Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Jan 8;65(Pt 2):m137. doi: 10.1107/S1600536808043614

catena-Poly[[aqua­trimethyl­tin(IV)]-{[trimethyl­tin(IV)]-μ3-thio­phene-2,5-dicarboxyl­ato}]

Sheng-Xiang Yang a,*, Yue-Zhong Li a, Kun Jiang a
PMCID: PMC2968262  PMID: 21581753

Abstract

In the title compound, [Sn2(CH3)6(C6H2O4S)(H2O)]n, each of the two crystallographically independent Sn atoms exhibits a distorted trigonal–bipyramidal coordination geometry formed by two O and three C atoms. The coordinated water mol­ecule plays an important role in crystal packing consolidation via O—H⋯O hydrogen bonding.

Related literature

For related structures, see: Prabusankar & Murugavel (2004); Bhandari et al. (1998); Ma et al. (2006). graphic file with name e-65-0m137-scheme1.jpg

Experimental

Crystal data

  • [Sn2(CH3)6(C6H2O4S)(H2O)]

  • M r = 515.74

  • Monoclinic, Inline graphic

  • a = 7.2761 (16) Å

  • b = 10.467 (2) Å

  • c = 12.894 (3) Å

  • β = 102.768 (2)°

  • V = 957.7 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.73 mm−1

  • T = 298 (2) K

  • 0.40 × 0.30 × 0.22 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.408, T max = 0.585 (expected range = 0.383–0.549)

  • 4866 measured reflections

  • 3204 independent reflections

  • 2950 reflections with I > 2σ(I)

  • R int = 0.024

Refinement

  • R[F 2 > 2σ(F 2)] = 0.028

  • wR(F 2) = 0.067

  • S = 1.03

  • 3204 reflections

  • 193 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.41 e Å−3

  • Absolute structure: Flack (1983), 1631 Friedel pairs

  • Flack parameter: −0.06 (3)

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808043614/cv2496sup1.cif

e-65-0m137-sup1.cif (17.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808043614/cv2496Isup2.hkl

e-65-0m137-Isup2.hkl (157.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Sn1—C9 2.114 (7)
Sn1—C7 2.117 (7)
Sn1—C8 2.120 (8)
Sn1—O1 2.135 (5)
Sn1—O2i 2.641 (5)
Sn2—C10 2.108 (7)
Sn2—C12 2.108 (7)
Sn2—C11 2.114 (7)
Sn2—O3 2.178 (4)
Sn2—O5 2.495 (5)

Symmetry code: (i) Inline graphic.

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H1⋯O3ii 0.85 (8) 2.38 (8) 3.050 (7) 136 (7)
O5—H2⋯O4iii 0.85 (7) 1.98 (8) 2.765 (6) 153 (7)

Symmetry codes: (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

The authors acknowledge the support of the National Natural Science Foundation of Huai Nan Union University (No. X051040).

supplementary crystallographic information

Comment

Organotin complexes are attracting more and more attention because of their considerable structural diversity and interesting topologies (Prabusankar et al., 2004). From the coordinated viewpoint, those dicarboxylate ligands with additional donor atoms, has been revealed to help the construction of interesting topologies (Bhandari et al., 1998). Herein, we report the structure of the title complex, (I).

The title compound (Fig.1) forms an extended one-dimensional chain structure along the b axis arising from Sn—O bridges to ligands. The Sn1 atom has distorted trigonal-bipyramidal geometry, with atoms O1 and O2 in axial positions [O1—Sn1—O2(1 - x, y + 1/2, 1 - z) = 172.06 (17) °] and the C atoms of the three methyl groups in equatorial positions. Associated with the sum of the angles subtended at the Sn1 in the equatorial plane is 357.9 (4) °, indicating approximate coplanarity for these atoms; and the Sn1—O1 distance 2.135 (5) Å and Sn1—O2i distance 2.641 (5) Å (Table 1), are close to the reported values for organotin compounds (Ma et al., 2006). The environment of the Sn2 atom is approximate to Sn1.

Experimental

The reaction was carried out under nitrogen atmosphere. Thiophenn-2,5-dicarboxylic acid (1 mmol) and sodium ethoxide (2 mmol) were added to a stirred solution of benzene (30 ml) in a Schlenk flask and stirred for 0.5 h. Trimethyltin chloride (2 mmol) was then added to the reactor and the reaction mixture was stirred for 12 h at room temperature. The resulting clear solution was evaporated under vacuum. The product was crystallized from dichloromethane to yield colourless blocks of compound (yield 82%. m.p.463k). Anal. Calcd (%) for C12H22O5SSn2 (Mr = 515.74): C, 27.94; H, 4.30; Found (%): C, 27.65; H, 4.57.

Refinement

C-bound H atoms were geometrically positioned [C–H 0.93–0.96 Å] and treated as riding, with Uiso(H) = 1.2–1.5Ueq(C). Atoms H1 and H2 were located on a difference Fourier map and refined with bond restraints O–H=0.85 (7) Å and constrained Uiso(H) = 1.1Ueq(O).

Figures

Fig. 1.

Fig. 1.

A portion of the polymeric chain of the title compound showing the atomic numbering and 30% probability displacement ellipsoids.

Fig. 2.

Fig. 2.

One-dimensional polymeric chain in the title compound.

Crystal data

[Sn2(CH3)6(C6H2O4S)(H2O)] F(000) = 500
Mr = 515.74 Dx = 1.788 Mg m3
Monoclinic, P21 Mo Kα radiation, λ = 0.71073 Å
a = 7.2761 (16) Å Cell parameters from 3167 reflections
b = 10.467 (2) Å θ = 2.5–27.3°
c = 12.894 (3) Å µ = 2.73 mm1
β = 102.768 (2)° T = 298 K
V = 957.7 (4) Å3 Block, colourless
Z = 2 0.40 × 0.30 × 0.22 mm

Data collection

Bruker SMART CCD area-detector diffractometer 3204 independent reflections
Radiation source: fine-focus sealed tube 2950 reflections with I > 2σ(I)
graphite Rint = 0.024
φ and ω scans θmax = 25.0°, θmin = 1.6°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −7→8
Tmin = 0.408, Tmax = 0.585 k = −12→12
4866 measured reflections l = −14→15

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.028 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.067 w = 1/[σ2(Fo2) + (0.0298P)2 + 0.4614P] where P = (Fo2 + 2Fc2)/3
S = 1.03 (Δ/σ)max = 0.001
3204 reflections Δρmax = 0.40 e Å3
193 parameters Δρmin = −0.41 e Å3
1 restraint Absolute structure: Flack (1983), 1631 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: −0.06 (3)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Sn1 0.40954 (6) 0.66275 (4) 0.52089 (3) 0.05596 (13)
Sn2 0.29616 (5) −0.21300 (4) 0.94966 (3) 0.04704 (11)
O1 0.2935 (8) 0.5249 (5) 0.6105 (4) 0.0697 (13)
O2 0.4490 (8) 0.3555 (5) 0.5684 (4) 0.0712 (13)
O3 0.2928 (6) −0.0330 (4) 0.8646 (3) 0.0549 (11)
O4 0.0302 (6) 0.0281 (5) 0.9120 (3) 0.0620 (12)
O5 0.3171 (8) −0.4236 (5) 1.0422 (5) 0.0697 (14)
S1 0.3024 (2) 0.17295 (16) 0.71215 (11) 0.0493 (3)
C1 0.3378 (10) 0.4063 (7) 0.6153 (5) 0.0571 (16)
C2 0.2486 (8) 0.3306 (5) 0.6871 (4) 0.0463 (14)
C3 0.1297 (10) 0.3741 (7) 0.7489 (6) 0.0668 (19)
H3 0.0850 0.4575 0.7468 0.080*
C4 0.0833 (9) 0.2787 (8) 0.8154 (5) 0.0638 (16)
H4 0.0038 0.2919 0.8618 0.077*
C5 0.1680 (8) 0.1643 (7) 0.8045 (4) 0.0463 (12)
C6 0.1558 (8) 0.0462 (6) 0.8644 (4) 0.0476 (14)
C7 0.2903 (11) 0.5827 (9) 0.3703 (5) 0.079 (2)
H7A 0.3624 0.5094 0.3586 0.118*
H7B 0.2918 0.6451 0.3159 0.118*
H7C 0.1627 0.5574 0.3681 0.118*
C8 0.2492 (14) 0.8103 (8) 0.5708 (8) 0.097 (3)
H8A 0.1767 0.7757 0.6181 0.145*
H8B 0.1657 0.8470 0.5099 0.145*
H8C 0.3324 0.8752 0.6072 0.145*
C9 0.6959 (10) 0.6383 (9) 0.5970 (6) 0.080 (2)
H9A 0.7046 0.5871 0.6597 0.119*
H9B 0.7523 0.7202 0.6166 0.119*
H9C 0.7610 0.5964 0.5495 0.119*
C10 0.0317 (9) −0.2808 (8) 0.8666 (6) 0.0686 (19)
H10A −0.0630 −0.2177 0.8689 0.103*
H10B 0.0016 −0.3582 0.8991 0.103*
H10C 0.0361 −0.2974 0.7940 0.103*
C11 0.5359 (11) −0.2714 (8) 0.8945 (7) 0.084 (3)
H11A 0.4987 −0.3313 0.8374 0.125*
H11B 0.6248 −0.3110 0.9516 0.125*
H11C 0.5931 −0.1982 0.8696 0.125*
C12 0.3463 (10) −0.1258 (7) 1.1007 (5) 0.0656 (19)
H12A 0.2520 −0.0619 1.1015 0.098*
H12B 0.4686 −0.0867 1.1156 0.098*
H12C 0.3411 −0.1892 1.1538 0.098*
H1 0.405 (12) −0.434 (8) 1.097 (6) 0.079*
H2 0.233 (11) −0.442 (8) 1.076 (6) 0.079*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Sn1 0.0634 (3) 0.0477 (2) 0.0566 (2) 0.0046 (2) 0.0130 (2) 0.0066 (2)
Sn2 0.03417 (18) 0.0448 (2) 0.0646 (2) 0.00064 (19) 0.01612 (16) 0.0085 (2)
O1 0.092 (4) 0.042 (3) 0.081 (3) 0.010 (3) 0.033 (3) 0.019 (2)
O2 0.099 (4) 0.052 (3) 0.073 (3) 0.003 (3) 0.041 (3) 0.002 (2)
O3 0.051 (2) 0.050 (2) 0.070 (3) 0.013 (2) 0.026 (2) 0.018 (2)
O4 0.051 (3) 0.066 (3) 0.075 (3) 0.009 (2) 0.028 (2) 0.014 (2)
O5 0.057 (3) 0.059 (3) 0.099 (4) −0.003 (2) 0.029 (3) 0.023 (3)
S1 0.0592 (9) 0.0388 (8) 0.0543 (7) 0.0041 (7) 0.0223 (7) 0.0034 (7)
C1 0.065 (4) 0.054 (4) 0.050 (3) 0.002 (3) 0.008 (3) 0.007 (3)
C2 0.049 (3) 0.041 (3) 0.047 (3) 0.005 (2) 0.007 (3) 0.006 (2)
C3 0.069 (5) 0.047 (4) 0.087 (5) 0.019 (3) 0.022 (4) 0.016 (3)
C4 0.066 (4) 0.055 (4) 0.078 (4) 0.016 (4) 0.034 (3) 0.008 (4)
C5 0.042 (3) 0.049 (3) 0.049 (3) 0.007 (3) 0.011 (2) 0.002 (3)
C6 0.040 (3) 0.051 (4) 0.053 (3) 0.004 (3) 0.015 (3) 0.003 (3)
C7 0.067 (5) 0.098 (7) 0.064 (4) −0.020 (4) 0.000 (4) 0.004 (4)
C8 0.125 (8) 0.051 (5) 0.135 (8) 0.011 (5) 0.073 (7) 0.012 (5)
C9 0.070 (5) 0.086 (6) 0.073 (4) −0.002 (4) −0.003 (4) −0.002 (4)
C10 0.047 (4) 0.075 (5) 0.080 (4) −0.008 (3) 0.004 (3) −0.004 (4)
C11 0.071 (5) 0.064 (5) 0.133 (7) 0.024 (4) 0.059 (5) 0.025 (5)
C12 0.060 (4) 0.059 (4) 0.071 (4) −0.005 (3) −0.001 (3) 0.011 (3)

Geometric parameters (Å, °)

Sn1—C9 2.114 (7) C4—C5 1.368 (10)
Sn1—C7 2.117 (7) C4—H4 0.9300
Sn1—C8 2.120 (8) C5—C6 1.470 (9)
Sn1—O1 2.135 (5) C7—H7A 0.9600
Sn1—O2i 2.641 (5) C7—H7B 0.9600
Sn2—C10 2.108 (7) C7—H7C 0.9600
Sn2—C12 2.108 (7) C8—H8A 0.9600
Sn2—C11 2.114 (7) C8—H8B 0.9600
Sn2—O3 2.178 (4) C8—H8C 0.9600
Sn2—O5 2.495 (5) C9—H9A 0.9600
O1—C1 1.282 (9) C9—H9B 0.9600
O2—C1 1.233 (8) C9—H9C 0.9600
O3—C6 1.296 (7) C10—H10A 0.9600
O4—C6 1.223 (6) C10—H10B 0.9600
O5—H1 0.85 (8) C10—H10C 0.9600
O5—H2 0.85 (7) C11—H11A 0.9600
S1—C5 1.702 (5) C11—H11B 0.9600
S1—C2 1.711 (6) C11—H11C 0.9600
C1—C2 1.474 (9) C12—H12A 0.9600
C2—C3 1.376 (8) C12—H12B 0.9600
C3—C4 1.405 (10) C12—H12C 0.9600
C3—H3 0.9300
C9—Sn1—C7 122.7 (3) C6—C5—S1 121.5 (5)
C9—Sn1—C8 120.0 (4) O4—C6—O3 124.0 (6)
C7—Sn1—C8 115.2 (4) O4—C6—C5 122.2 (6)
C9—Sn1—O1 97.7 (3) O3—C6—C5 113.8 (5)
C7—Sn1—O1 95.6 (3) Sn1—C7—H7A 109.5
C8—Sn1—O1 91.0 (2) Sn1—C7—H7B 109.5
C9—Sn1—O2i 81.7 (3) H7A—C7—H7B 109.5
C7—Sn1—O2i 91.3 (2) Sn1—C7—H7C 109.5
C8—Sn1—O2i 82.5 (3) H7A—C7—H7C 109.5
O1—Sn1—O2i 172.06 (17) H7B—C7—H7C 109.5
C10—Sn2—C12 124.6 (3) Sn1—C8—H8A 109.5
C10—Sn2—C11 117.4 (4) Sn1—C8—H8B 109.5
C12—Sn2—C11 116.7 (3) H8A—C8—H8B 109.5
C10—Sn2—O3 97.4 (3) Sn1—C8—H8C 109.5
C12—Sn2—O3 94.1 (2) H8A—C8—H8C 109.5
C11—Sn2—O3 89.9 (2) H8B—C8—H8C 109.5
C10—Sn2—O5 84.1 (3) Sn1—C9—H9A 109.5
C12—Sn2—O5 87.8 (2) Sn1—C9—H9B 109.5
C11—Sn2—O5 86.4 (2) H9A—C9—H9B 109.5
O3—Sn2—O5 176.36 (17) Sn1—C9—H9C 109.5
C1—O1—Sn1 123.8 (4) H9A—C9—H9C 109.5
C6—O3—Sn2 118.5 (4) H9B—C9—H9C 109.5
Sn2—O5—H1 118 (6) Sn2—C10—H10A 109.5
Sn2—O5—H2 118 (6) Sn2—C10—H10B 109.5
H1—O5—H2 92 (7) H10A—C10—H10B 109.5
C5—S1—C2 92.3 (3) Sn2—C10—H10C 109.5
O2—C1—O1 125.4 (6) H10A—C10—H10C 109.5
O2—C1—C2 120.3 (6) H10B—C10—H10C 109.5
O1—C1—C2 114.2 (6) Sn2—C11—H11A 109.5
C3—C2—C1 127.4 (6) Sn2—C11—H11B 109.5
C3—C2—S1 110.9 (4) H11A—C11—H11B 109.5
C1—C2—S1 121.5 (5) Sn2—C11—H11C 109.5
C2—C3—C4 112.6 (6) H11A—C11—H11C 109.5
C2—C3—H3 123.7 H11B—C11—H11C 109.5
C4—C3—H3 123.7 Sn2—C12—H12A 109.5
C5—C4—C3 112.7 (6) Sn2—C12—H12B 109.5
C5—C4—H4 123.7 H12A—C12—H12B 109.5
C3—C4—H4 123.7 Sn2—C12—H12C 109.5
C4—C5—C6 126.9 (5) H12A—C12—H12C 109.5
C4—C5—S1 111.5 (5) H12B—C12—H12C 109.5

Symmetry codes: (i) −x+1, y+1/2, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O5—H1···O3ii 0.85 (8) 2.38 (8) 3.050 (7) 136 (7)
O5—H2···O4iii 0.85 (7) 1.98 (8) 2.765 (6) 153 (7)

Symmetry codes: (ii) −x+1, y−1/2, −z+2; (iii) −x, y−1/2, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2496).

References

  1. Bhandari, S., Mahon, M., McGinley, J., Molloy, K. & Roper, C. (1998). J. Chem. Soc. Dalton Trans. pp. 3425–3430.
  2. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  3. Ma, C., Li, J., Zhang, R. & Wang, D. (2006). J. Organomet. Chem.691, 1713–1721.
  4. Prabusankar, G. & Murugavel, R. (2004). Organometallics, 23, 5644–5647.
  5. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Siemens (1996). SMART and SAINT Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808043614/cv2496sup1.cif

e-65-0m137-sup1.cif (17.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808043614/cv2496Isup2.hkl

e-65-0m137-Isup2.hkl (157.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES