Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Jan 17;65(Pt 2):o345. doi: 10.1107/S1600536809001755

8,8-Diethyl-1,4,5,8-tetra­hydro­naphthalene-1,4,5-trione

Andrés Vega a, Oney Ramirez-Rodríguez b, Maximiliano Martínez-Cifuentes b, Andrés Ibañez c, Ramiro Araya-Maturana b,*
PMCID: PMC2968259  PMID: 21581946

Abstract

The title mol­ecule, C14H14O3, contains two fused six-membered carbon rings with keto groups at positions 1, 4 and 5 and a gem-diethyl group at position 8. The mol­ecule is close to planar (maximum deviation = 0.044 Å), with one ethyl group at each side of the mol­ecular plane, with exception of the keto group at position 1 which is slightly deviated from the plane and disordered over two positions one on each side of it (occupancies 0.80/0.20). The packing of the mol­ecule shows weak bonded chains along a through C—H⋯O contacts and two intramolecular C—H⋯O interactions are also present.

Related literature

For the biologically active dimethyl analog, see: Araya-Maturana et al. (2002); for its use as a substrate for Diels-Alder cyclo­additions with 2,4-hexa­dienol, see: Araya-Maturana et al. (1999) and for the synthesis of biologically active compounds, see: Araya-Maturana et al. (2006); Mendoza et al. (2005); Rodríguez et al. (2007). For details of the synthesis of the 4,4-dimethyl analog, see: Castro et al. (1983); Vega et al. (2008).graphic file with name e-65-0o345-scheme1.jpg

Experimental

Crystal data

  • C14H14O3

  • M r = 230.25

  • Orthorhombic, Inline graphic

  • a = 12.7454 (8) Å

  • b = 10.8015 (7) Å

  • c = 8.8598 (5) Å

  • V = 1219.72 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 150 (2) K

  • 0.49 × 0.48 × 0.46 mm

Data collection

  • Siemens SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1999) T min = 0.958, T max = 0.961

  • 6581 measured reflections

  • 2159 independent reflections

  • 2119 reflections with I > 2σ(I)

  • R int = 0.012

Refinement

  • R[F 2 > 2σ(F 2)] = 0.036

  • wR(F 2) = 0.099

  • S = 1.00

  • 2159 reflections

  • 166 parameters

  • 15 restraints

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.15 e Å−3

Data collection: SMART-NT (Bruker, 2001); cell refinement: SAINT-NT (Bruker, 1999); data reduction: SAINT-NT; program(s) used to solve structure: SHELXTL-NT (Sheldrick, 2008); program(s) used to refine structure: SHELXTL-NT; molecular graphics: SHELXTL-NT; software used to prepare material for publication: SHELXTL-NT.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809001755/gw2058sup1.cif

e-65-0o345-sup1.cif (18.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809001755/gw2058Isup2.hkl

e-65-0o345-Isup2.hkl (106.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O1i 0.95 2.27 3.207 (2) 169
C9—H9A⋯O2 0.99 2.40 3.014 (2) 120
C11—H11B⋯O2 0.99 2.39 3.027 (2) 122

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors gratefully acknowledge generous financial support from FONDECYT 1071077.

supplementary crystallographic information

Comment

The title quinone (I) is closely related to its biologically active dimethyl analog 8,8-dimethylnaphtalene-1,4,5(8H)-trione (Araya-Maturana et al. 2002), which has been used as substrate for highly regioselective Diels-Alder cycloadditions with 2,4-hexadienol (Araya-Maturana et al. 1999) and for the synthesis of biologically active compounds (Rodríguez et al. 2007; Araya-Maturana et al. 2006; Mendoza et al. 2005). The 1H-NMR spectrum of the title compound exhibits equivalence of both ethyl groups, evidencing the existence of a symmetry plane in the molecule. It displays a single triplet for both methyl groups but two sextuplets for the methylene protons of the ethyl substituents; with couplings constant of 7.3 Hz and 15.4 Hz for the vecinal and geminal ones respectively. This evidences a rotational restriction for the chains. The non-equivalence of the signals of methylene protons in a non-chiral molecule could be envisoned supposing a rotational constrain exerted by the non bonding electrons of the near carbonyl group, avoiding the rotation of the bond between methylene groups and the quaternary carbon bearing the geminal ethyl groups. This hypotesis based on NMR solution data was tested for the present crystal structure.

The molecule I contains two six membered carbon rings fused, a p-quinone and a dienone core (Scheme 1). The dienone ring is highly planar mainly because of the insaturations in the carbon skeleton, while the quinonic framework displays a slightly distorted boat conformation, with one keto oxygen atom slightly out of the plane of the rest of the ring (see torsion angles). As described in the experimental section, the keto oxygen atom O3 is disordered over two positions of ocuppancy 0.80 and 0.20. placed at opposite sides of the molecular plane. This could be related to the equivalence of the methylene 1H-NMR signals in solution in the following way: the two conformations are probably very close (if not equal) in energy and rapid interconversion occurs in the NMR timescale. The situation is consistent with the observation of two positions for the keto oxygen atom in the crystal strcuture.

The crystal packing of the molecule shows weak bonded zigzag chains along the a cell axis, through C—H···O interactions, as depicted in Figure 2.

Experimental

Synthesis of I. The title compound was prepared by oxydation of the corresponding hydroquinone B; obtained by rearrangement of the furane parent compound A (Vega et al., 2008); with MnO2 as shown in Fig. 3. This procedure have been previously described for the 4,4-dimethyl analog (Castro et al., 1983). X-ray quality crystals were obtained through recrystallization from benzene.

Spectroscopic Details. 1H and 13C NMR spectra were acquired using a Bruker AVANCE DRX 300 spectrometer operating at 300.13 MHz (1H) or 75.47 MHz (13C). All measurements were carried out at a probe temperature of 300 K. 1HNMR (CDCl3): 0.62(6H, t, J = 7.5 Hz, 2X CH3); 1.70(2H, dq, J1 = 7.5 Hz, J2 = 13.8 Hz, 2X CHH,); 2.52(2H, dq, J1 = 7.5 Hz, J2 = 13.8 Hz, 2X CHH); 6.53(1H, d, J = 10.2 Hz); 6.58(1H, d, J = 10.2 HZ). 13CNMR(CDCl3): 8.42, 31.41, 48.13, 130.77, 132.79, 135.32, 135.57, 152.59, 154.51, 182.46, 183.13, 186.76.

Refinement

The hydrogen atoms positions were calculated after each cycle of refinement with SHELXL (Bruker,1999) using a riding model for each structure, with C—H distances in the range 0.96 to 1.00 Å. Uiso(H) values were set equal to 1.5Ueq of the parent carbon atom for methyl groups and 1.2Ueq for the others. During the final stages of refinement some disorder on the position of the oxo oxygen atom O3 was evident. It was modelled using two positions labelled i and ii with partial occupation of 0.80 and 0.20 respectively.

Figures

Fig. 1.

Fig. 1.

Molecular structure diagramas for I showing numbering scheme. Displacement ellipsoids are at 50% probability level and H atoms are shown as spheres of arbitrary radii. The less occupied disordered position (see experimental) for O3 (ii) was omitted for clarity.

Fig. 2.

Fig. 2.

Packing structure of I showing weak bonded chains along a.

Fig. 3.

Fig. 3.

Preparation of the title compound.

Crystal data

C14H14O3 F(000) = 488
Mr = 230.25 Dx = 1.254 Mg m3
Orthorhombic, Pna21 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2n Cell parameters from 4760 reflections
a = 12.7454 (8) Å θ = 24.9–50.1°
b = 10.8015 (7) Å µ = 0.09 mm1
c = 8.8598 (5) Å T = 150 K
V = 1219.72 (13) Å3 Block, red
Z = 4 0.49 × 0.48 × 0.46 mm

Data collection

Siemens SMART CCD area-detector diffractometer 2159 independent reflections
Radiation source: fine-focus sealed tube 2119 reflections with I > 2σ(I)
graphite Rint = 0.012
φ and ω scans θmax = 25.1°, θmin = 2.5°
Absorption correction: multi-scan (SADABS; Bruker, 1999) h = −15→15
Tmin = 0.958, Tmax = 0.961 k = −12→12
6581 measured reflections l = −10→10

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.099 H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0642P)2 + 0.3077P] where P = (Fo2 + 2Fc2)/3
2159 reflections (Δ/σ)max < 0.001
166 parameters Δρmax = 0.26 e Å3
15 restraints Δρmin = −0.15 e Å3

Special details

Experimental. 0.3 ° between frames and 10 secs exposure (per frame)
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
O1 0.05513 (10) 0.73723 (13) 0.2345 (2) 0.0588 (5)
C1 0.12734 (12) 0.80829 (16) 0.2581 (2) 0.0312 (4)
C2 0.23531 (13) 0.76647 (15) 0.24985 (19) 0.0298 (4)
H2 0.2495 0.6828 0.2240 0.036*
C3 0.31458 (12) 0.84252 (16) 0.2775 (2) 0.0298 (4)
H3 0.3834 0.8091 0.2713 0.036*
C4 0.30503 (12) 0.97639 (16) 0.3177 (2) 0.0264 (4)
C9 0.36538 (13) 1.04995 (17) 0.1926 (2) 0.0343 (4)
H9A 0.3713 1.1375 0.2244 0.041*
H9B 0.4373 1.0161 0.1842 0.041*
C10 0.31363 (17) 1.04521 (19) 0.0381 (2) 0.0428 (5)
H10A 0.3037 0.9587 0.0080 0.064*
H10B 0.3585 1.0871 −0.0358 0.064*
H10C 0.2454 1.0868 0.0426 0.064*
C11 0.36382 (13) 0.99525 (17) 0.4703 (2) 0.0341 (4)
H11A 0.4375 0.9680 0.4579 0.041*
H11B 0.3648 1.0847 0.4944 0.041*
C12 0.31612 (17) 0.92627 (19) 0.6018 (2) 0.0446 (5)
H12A 0.2431 0.9523 0.6151 0.067*
H12B 0.3559 0.9446 0.6938 0.067*
H12C 0.3185 0.8371 0.5818 0.067*
C4A 0.19164 (12) 1.01751 (15) 0.32711 (18) 0.0257 (3)
C5 0.17023 (12) 1.15035 (15) 0.3703 (2) 0.0302 (4)
O2 0.24055 (10) 1.22495 (10) 0.38734 (17) 0.0391 (3)
C6 0.05978 (14) 1.18870 (18) 0.3909 (3) 0.0440 (5)
H6 0.0453 1.2693 0.4283 0.053*
C7 −0.01884 (14) 1.11471 (18) 0.3592 (3) 0.0444 (5)
H7 −0.0887 1.1421 0.3759 0.053*
C8 −0.00040 (15) 0.9904 (2) 0.2982 (3) 0.0515 (6)
O3i −0.07253 (14) 0.93529 (18) 0.2268 (3) 0.0604 (6) 0.80
O3ii −0.0669 (5) 0.9189 (6) 0.3592 (11) 0.063 (2) 0.20
C8A 0.11022 (12) 0.94198 (15) 0.2963 (2) 0.0304 (4)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0288 (7) 0.0394 (7) 0.1082 (15) −0.0062 (6) −0.0007 (8) −0.0163 (8)
C1 0.0240 (8) 0.0302 (8) 0.0396 (10) −0.0027 (7) 0.0001 (7) 0.0002 (7)
C2 0.0308 (8) 0.0257 (8) 0.0329 (10) 0.0031 (6) 0.0016 (7) −0.0017 (7)
C3 0.0214 (7) 0.0342 (8) 0.0338 (9) 0.0049 (6) 0.0014 (7) 0.0024 (7)
C4 0.0215 (7) 0.0294 (8) 0.0284 (8) −0.0011 (6) 0.0010 (6) 0.0005 (7)
C9 0.0282 (8) 0.0360 (9) 0.0388 (10) −0.0042 (7) 0.0057 (7) 0.0027 (7)
C10 0.0515 (12) 0.0436 (11) 0.0332 (10) −0.0007 (9) 0.0069 (9) 0.0041 (8)
C11 0.0287 (8) 0.0394 (9) 0.0341 (9) 0.0005 (7) −0.0061 (7) −0.0012 (8)
C12 0.0541 (12) 0.0486 (11) 0.0311 (10) 0.0022 (9) −0.0036 (9) 0.0016 (9)
C4A 0.0235 (7) 0.0284 (8) 0.0251 (8) 0.0014 (6) −0.0006 (6) 0.0021 (6)
C5 0.0325 (8) 0.0293 (8) 0.0288 (8) 0.0035 (7) −0.0009 (7) 0.0004 (7)
O2 0.0424 (7) 0.0303 (6) 0.0446 (8) −0.0047 (5) −0.0031 (6) −0.0033 (6)
C6 0.0392 (10) 0.0339 (9) 0.0589 (13) 0.0110 (8) 0.0016 (10) −0.0084 (10)
C7 0.0287 (9) 0.0454 (11) 0.0591 (12) 0.0122 (8) 0.0028 (9) −0.0022 (9)
C8 0.0220 (8) 0.0379 (9) 0.0946 (17) 0.0012 (7) 0.0008 (10) −0.0040 (11)
O3i 0.0286 (9) 0.0545 (11) 0.0980 (17) 0.0031 (8) −0.0155 (11) −0.0103 (12)
O3ii 0.016 (3) 0.050 (4) 0.122 (7) −0.006 (3) 0.012 (4) −0.032 (5)
C8A 0.0219 (8) 0.0308 (8) 0.0385 (9) 0.0031 (6) 0.0008 (7) 0.0020 (7)

Geometric parameters (Å, °)

O1—C1 1.217 (2) C11—H11A 0.9900
C1—C2 1.450 (2) C11—H11B 0.9900
C1—C8A 1.499 (2) C12—H12A 0.9800
C2—C3 1.325 (2) C12—H12B 0.9800
C2—H2 0.9500 C12—H12C 0.9800
C3—C4 1.494 (2) C4A—C8A 1.348 (2)
C3—H3 0.9500 C4A—C5 1.510 (2)
C4—C4A 1.514 (2) C5—O2 1.215 (2)
C4—C11 1.559 (2) C5—C6 1.479 (2)
C4—C9 1.566 (2) C6—C7 1.312 (3)
C9—C10 1.520 (3) C6—H6 0.9500
C9—H9A 0.9900 C7—C8 1.467 (3)
C9—H9B 0.9900 C7—H7 0.9500
C10—H10A 0.9800 C8—O3i 1.264 (3)
C10—H10B 0.9800 C8—O3ii 1.267 (3)
C10—H10C 0.9800 C8—C8A 1.504 (2)
C11—C12 1.511 (3)
O1—C1—C2 120.84 (16) C12—C11—H11B 108.7
O1—C1—C8A 122.44 (15) C4—C11—H11B 108.7
C2—C1—C8A 116.72 (14) H11A—C11—H11B 107.6
C3—C2—C1 121.40 (15) C11—C12—H12A 109.5
C3—C2—H2 119.3 C11—C12—H12B 109.5
C1—C2—H2 119.3 H12A—C12—H12B 109.5
C2—C3—C4 125.59 (15) C11—C12—H12C 109.5
C2—C3—H3 117.2 H12A—C12—H12C 109.5
C4—C3—H3 117.2 H12B—C12—H12C 109.5
C3—C4—C4A 112.01 (13) C8A—C4A—C5 119.17 (14)
C3—C4—C11 107.09 (15) C8A—C4A—C4 123.10 (14)
C4A—C4—C11 111.88 (13) C5—C4A—C4 117.72 (13)
C3—C4—C9 106.41 (14) O2—C5—C6 120.09 (15)
C4A—C4—C9 111.04 (13) O2—C5—C4A 121.91 (14)
C11—C4—C9 108.14 (13) C6—C5—C4A 118.00 (14)
C10—C9—C4 114.02 (15) C7—C6—C5 122.00 (16)
C10—C9—H9A 108.7 C7—C6—H6 119.0
C4—C9—H9A 108.7 C5—C6—H6 119.0
C10—C9—H9B 108.7 C6—C7—C8 120.96 (16)
C4—C9—H9B 108.7 C6—C7—H7 119.5
H9A—C9—H9B 107.6 C8—C7—H7 119.5
C9—C10—H10A 109.5 O3i—C8—O3ii 56.0 (4)
C9—C10—H10B 109.5 O3i—C8—C7 119.90 (18)
H10A—C10—H10B 109.5 O3ii—C8—C7 107.1 (4)
C9—C10—H10C 109.5 O3i—C8—C8A 120.9 (2)
H10A—C10—H10C 109.5 O3ii—C8—C8A 114.8 (4)
H10B—C10—H10C 109.5 C7—C8—C8A 118.20 (17)
C12—C11—C4 114.25 (14) C4A—C8A—C1 121.11 (14)
C12—C11—H11A 108.7 C4A—C8A—C8 120.61 (15)
C4—C11—H11A 108.7 C1—C8A—C8 118.27 (15)
O1—C1—C2—C3 −178.98 (19) C4—C4A—C5—C6 −175.48 (16)
C8A—C1—C2—C3 1.2 (2) O2—C5—C6—C7 173.1 (2)
C1—C2—C3—C4 −0.7 (3) C4A—C5—C6—C7 −6.5 (3)
C2—C3—C4—C4A 1.2 (3) C5—C6—C7—C8 −1.3 (3)
C2—C3—C4—C11 124.22 (18) C6—C7—C8—O3i −158.7 (3)
C2—C3—C4—C9 −120.31 (19) C6—C7—C8—O3ii 141.2 (5)
C3—C4—C9—C10 68.10 (19) C6—C7—C8—C8A 9.7 (3)
C4A—C4—C9—C10 −54.0 (2) C5—C4A—C8A—C1 −177.87 (16)
C11—C4—C9—C10 −177.13 (15) C4—C4A—C8A—C1 3.4 (3)
C3—C4—C11—C12 −64.03 (18) C5—C4A—C8A—C8 2.6 (3)
C4A—C4—C11—C12 59.1 (2) C4—C4A—C8A—C8 −176.14 (17)
C9—C4—C11—C12 −178.34 (15) O1—C1—C8A—C4A 177.64 (19)
C3—C4—C4A—C8A −2.6 (2) C2—C1—C8A—C4A −2.6 (2)
C11—C4—C4A—C8A −122.82 (18) O1—C1—C8A—C8 −2.9 (3)
C9—C4—C4A—C8A 116.25 (18) C2—C1—C8A—C8 176.95 (18)
C3—C4—C4A—C5 178.65 (16) O3i—C8—C8A—C4A 157.9 (2)
C11—C4—C4A—C5 58.39 (19) O3ii—C8—C8A—C4A −138.3 (5)
C9—C4—C4A—C5 −62.53 (18) C7—C8—C8A—C4A −10.3 (3)
C8A—C4A—C5—O2 −173.95 (17) O3i—C8—C8A—C1 −21.6 (3)
C4—C4A—C5—O2 4.9 (2) O3ii—C8—C8A—C1 42.2 (5)
C8A—C4A—C5—C6 5.7 (3) C7—C8—C8A—C1 170.2 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C3—H3···O1i 0.95 2.27 3.207 (2) 169
C9—H9A···O2 0.99 2.40 3.014 (2) 120
C11—H11B···O2 0.99 2.39 3.027 (2) 122

Symmetry codes: (i) x+1/2, −y+3/2, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GW2058).

References

  1. Araya-Maturana, R., Cardona, W., Cassels, B. K., Delgado-Castro, T., Soto-Delgado, J., Pessoa-Mahana, H., Weiss-López, B., Pavani, M. & Ferreira, J. (2006). Bioorg. Med. Chem.14, 4664–4669. [DOI] [PubMed]
  2. Araya-Maturana, R., Cassels, B. K., Delgado-Castro, T., Valderrama, J. A. & Weiss-Lopez, B. (1999). Tetrahedron, 55, 637–648.
  3. Araya-Maturana, R., Delgado-Castro, T., Garate, M., Ferreira, J., Pavani, M., Pessoa-Mahana, H. & Cassels, B. K. (2002). Bioorg. Med. Chem.10, 3057–3060. [DOI] [PubMed]
  4. Bruker (1999). SAINT-NT Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Bruker (2001). SMART-NT Bruker AXS Inc., Madison, Wisconsin, USA.
  6. Castro, C. G., Santos, J. G., Valcarce, J. C. & Valderrama, J. A. (1983). J. Org. Chem.48, 3026–3029.
  7. Mendoza, L., Araya-Maturana, R., Cardona, W., Delgado-Castro, T., García, C., Lagos, C. & Cotoras, M. (2005). J. Agric. Food Chem 53, 10080–10084. [DOI] [PubMed]
  8. Rodríguez, J., Olea-Azar, C., Cavieres, C., Norambuena, E., Delgado-Castro, T., Soto-Delgado, J. & Araya-Maturana, R. (2007). Bioorg. Med. Chem.15, 7058–7065. [DOI] [PubMed]
  9. Sheldrick, G. M. (2008). Acta Cryst A64, 112–122. [DOI] [PubMed]
  10. Vega, A., Ramírez-Rodríguez, O., Martínez-Cifuentes, M., Ibañez, A. & Araya-Maturana, R. (2008). Acta Cryst. E64, o2329. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809001755/gw2058sup1.cif

e-65-0o345-sup1.cif (18.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809001755/gw2058Isup2.hkl

e-65-0o345-Isup2.hkl (106.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES