 ml) was refluxed under nitrogen atmosphere for 4 h. TLC indicated the formation of the reaction product. It was poured into ice-water to give orange solid. The participate was separated by filtration and washed with water. The solid product was dried at room temperature. Single crystals of the title compound suitable for X-ray measurements were obtained by recrystallization from methanol at room temperature (Yield 82%; m.p. 456–457 K). IR (KBr, cm-1): 1647 (C=O), 1596 (C=N), 1580 (C=C), 1102 (C—N), 507 (Cp—Fe—Cp). 1H-NMR (CDCl3, p.p.m..): 2.33 (s, 1H, CH3), 3.50 (dd, 1H, pyr.), 3.68 (dd, 1H, pyr.), 4.02 (s, 1H, Fc), 4.12 (s, 1H, Fc), 4.16 (s, 5H, Fc), 4.18 (s, 1H, Fc), 4.51 (s, 1H, Fc), 5.51 (dd, 1H, pyr.), 7.47–7.81 (m, 5H, Arom.). 13C-NMR (CDCl3, p.p.m.): 22.04 (CH3), 39.54 (pyr. CH2), 55.37 (pyr. CH), 65.57 (CFc), 68.22 (CFc), 68.37 (CFc), 68.58 (CFc), 70.34 (CFc), 87.38 (CFcipso), 126.53 (Cphenyl), 128.81 (Cphenyl), 130.27 (Cphenyl), 131.59 (Cphenyl), 153.88 (pyr. C=N), 168.87 (C=O).

Refinement

All C—H atoms were refined using the riding model approximation, with C—H = 0.93–0.98Å [Uiso(H) = 1.2 or 1.5Ueq(C)].

Figures

Fig. 1.

Fig. 1.

A view of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability.

Fig. 2.

Fig. 2.

The crystal structure of (I), showing both C—H···O intermolecular hydrogen bonds and C—H···π interactions as dashed lines. H atoms not involved in hydrogen bonds have been omitted for clarity [symmetry codes: (iii) x, 1/2 - y, 1/2 + z; (iv) x, y, 1 + z].

Crystal data

[Fe(C5H5)(CH15N2O)] F(000) = 776
Mr = 372.24 Dx = 1.430 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 15964 reflections
a = 6.0762 (4) Å θ = 1.9–26.2°
b = 43.155 (2) Å µ = 0.88 mm1
c = 7.3512 (4) Å T = 296 K
β = 116.218 (4)° Prism, brown
V = 1729.33 (17) Å3 0.49 × 0.33 × 0.05 mm
Z = 4

Data collection

STOE IPDS 2 diffractometer 3256 independent reflections
Radiation source: fine-focus sealed tube 2765 reflections with I > 2σ(I)
plane graphite Rint = 0.045
ω scans θmax = 25.7°, θmin = 2.8°
Absorption correction: integration (X-RED32; Stoe & Cie, 2002) h = −7→7
Tmin = 0.662, Tmax = 0.962 k = −52→51
15964 measured reflections l = −8→8

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.093 H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0493P)2 + 0.5221P] where P = (Fo2 + 2Fc2)/3
3256 reflections (Δ/σ)max = 0.002
227 parameters Δρmax = 0.23 e Å3
1 restraint Δρmin = −0.46 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.4032 (4) 0.43314 (5) 0.3252 (3) 0.0411 (4)
C2 0.4385 (4) 0.46493 (5) 0.3407 (3) 0.0495 (5)
H2 0.3732 0.4766 0.4115 0.059*
C3 0.5694 (5) 0.47951 (6) 0.2524 (3) 0.0579 (6)
H3 0.5932 0.5008 0.2645 0.069*
C4 0.6652 (5) 0.46210 (6) 0.1453 (4) 0.0588 (6)
H4 0.7585 0.4717 0.0897 0.071*
C5 0.6226 (4) 0.43077 (6) 0.1213 (3) 0.0559 (6)
H5 0.6812 0.4193 0.0446 0.067*
C6 0.4926 (4) 0.41618 (5) 0.2109 (3) 0.0482 (5)
H6 0.4648 0.3949 0.1947 0.058*
C7 0.2756 (4) 0.41761 (5) 0.4301 (3) 0.0406 (4)
C8 0.2110 (5) 0.38395 (5) 0.4107 (4) 0.0542 (5)
H8A 0.3558 0.3711 0.4491 0.065*
H8B 0.0940 0.3788 0.2732 0.065*
C9 0.0970 (4) 0.37977 (5) 0.5595 (3) 0.0458 (5)
H9 −0.0725 0.3725 0.4857 0.055*
C10 −0.0242 (4) 0.42188 (5) 0.7322 (3) 0.0482 (5)
C11 −0.0126 (4) 0.45555 (6) 0.7829 (4) 0.0547 (6)
H11A 0.1361 0.4597 0.9028 0.066*
H11B −0.1511 0.4610 0.8065 0.066*
H11C −0.0153 0.4676 0.6722 0.066*
C12 0.2353 (4) 0.35877 (5) 0.7359 (3) 0.0426 (4)
C13 0.1310 (5) 0.33836 (6) 0.8274 (4) 0.0541 (5)
H13 −0.0358 0.3356 0.7874 0.065*
C14 0.3218 (6) 0.32297 (7) 0.9888 (4) 0.0700 (7)
H14 0.3034 0.3080 1.0722 0.084*
C15 0.5448 (5) 0.33420 (7) 1.0017 (4) 0.0711 (7)
H15 0.7001 0.3282 1.0969 0.085*
C16 0.4944 (4) 0.35620 (6) 0.8458 (4) 0.0554 (5)
H16 0.6099 0.3670 0.8198 0.067*
C17 0.3595 (9) 0.26768 (7) 0.6984 (6) 0.0991 (13)
H17 0.3663 0.2531 0.7939 0.119*
C18 0.5592 (7) 0.28122 (7) 0.6853 (5) 0.0803 (9)
H18 0.7234 0.2774 0.7713 0.096*
C19 0.4730 (5) 0.30115 (6) 0.5240 (4) 0.0611 (6)
H19 0.5706 0.3129 0.4824 0.073*
C20 0.2195 (5) 0.30119 (7) 0.4321 (4) 0.0634 (6)
H20 0.1183 0.3129 0.3201 0.076*
C21 0.1421 (7) 0.28010 (8) 0.5394 (6) 0.0942 (12)
H21 −0.0188 0.2753 0.5118 0.113*
N1 0.2119 (3) 0.43277 (4) 0.5499 (2) 0.0415 (4)
N2 0.0981 (3) 0.41220 (4) 0.6266 (3) 0.0460 (4)
O1 −0.1350 (3) 0.40299 (4) 0.7846 (3) 0.0664 (5)
Fe1 0.34526 (6) 0.314282 (7) 0.72673 (4) 0.04627 (12)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0476 (10) 0.0436 (11) 0.0351 (9) 0.0025 (8) 0.0209 (8) 0.0023 (8)
C2 0.0659 (13) 0.0453 (13) 0.0471 (11) −0.0044 (10) 0.0339 (11) −0.0033 (9)
C3 0.0803 (15) 0.0497 (14) 0.0555 (13) −0.0140 (12) 0.0407 (12) −0.0041 (10)
C4 0.0671 (14) 0.0682 (17) 0.0538 (13) −0.0073 (12) 0.0382 (11) 0.0038 (11)
C5 0.0633 (14) 0.0658 (16) 0.0511 (12) 0.0108 (11) 0.0365 (11) 0.0039 (11)
C6 0.0597 (12) 0.0431 (12) 0.0472 (11) 0.0074 (9) 0.0286 (10) 0.0035 (9)
C7 0.0484 (10) 0.0365 (11) 0.0395 (10) 0.0026 (8) 0.0220 (9) 0.0023 (8)
C8 0.0817 (15) 0.0400 (12) 0.0555 (12) −0.0002 (11) 0.0436 (12) −0.0006 (10)
C9 0.0549 (12) 0.0370 (11) 0.0526 (11) −0.0039 (9) 0.0301 (10) −0.0027 (9)
C10 0.0479 (11) 0.0500 (13) 0.0550 (12) 0.0037 (9) 0.0305 (10) 0.0021 (10)
C11 0.0625 (13) 0.0508 (14) 0.0627 (13) 0.0073 (11) 0.0385 (12) −0.0016 (11)
C12 0.0514 (11) 0.0360 (11) 0.0504 (11) −0.0037 (8) 0.0316 (9) −0.0050 (8)
C13 0.0717 (14) 0.0464 (13) 0.0640 (14) −0.0035 (11) 0.0480 (12) 0.0000 (11)
C14 0.112 (2) 0.0588 (16) 0.0556 (14) 0.0114 (15) 0.0519 (15) 0.0085 (12)
C15 0.0776 (17) 0.0735 (19) 0.0495 (13) 0.0159 (15) 0.0165 (12) −0.0036 (13)
C16 0.0543 (12) 0.0516 (14) 0.0614 (13) −0.0045 (10) 0.0264 (11) −0.0113 (11)
C17 0.195 (4) 0.0351 (15) 0.106 (3) 0.004 (2) 0.102 (3) 0.0044 (15)
C18 0.102 (2) 0.0650 (19) 0.0792 (18) 0.0324 (17) 0.0446 (17) 0.0048 (15)
C19 0.0748 (16) 0.0577 (15) 0.0647 (14) 0.0012 (12) 0.0434 (13) −0.0073 (12)
C20 0.0726 (16) 0.0580 (16) 0.0581 (14) 0.0058 (12) 0.0274 (12) −0.0140 (12)
C21 0.104 (2) 0.075 (2) 0.141 (3) −0.0429 (19) 0.088 (3) −0.059 (2)
N1 0.0475 (9) 0.0362 (9) 0.0476 (9) 0.0001 (7) 0.0273 (8) 0.0034 (7)
N2 0.0572 (10) 0.0357 (9) 0.0577 (10) −0.0002 (8) 0.0369 (9) 0.0011 (8)
O1 0.0712 (11) 0.0596 (11) 0.0951 (13) −0.0052 (8) 0.0611 (10) 0.0010 (9)
Fe1 0.0639 (2) 0.03565 (19) 0.04901 (19) 0.00135 (13) 0.03384 (16) 0.00207 (13)

Geometric parameters (Å, °)

C1—C2 1.385 (3) C12—Fe1 2.044 (2)
C1—C6 1.393 (3) C13—C14 1.406 (4)
C1—C7 1.474 (3) C13—Fe1 2.043 (2)
C2—C3 1.381 (3) C13—H13 0.9300
C2—H2 0.9300 C14—C15 1.402 (4)
C3—C4 1.388 (3) C14—Fe1 2.029 (2)
C3—H3 0.9300 C14—H14 0.9300
C4—C5 1.373 (4) C15—C16 1.414 (4)
C4—H4 0.9300 C15—Fe1 2.032 (3)
C5—C6 1.384 (3) C15—H15 0.9300
C5—H5 0.9300 C16—Fe1 2.039 (2)
C6—H6 0.9300 C16—H16 0.9300
C7—N1 1.286 (3) C17—C18 1.388 (5)
C7—C8 1.495 (3) C17—C21 1.426 (5)
C8—C9 1.542 (3) C17—Fe1 2.028 (3)
C8—H8A 0.9700 C17—H17 0.9300
C8—H8B 0.9700 C18—C19 1.368 (4)
C9—N2 1.483 (3) C18—Fe1 2.042 (3)
C9—C12 1.498 (3) C18—H18 0.9300
C9—H9 0.9800 C19—C20 1.382 (4)
C10—O1 1.223 (3) C19—Fe1 2.041 (2)
C10—N2 1.356 (3) C19—H19 0.9300
C10—C11 1.494 (3) C20—C21 1.414 (4)
C11—H11A 0.9600 C20—Fe1 2.033 (2)
C11—H11B 0.9600 C20—H20 0.9300
C11—H11C 0.9600 C21—Fe1 2.023 (3)
C12—C13 1.417 (3) C21—H21 0.9300
C12—C16 1.421 (3) N1—N2 1.389 (2)
C2—C1—C6 118.84 (19) C21—C17—H17 126.1
C2—C1—C7 120.36 (18) Fe1—C17—H17 125.7
C6—C1—C7 120.8 (2) C19—C18—C17 108.3 (3)
C3—C2—C1 120.9 (2) C19—C18—Fe1 70.41 (15)
C3—C2—H2 119.6 C17—C18—Fe1 69.52 (17)
C1—C2—H2 119.6 C19—C18—H18 125.9
C2—C3—C4 119.5 (2) C17—C18—H18 125.9
C2—C3—H3 120.2 Fe1—C18—H18 125.8
C4—C3—H3 120.2 C18—C19—C20 110.0 (3)
C5—C4—C3 120.2 (2) C18—C19—Fe1 70.45 (16)
C5—C4—H4 119.9 C20—C19—Fe1 69.86 (14)
C3—C4—H4 119.9 C18—C19—H19 125.0
C4—C5—C6 120.1 (2) C20—C19—H19 125.0
C4—C5—H5 120.0 Fe1—C19—H19 126.3
C6—C5—H5 120.0 C19—C20—C21 107.4 (3)
C5—C6—C1 120.3 (2) C19—C20—Fe1 70.49 (14)
C5—C6—H6 119.8 C21—C20—Fe1 69.23 (17)
C1—C6—H6 119.8 C19—C20—H20 126.3
N1—C7—C1 120.89 (19) C21—C20—H20 126.3
N1—C7—C8 114.44 (17) Fe1—C20—H20 125.6
C1—C7—C8 124.66 (17) C20—C21—C17 106.5 (3)
C7—C8—C9 103.14 (17) C20—C21—Fe1 69.96 (15)
C7—C8—H8A 111.1 C17—C21—Fe1 69.55 (18)
C9—C8—H8A 111.1 C20—C21—H21 126.8
C7—C8—H8B 111.1 C17—C21—H21 126.8
C9—C8—H8B 111.1 Fe1—C21—H21 125.3
H8A—C8—H8B 109.1 C7—N1—N2 107.90 (17)
N2—C9—C12 111.39 (17) C10—N2—N1 122.19 (18)
N2—C9—C8 100.85 (16) C10—N2—C9 123.93 (17)
C12—C9—C8 115.38 (18) N1—N2—C9 113.44 (15)
N2—C9—H9 109.6 C21—Fe1—C17 41.22 (16)
C12—C9—H9 109.6 C21—Fe1—C14 120.23 (13)
C8—C9—H9 109.6 C17—Fe1—C14 107.75 (12)
O1—C10—N2 119.5 (2) C21—Fe1—C15 154.41 (16)
O1—C10—C11 122.8 (2) C17—Fe1—C15 119.21 (15)
N2—C10—C11 117.72 (19) C14—Fe1—C15 40.41 (12)
C10—C11—H11A 109.5 C21—Fe1—C20 40.80 (13)
C10—C11—H11B 109.5 C17—Fe1—C20 68.15 (13)
H11A—C11—H11B 109.5 C14—Fe1—C20 155.83 (13)
C10—C11—H11C 109.5 C15—Fe1—C20 162.88 (12)
H11A—C11—H11C 109.5 C21—Fe1—C16 163.86 (15)
H11B—C11—H11C 109.5 C17—Fe1—C16 153.23 (16)
C13—C12—C16 107.3 (2) C14—Fe1—C16 68.46 (11)
C13—C12—C9 126.1 (2) C15—Fe1—C16 40.64 (11)
C16—C12—C9 126.57 (19) C20—Fe1—C16 126.18 (11)
C13—C12—Fe1 69.67 (13) C21—Fe1—C19 67.35 (11)
C16—C12—Fe1 69.46 (13) C17—Fe1—C19 66.57 (12)
C9—C12—Fe1 127.31 (14) C14—Fe1—C19 162.48 (12)
C14—C13—C12 108.6 (2) C15—Fe1—C19 126.26 (12)
C14—C13—Fe1 69.26 (14) C20—Fe1—C19 39.65 (11)
C12—C13—Fe1 69.76 (12) C16—Fe1—C19 108.62 (10)
C14—C13—H13 125.7 C21—Fe1—C18 68.04 (15)
C12—C13—H13 125.7 C17—Fe1—C18 39.88 (15)
Fe1—C13—H13 126.9 C14—Fe1—C18 125.98 (12)
C15—C14—C13 107.8 (2) C15—Fe1—C18 107.74 (13)
C15—C14—Fe1 69.91 (14) C20—Fe1—C18 67.11 (12)
C13—C14—Fe1 70.32 (13) C16—Fe1—C18 119.50 (13)
C15—C14—H14 126.1 C19—Fe1—C18 39.14 (12)
C13—C14—H14 126.1 C21—Fe1—C13 108.82 (11)
Fe1—C14—H14 125.2 C17—Fe1—C13 127.20 (13)
C14—C15—C16 108.7 (2) C14—Fe1—C13 40.41 (11)
C14—C15—Fe1 69.68 (16) C15—Fe1—C13 67.68 (11)
C16—C15—Fe1 69.97 (14) C20—Fe1—C13 121.85 (11)
C14—C15—H15 125.6 C16—Fe1—C13 68.10 (10)
C16—C15—H15 125.6 C19—Fe1—C13 156.12 (11)
Fe1—C15—H15 126.3 C18—Fe1—C13 163.57 (12)
C15—C16—C12 107.6 (2) C21—Fe1—C12 126.67 (14)
C15—C16—Fe1 69.40 (15) C17—Fe1—C12 164.70 (15)
C12—C16—Fe1 69.80 (12) C14—Fe1—C12 68.53 (10)
C15—C16—H16 126.2 C15—Fe1—C12 68.28 (10)
C12—C16—H16 126.2 C20—Fe1—C12 108.77 (10)
Fe1—C16—H16 126.2 C16—Fe1—C12 40.74 (9)
C18—C17—C21 107.8 (3) C19—Fe1—C12 121.34 (10)
C18—C17—Fe1 70.60 (18) C18—Fe1—C12 154.21 (12)
C21—C17—Fe1 69.23 (17) C13—Fe1—C12 40.57 (8)
C18—C17—H17 126.1
C6—C1—C2—C3 −2.9 (3) C16—C15—Fe1—C17 156.81 (18)
C7—C1—C2—C3 176.4 (2) C16—C15—Fe1—C14 −120.0 (2)
C1—C2—C3—C4 0.5 (4) C14—C15—Fe1—C20 165.3 (3)
C2—C3—C4—C5 2.3 (4) C16—C15—Fe1—C20 45.3 (4)
C3—C4—C5—C6 −2.7 (4) C14—C15—Fe1—C16 120.0 (2)
C4—C5—C6—C1 0.3 (3) C14—C15—Fe1—C19 −164.32 (16)
C2—C1—C6—C5 2.5 (3) C16—C15—Fe1—C19 75.72 (19)
C7—C1—C6—C5 −176.8 (2) C14—C15—Fe1—C18 −125.14 (19)
C2—C1—C7—N1 −5.5 (3) C16—C15—Fe1—C18 114.90 (17)
C6—C1—C7—N1 173.87 (19) C14—C15—Fe1—C13 38.05 (16)
C2—C1—C7—C8 175.1 (2) C16—C15—Fe1—C13 −81.90 (16)
C6—C1—C7—C8 −5.6 (3) C14—C15—Fe1—C12 81.97 (17)
N1—C7—C8—C9 −2.9 (3) C16—C15—Fe1—C12 −37.99 (14)
C1—C7—C8—C9 176.64 (19) C19—C20—Fe1—C21 −118.3 (3)
C7—C8—C9—N2 4.2 (2) C19—C20—Fe1—C17 −79.2 (2)
C7—C8—C9—C12 −115.9 (2) C21—C20—Fe1—C17 39.1 (2)
N2—C9—C12—C13 101.6 (2) C19—C20—Fe1—C14 −164.0 (2)
C8—C9—C12—C13 −144.2 (2) C21—C20—Fe1—C14 −45.6 (4)
N2—C9—C12—C16 −76.6 (3) C19—C20—Fe1—C15 39.8 (4)
C8—C9—C12—C16 37.6 (3) C21—C20—Fe1—C15 158.1 (4)
N2—C9—C12—Fe1 −167.51 (13) C19—C20—Fe1—C16 74.78 (19)
C8—C9—C12—Fe1 −53.3 (2) C21—C20—Fe1—C16 −166.9 (2)
C16—C12—C13—C14 −1.0 (3) C21—C20—Fe1—C19 118.3 (3)
C9—C12—C13—C14 −179.5 (2) C19—C20—Fe1—C18 −35.92 (18)
Fe1—C12—C13—C14 58.49 (17) C21—C20—Fe1—C18 82.4 (2)
C16—C12—C13—Fe1 −59.53 (15) C19—C20—Fe1—C13 159.63 (16)
C9—C12—C13—Fe1 122.0 (2) C21—C20—Fe1—C13 −82.0 (2)
C12—C13—C14—C15 1.4 (3) C19—C20—Fe1—C12 116.80 (16)
Fe1—C13—C14—C15 60.16 (18) C21—C20—Fe1—C12 −124.9 (2)
C12—C13—C14—Fe1 −58.80 (16) C15—C16—Fe1—C21 162.8 (4)
C13—C14—C15—C16 −1.2 (3) C12—C16—Fe1—C21 44.0 (4)
Fe1—C14—C15—C16 59.26 (18) C15—C16—Fe1—C17 −49.7 (3)
C13—C14—C15—Fe1 −60.42 (18) C12—C16—Fe1—C17 −168.6 (2)
C14—C15—C16—C12 0.5 (3) C15—C16—Fe1—C14 37.14 (16)
Fe1—C15—C16—C12 59.60 (15) C12—C16—Fe1—C14 −81.68 (15)
C14—C15—C16—Fe1 −59.08 (19) C12—C16—Fe1—C15 −118.8 (2)
C13—C12—C16—C15 0.3 (3) C15—C16—Fe1—C20 −164.97 (16)
C9—C12—C16—C15 178.8 (2) C12—C16—Fe1—C20 76.21 (16)
Fe1—C12—C16—C15 −59.34 (17) C15—C16—Fe1—C19 −124.45 (17)
C13—C12—C16—Fe1 59.67 (15) C12—C16—Fe1—C19 116.73 (14)
C9—C12—C16—Fe1 −121.9 (2) C15—C16—Fe1—C18 −83.01 (19)
C21—C17—C18—C19 −0.5 (3) C12—C16—Fe1—C18 158.16 (14)
Fe1—C17—C18—C19 −60.0 (2) C15—C16—Fe1—C13 80.79 (17)
C21—C17—C18—Fe1 59.5 (2) C12—C16—Fe1—C13 −38.03 (12)
C17—C18—C19—C20 0.6 (3) C15—C16—Fe1—C12 118.8 (2)
Fe1—C18—C19—C20 −58.80 (19) C18—C19—Fe1—C21 −82.6 (2)
C17—C18—C19—Fe1 59.4 (2) C20—C19—Fe1—C21 38.6 (2)
C18—C19—C20—C21 −0.5 (3) C18—C19—Fe1—C17 −37.6 (2)
Fe1—C19—C20—C21 −59.63 (18) C20—C19—Fe1—C17 83.5 (2)
C18—C19—C20—Fe1 59.1 (2) C18—C19—Fe1—C14 36.8 (5)
C19—C20—C21—C17 0.1 (3) C20—C19—Fe1—C14 157.9 (3)
Fe1—C20—C21—C17 −60.3 (2) C18—C19—Fe1—C15 72.4 (2)
C19—C20—C21—Fe1 60.43 (18) C20—C19—Fe1—C15 −166.49 (17)
C18—C17—C21—C20 0.2 (3) C18—C19—Fe1—C20 −121.1 (3)
Fe1—C17—C21—C20 60.56 (19) C18—C19—Fe1—C16 114.1 (2)
C18—C17—C21—Fe1 −60.3 (2) C20—C19—Fe1—C16 −124.73 (17)
C1—C7—N1—N2 −179.60 (17) C20—C19—Fe1—C18 121.1 (3)
C8—C7—N1—N2 −0.1 (2) C18—C19—Fe1—C13 −168.0 (3)
O1—C10—N2—N1 175.1 (2) C20—C19—Fe1—C13 −46.9 (3)
C11—C10—N2—N1 −6.1 (3) C18—C19—Fe1—C12 157.19 (19)
O1—C10—N2—C9 3.2 (3) C20—C19—Fe1—C12 −81.69 (19)
C11—C10—N2—C9 −177.9 (2) C19—C18—Fe1—C21 80.7 (2)
C7—N1—N2—C10 −169.37 (19) C17—C18—Fe1—C21 −38.5 (2)
C7—N1—N2—C9 3.3 (2) C19—C18—Fe1—C17 119.2 (3)
C12—C9—N2—C10 −69.3 (3) C19—C18—Fe1—C14 −167.12 (18)
C8—C9—N2—C10 167.7 (2) C17—C18—Fe1—C14 73.7 (3)
C12—C9—N2—N1 118.16 (18) C19—C18—Fe1—C15 −126.2 (2)
C8—C9—N2—N1 −4.8 (2) C17—C18—Fe1—C15 114.6 (2)
C20—C21—Fe1—C17 −117.2 (2) C19—C18—Fe1—C20 36.36 (18)
C20—C21—Fe1—C14 160.19 (16) C17—C18—Fe1—C20 −82.8 (2)
C17—C21—Fe1—C14 −82.6 (2) C19—C18—Fe1—C16 −83.5 (2)
C20—C21—Fe1—C15 −165.3 (2) C17—C18—Fe1—C16 157.3 (2)
C17—C21—Fe1—C15 −48.0 (3) C17—C18—Fe1—C19 −119.2 (3)
C17—C21—Fe1—C20 117.2 (2) C19—C18—Fe1—C13 162.8 (4)
C20—C21—Fe1—C16 41.2 (5) C17—C18—Fe1—C13 43.6 (5)
C17—C21—Fe1—C16 158.4 (4) C19—C18—Fe1—C12 −49.6 (4)
C20—C21—Fe1—C19 −37.48 (16) C17—C18—Fe1—C12 −168.8 (2)
C17—C21—Fe1—C19 79.8 (2) C14—C13—Fe1—C21 114.8 (2)
C20—C21—Fe1—C18 −79.93 (18) C12—C13—Fe1—C21 −124.90 (19)
C17—C21—Fe1—C18 37.32 (18) C14—C13—Fe1—C17 72.5 (2)
C20—C21—Fe1—C13 117.28 (17) C12—C13—Fe1—C17 −167.26 (19)
C17—C21—Fe1—C13 −125.47 (19) C12—C13—Fe1—C14 120.3 (2)
C20—C21—Fe1—C12 75.59 (19) C14—C13—Fe1—C15 −38.04 (18)
C17—C21—Fe1—C12 −167.16 (17) C12—C13—Fe1—C15 82.21 (16)
C18—C17—Fe1—C21 118.7 (3) C14—C13—Fe1—C20 157.98 (18)
C18—C17—Fe1—C14 −125.4 (2) C12—C13—Fe1—C20 −81.76 (17)
C21—C17—Fe1—C14 115.90 (19) C14—C13—Fe1—C16 −82.06 (18)
C18—C17—Fe1—C15 −82.8 (2) C12—C13—Fe1—C16 38.19 (14)
C21—C17—Fe1—C15 158.42 (18) C14—C13—Fe1—C19 −168.7 (3)
C18—C17—Fe1—C20 80.0 (2) C12—C13—Fe1—C19 −48.5 (3)
C21—C17—Fe1—C20 −38.75 (17) C14—C13—Fe1—C18 38.8 (5)
C18—C17—Fe1—C16 −48.1 (3) C12—C13—Fe1—C18 159.1 (4)
C21—C17—Fe1—C16 −166.9 (2) C14—C13—Fe1—C12 −120.3 (2)
C18—C17—Fe1—C19 36.91 (19) C13—C12—Fe1—C21 75.45 (19)
C21—C17—Fe1—C19 −81.83 (19) C16—C12—Fe1—C21 −166.07 (16)
C21—C17—Fe1—C18 −118.7 (3) C9—C12—Fe1—C21 −45.1 (2)
C18—C17—Fe1—C13 −165.84 (18) C13—C12—Fe1—C17 41.7 (5)
C21—C17—Fe1—C13 75.4 (2) C16—C12—Fe1—C17 160.2 (4)
C18—C17—Fe1—C12 161.2 (3) C9—C12—Fe1—C17 −78.8 (5)
C21—C17—Fe1—C12 42.5 (5) C13—C12—Fe1—C14 −36.99 (16)
C15—C14—Fe1—C21 157.8 (2) C16—C12—Fe1—C14 81.49 (16)
C13—C14—Fe1—C21 −83.8 (2) C9—C12—Fe1—C14 −157.5 (2)
C15—C14—Fe1—C17 114.5 (2) C13—C12—Fe1—C15 −80.60 (17)
C13—C14—Fe1—C17 −127.1 (2) C16—C12—Fe1—C15 37.89 (15)
C13—C14—Fe1—C15 118.4 (2) C9—C12—Fe1—C15 158.9 (2)
C15—C14—Fe1—C20 −169.5 (2) C13—C12—Fe1—C20 117.39 (15)
C13—C14—Fe1—C20 −51.0 (3) C16—C12—Fe1—C20 −124.12 (14)
C15—C14—Fe1—C16 −37.34 (16) C9—C12—Fe1—C20 −3.2 (2)
C13—C14—Fe1—C16 81.07 (16) C13—C12—Fe1—C16 −118.49 (19)
C15—C14—Fe1—C19 46.4 (4) C9—C12—Fe1—C16 121.0 (2)
C13—C14—Fe1—C19 164.8 (3) C13—C12—Fe1—C19 159.21 (15)
C15—C14—Fe1—C18 74.2 (2) C16—C12—Fe1—C19 −82.30 (16)
C13—C14—Fe1—C18 −167.35 (17) C9—C12—Fe1—C19 38.7 (2)
C15—C14—Fe1—C13 −118.4 (2) C13—C12—Fe1—C18 −166.6 (3)
C15—C14—Fe1—C12 −81.29 (17) C16—C12—Fe1—C18 −48.1 (3)
C13—C14—Fe1—C12 37.13 (14) C9—C12—Fe1—C18 72.9 (3)
C14—C15—Fe1—C21 −49.1 (4) C16—C12—Fe1—C13 118.49 (19)
C16—C15—Fe1—C21 −169.0 (3) C9—C12—Fe1—C13 −120.6 (2)
C14—C15—Fe1—C17 −83.2 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C5—H5···O1i 0.93 2.70 3.599 (3) 163 (1)
C16—H16···O1ii 0.93 2.29 3.201 (3) 167 (1)
C17—H17···Cg1iii 0.93 2.71 3.64 (4) 174 (1)
C11—H11A···Cg2iv 0.96 2.60 3.51 (5) 158 (1)

Symmetry codes: (i) x+1, y, z−1; (ii) x+1, y, z; (iii) x, −y+1/2, z+1/2; (iv) x, y, z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2695).

References

  1. Amr, A. E. E., Abdel-Latif, N. A. & Abdalla, M. M. (2006). Bioorg. Med. Chem.14, 373–384. [DOI] [PubMed]
  2. Biot, C., Dessolin, J., Richard, I. & Dive, D. (2004). J. Organomet. Chem.689, 4678–4682.
  3. Fang, J., Jin, Z., Li, Z. & Liu, W. (2003). J. Organomet. Chem.674, 1–9.
  4. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  5. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  6. Fouda, M. F. R., Abd-Elzaher, M. M., Abdelsamaia, R. A. & Labib, A. A. (2007). Appl. Organomet. Chem.21, 613–625.
  7. Guirado, A., Martiz, B. & Andreu, R. (2004). Tetrahedron Lett.45, 8523–8526.
  8. Jaouen, G., Top, S., Vessireres, A., Leclercq, G., Vaissermann, J. & McGlinchey, M. J. (2004). Curr. Med. Chem.11, 2505–2517. [DOI] [PubMed]
  9. Jian, F., Zhao, P., Guo, H. & Li, Y. (2008). Spectrochim. Acta A, 69, 647–653. [DOI] [PubMed]
  10. Johnson, M., Younglove, B., Lee, L., LeBlanc, R., Holt, H., Hills, P., Mackay, H., Brown, T., Moobery, S. L. & Lee, M. (2007). Bioorg. Med. Chem. Lett.17, 5897–5901. [DOI] [PubMed]
  11. Karthikeyan, M. S., Holla, B. S. & Kumari, N. S. (2007). Eur. J. Med. Chem.42, 30–36. [DOI] [PubMed]
  12. Köysal, Y., Işık, S., Şahin, G. & Palaska, E. (2005). Acta Cryst. C61, o542–o544. [DOI] [PubMed]
  13. Küçükgüzel, G. S., Rollas, S., Erdeniz, H., Kiraz, M., Ekinci, A. C. & Vidin, A. (2000). Eur. J. Med. Chem.35, 761–771. [DOI] [PubMed]
  14. Kudar, V., Mady-Zsoldos, V., Simon, K., Csampai, A. & Sohar, P. (2005). J. Organomet. Chem.690, 4018–4026.
  15. Özdemir, Z., Kandilci, H. B., Gümüşel, B., Çalış, Ü. & Bilgin, A. A. (2007). Eur. J. Med. Chem.42, 373–379. [DOI] [PubMed]
  16. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  17. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  18. Stoe & Cie (2002). X-AREA and X-RED32 Stoe & Cie, Darmstadt, Germany.
  19. Turgut Cin, G., Demirel, S., Karadayı, N. & Büyükgüngör, O. (2008). Acta Cryst. E64, m514–m515. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I. DOI: 10.1107/S1600536808043298/at2695sup1.cif

e-65-0m127-sup1.cif (30.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808043298/at2695Isup2.hkl

e-65-0m127-Isup2.hkl (156.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES