Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Jan 14;65(Pt 2):m180. doi: 10.1107/S1600536809000725

Bis(2,2′-bipyridine-κ2 N,N′)dichlorido­platinum(IV) dichloride monohydrate

Nam-Ho Kim a, In-Chul Hwang b, Kwang Ha a,*
PMCID: PMC2968269  PMID: 21581784

Abstract

In the title complex, [PtCl2(C10H8N2)2]Cl2·H2O, the Pt4+ ion is six-coordinated in a distorted octa­hedral environment by four N atoms from the two 2,2′-bipyridine ligands and two Cl atoms. As a result of the different trans influences of the N and Cl atoms, the Pt—N bonds trans to the Cl atom are slightly longer than those trans to the N atom. The compound displays inter­molecular hydrogen bonding between the water mol­ecule and the Cl anions. There are inter­molecular π–π inter­actions between adjacent pyridine rings, with a centroid–centroid distance of 3.962 Å.

Related literature

For related literature, see: Hambley (1986); Hojjat Kashani et al. (2008).graphic file with name e-65-0m180-scheme1.jpg

Experimental

Crystal data

  • [PtCl2(C10H8N2)2]Cl2·H2O

  • M r = 667.27

  • Orthorhombic, Inline graphic

  • a = 11.1345 (12) Å

  • b = 11.5867 (12) Å

  • c = 17.0873 (19) Å

  • V = 2204.5 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 6.87 mm−1

  • T = 293 (2) K

  • 0.35 × 0.20 × 0.15 mm

Data collection

  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000) T min = 0.251, T max = 0.357

  • 12649 measured reflections

  • 4462 independent reflections

  • 4284 reflections with I > 2σ(I)

  • R int = 0.017

Refinement

  • R[F 2 > 2σ(F 2)] = 0.016

  • wR(F 2) = 0.038

  • S = 0.84

  • 4462 reflections

  • 271 parameters

  • H-atom parameters constrained

  • Δρmax = 0.95 e Å−3

  • Δρmin = −0.53 e Å−3

  • Absolute structure: Flack (1983), 1901 Friedel pairs

  • Flack parameter: −0.006 (4)

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809000725/bt2846sup1.cif

e-65-0m180-sup1.cif (22.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809000725/bt2846Isup2.hkl

e-65-0m180-Isup2.hkl (218.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯Cl3i 1.033 2.21 3.150 (3) 149.79 (16)
O1—H1B⋯Cl4ii 0.924 2.31 3.139 (3) 149.3 (2)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

This work was supported by the Korea Research Foundation (2006–353-C00028).

supplementary crystallographic information

Comment

In the title complex, [PtCl2(C10H8N2)2]Cl2.H2O, the central Pt4+ ion is six-coordinated in a distorted octahedral environment by four N atoms from the two 2,2'-bipyridine ligands and two Cl atoms (Fig. 1). The main contributions to the distortion are the tight N—Pt—N chelate angles (80.33 (10)° and 80.30 (10)°), which result in non-linear trans axes (<Cl1—Pt1—N1 = 176.73 (7)°, <Cl2—Pt1—N4 = 176.91 (7)° and <N2—Pt1—N3 = 176.52 (10)°).

Because of the different trans influences of the N and Cl atoms, the Pt—N bonds trans to the Cl atom (lengths: 2.040 (2) and 2.037 (3) Å) are slightly longer than those trans to the N atom (lengths: 2.029 (2) and 2.028 (2) Å).

The compound displays intermolecular hydrogen bonding between the solvent H2O molecule and the Cl anions (Table 1). There is also an intermolecular π-π interaction between the pyridine ring containing N1 and the one containg N3 at 1/2+x,1/2-y,-z, with a centroid-centroid distance of 3.962 Å and with a dihedral angle between the ring planes of 20.3°.

Experimental

To a solution of K2PtCl6 (0.3068 g, 0.631 mmol) in H2O (20 ml) was added 2,2'-bipyridine (0.0971 g, 0.622 mmol) in MeOH (10 ml), and stirred for 2 h under heating. The formed precipitate was separated by filtration and washed with water and MeOH and dried under vacuum, to give a yellow powder (0.1185 g). Crystals suitable for X-ray analysis were obtained by slow evaporation from a CH2Cl2 solution.

Refinement

H atoms were positioned geometrically and allowed to ride on their respective parent atoms [C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C)]. The H atoms of the solvent H2O molecule were located from Fourier difference maps, but not refined.

Figures

Fig. 1.

Fig. 1.

The structure of the title compound, with displacement ellipsoids drawn at the 50% probability level for non-H atoms.

Crystal data

[PtCl2(C10H8N2)2]Cl2·H2O F(000) = 1280
Mr = 667.27 Dx = 2.011 Mg m3
Orthorhombic, P212121 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2ab Cell parameters from 958 reflections
a = 11.1345 (12) Å θ = 2.4–26.4°
b = 11.5867 (12) Å µ = 6.87 mm1
c = 17.0873 (19) Å T = 293 K
V = 2204.5 (4) Å3 Stick, colorless
Z = 4 0.35 × 0.20 × 0.15 mm

Data collection

Bruker SMART 1000 CCD diffractometer 4462 independent reflections
Radiation source: fine-focus sealed tube 4284 reflections with I > 2σ(I)
graphite Rint = 0.017
φ and ω scans θmax = 26.4°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Bruker, 2000) h = −12→13
Tmin = 0.251, Tmax = 0.357 k = −14→14
12649 measured reflections l = −21→16

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.016 H-atom parameters constrained
wR(F2) = 0.038 w = 1/[σ2(Fo2)] where P = (Fo2 + 2Fc2)/3
S = 0.84 (Δ/σ)max = 0.003
4462 reflections Δρmax = 0.95 e Å3
271 parameters Δρmin = −0.53 e Å3
0 restraints Absolute structure: Flack (1983), 1901 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: −0.006 (4)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Pt1 0.520023 (9) 0.241999 (9) 0.124231 (6) 0.02622 (4)
Cl1 0.35373 (7) 0.12668 (7) 0.10471 (5) 0.0410 (2)
Cl2 0.40172 (7) 0.40216 (7) 0.14570 (5) 0.0394 (2)
Cl3 0.36627 (9) 0.07710 (8) 0.54638 (6) 0.0517 (2)
Cl4 0.15636 (8) 0.59942 (8) 0.20502 (5) 0.0421 (2)
N1 0.6674 (2) 0.3407 (2) 0.14792 (15) 0.0272 (6)
N2 0.5239 (2) 0.2274 (2) 0.24255 (14) 0.0290 (5)
N3 0.5272 (2) 0.2554 (2) 0.00599 (14) 0.0288 (5)
N4 0.6210 (2) 0.1002 (2) 0.09926 (15) 0.0309 (6)
C1 0.7301 (3) 0.3999 (3) 0.0943 (2) 0.0340 (7)
H1 0.7110 0.3925 0.0416 0.041*
C2 0.8225 (3) 0.4716 (3) 0.1167 (2) 0.0389 (8)
H2 0.8644 0.5140 0.0794 0.047*
C3 0.8524 (3) 0.4801 (3) 0.1945 (2) 0.0413 (8)
H3 0.9159 0.5270 0.2099 0.050*
C4 0.7876 (3) 0.4185 (3) 0.2500 (2) 0.0364 (8)
H4 0.8078 0.4227 0.3027 0.044*
C5 0.6933 (3) 0.3516 (3) 0.22561 (18) 0.0284 (7)
C6 0.6124 (3) 0.2891 (3) 0.27847 (18) 0.0282 (7)
C7 0.6188 (3) 0.2940 (3) 0.35849 (19) 0.0391 (8)
H7 0.6792 0.3364 0.3827 0.047*
C8 0.5347 (3) 0.2355 (3) 0.4032 (2) 0.0415 (8)
H8 0.5378 0.2380 0.4575 0.050*
C9 0.4458 (3) 0.1728 (3) 0.3651 (2) 0.0452 (9)
H9 0.3886 0.1327 0.3940 0.054*
C10 0.4424 (3) 0.1702 (3) 0.2852 (2) 0.0399 (8)
H10 0.3827 0.1281 0.2601 0.048*
C11 0.4779 (3) 0.3413 (3) −0.0360 (2) 0.0386 (8)
H11 0.4407 0.4024 −0.0103 0.046*
C12 0.4818 (3) 0.3402 (3) −0.1165 (2) 0.0453 (9)
H12 0.4465 0.3996 −0.1450 0.054*
C13 0.5380 (3) 0.2508 (3) −0.15455 (19) 0.0413 (8)
H13 0.5409 0.2489 −0.2089 0.050*
C14 0.5907 (3) 0.1629 (3) −0.11082 (19) 0.0371 (8)
H14 0.6302 0.1024 −0.1356 0.045*
C15 0.5836 (3) 0.1666 (3) −0.03080 (19) 0.0294 (7)
C16 0.6334 (3) 0.0775 (3) 0.02149 (18) 0.0299 (7)
C17 0.6884 (3) −0.0219 (3) −0.0035 (2) 0.0404 (8)
H17 0.6942 −0.0385 −0.0566 0.048*
C18 0.7351 (3) −0.0971 (3) 0.0517 (2) 0.0444 (9)
H18 0.7734 −0.1644 0.0357 0.053*
C19 0.7249 (3) −0.0725 (3) 0.1296 (2) 0.0435 (8)
H19 0.7567 −0.1223 0.1669 0.052*
C20 0.6665 (3) 0.0280 (3) 0.1524 (2) 0.0366 (8)
H20 0.6589 0.0451 0.2054 0.044*
O1 0.0454 (3) 0.2475 (2) 0.37482 (18) 0.0807 (11)
H1A 0.0141 0.3103 0.4125 0.080*
H1B −0.0004 0.1831 0.3636 0.080*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Pt1 0.02736 (6) 0.02822 (6) 0.02310 (6) −0.00141 (5) −0.00187 (4) 0.00024 (5)
Cl1 0.0367 (4) 0.0447 (5) 0.0416 (5) −0.0117 (4) −0.0046 (3) −0.0014 (4)
Cl2 0.0400 (4) 0.0375 (4) 0.0408 (5) 0.0082 (4) −0.0011 (3) −0.0036 (3)
Cl3 0.0656 (6) 0.0536 (6) 0.0360 (5) −0.0087 (5) 0.0145 (4) −0.0081 (4)
Cl4 0.0430 (5) 0.0454 (5) 0.0379 (5) 0.0001 (4) −0.0017 (4) −0.0040 (4)
N1 0.0243 (13) 0.0257 (13) 0.0314 (16) −0.0014 (10) −0.0031 (11) 0.0011 (10)
N2 0.0319 (13) 0.0301 (13) 0.0251 (13) −0.0025 (14) 0.0013 (10) 0.0010 (10)
N3 0.0294 (13) 0.0332 (13) 0.0238 (12) 0.0022 (16) −0.0056 (9) 0.0013 (10)
N4 0.0294 (14) 0.0309 (14) 0.0325 (15) −0.0022 (11) −0.0021 (11) −0.0006 (11)
C1 0.0361 (18) 0.0362 (18) 0.0297 (18) 0.0021 (15) 0.0030 (14) 0.0024 (14)
C2 0.0323 (17) 0.0387 (18) 0.046 (2) −0.0046 (13) 0.0074 (17) 0.0082 (17)
C3 0.0320 (18) 0.0377 (19) 0.054 (2) −0.0076 (15) −0.0029 (16) −0.0009 (16)
C4 0.0338 (18) 0.042 (2) 0.033 (2) −0.0010 (15) −0.0042 (14) −0.0032 (15)
C5 0.0288 (16) 0.0294 (16) 0.0271 (17) 0.0042 (13) −0.0025 (13) 0.0009 (13)
C6 0.0277 (16) 0.0301 (15) 0.0269 (16) 0.0028 (12) −0.0013 (12) −0.0002 (12)
C7 0.0398 (19) 0.0493 (19) 0.0281 (19) −0.0004 (15) −0.0020 (14) −0.0022 (15)
C8 0.050 (2) 0.050 (2) 0.0240 (16) 0.003 (2) 0.0016 (13) 0.0056 (14)
C9 0.058 (2) 0.0409 (19) 0.037 (2) −0.0088 (16) 0.0134 (18) 0.0074 (16)
C10 0.047 (2) 0.0370 (18) 0.035 (2) −0.0099 (16) 0.0033 (16) 0.0032 (14)
C11 0.044 (2) 0.0380 (17) 0.0336 (19) 0.0054 (17) −0.0062 (16) 0.0047 (14)
C12 0.051 (2) 0.0494 (19) 0.035 (2) 0.0019 (17) −0.0079 (18) 0.0104 (16)
C13 0.0481 (19) 0.052 (2) 0.0233 (15) 0.000 (3) −0.0028 (13) 0.0036 (15)
C14 0.0406 (19) 0.0441 (18) 0.0267 (19) −0.0010 (15) 0.0029 (15) −0.0038 (14)
C15 0.0268 (16) 0.0338 (17) 0.0277 (17) −0.0020 (13) −0.0035 (13) 0.0011 (13)
C16 0.0288 (17) 0.0327 (17) 0.0283 (18) −0.0023 (13) −0.0017 (13) −0.0008 (13)
C17 0.045 (2) 0.039 (2) 0.037 (2) 0.0053 (17) 0.0047 (15) −0.0058 (15)
C18 0.044 (2) 0.038 (2) 0.051 (3) 0.0120 (17) 0.0043 (17) −0.0011 (17)
C19 0.0421 (19) 0.0395 (18) 0.049 (2) 0.0079 (15) −0.0068 (18) 0.0024 (19)
C20 0.0423 (19) 0.0386 (18) 0.0287 (18) −0.0012 (15) −0.0087 (15) 0.0029 (14)
O1 0.0528 (17) 0.084 (2) 0.106 (3) −0.0042 (15) −0.0045 (15) −0.043 (2)

Geometric parameters (Å, °)

Pt1—N3 2.028 (2) C7—H7 0.9300
Pt1—N2 2.029 (2) C8—C9 1.389 (5)
Pt1—N4 2.037 (3) C8—H8 0.9300
Pt1—N1 2.040 (2) C9—C10 1.366 (5)
Pt1—Cl2 2.3051 (8) C9—H9 0.9300
Pt1—Cl1 2.3076 (8) C10—H10 0.9300
N1—C1 1.341 (4) C11—C12 1.377 (5)
N1—C5 1.364 (4) C11—H11 0.9300
N2—C10 1.339 (4) C12—C13 1.375 (5)
N2—C6 1.364 (4) C12—H12 0.9300
N3—C11 1.344 (4) C13—C14 1.393 (5)
N3—C15 1.360 (4) C13—H13 0.9300
N4—C20 1.335 (4) C14—C15 1.370 (4)
N4—C16 1.361 (4) C14—H14 0.9300
C1—C2 1.377 (4) C15—C16 1.474 (4)
C1—H1 0.9300 C16—C17 1.373 (4)
C2—C3 1.373 (5) C17—C18 1.385 (5)
C2—H2 0.9300 C17—H17 0.9300
C3—C4 1.389 (5) C18—C19 1.367 (5)
C3—H3 0.9300 C18—H18 0.9300
C4—C5 1.370 (4) C19—C20 1.389 (4)
C4—H4 0.9300 C19—H19 0.9300
C5—C6 1.467 (4) C20—H20 0.9300
C6—C7 1.370 (4) O1—H1A 1.033
C7—C8 1.385 (5) O1—H1B 0.924
N3—Pt1—N2 176.52 (10) C7—C6—C5 124.2 (3)
N3—Pt1—N4 80.30 (10) C6—C7—C8 119.6 (3)
N2—Pt1—N4 97.47 (10) C6—C7—H7 120.2
N3—Pt1—N1 97.07 (10) C8—C7—H7 120.2
N2—Pt1—N1 80.33 (10) C7—C8—C9 118.7 (3)
N4—Pt1—N1 92.84 (9) C7—C8—H8 120.7
N3—Pt1—Cl2 96.85 (7) C9—C8—H8 120.7
N2—Pt1—Cl2 85.44 (7) C10—C9—C8 119.9 (3)
N4—Pt1—Cl2 176.91 (7) C10—C9—H9 120.1
N1—Pt1—Cl2 88.68 (7) C8—C9—H9 120.1
N3—Pt1—Cl1 86.10 (7) N2—C10—C9 121.0 (3)
N2—Pt1—Cl1 96.47 (7) N2—C10—H10 119.5
N4—Pt1—Cl1 86.88 (7) C9—C10—H10 119.5
N1—Pt1—Cl1 176.73 (7) N3—C11—C12 120.9 (3)
Cl2—Pt1—Cl1 91.76 (3) N3—C11—H11 119.5
C1—N1—C5 120.5 (3) C12—C11—H11 119.5
C1—N1—Pt1 124.8 (2) C13—C12—C11 119.6 (3)
C5—N1—Pt1 114.53 (19) C13—C12—H12 120.2
C10—N2—C6 120.3 (3) C11—C12—H12 120.2
C10—N2—Pt1 124.7 (2) C12—C13—C14 119.3 (3)
C6—N2—Pt1 114.83 (19) C12—C13—H13 120.3
C11—N3—C15 120.2 (3) C14—C13—H13 120.3
C11—N3—Pt1 124.9 (2) C15—C14—C13 119.2 (3)
C15—N3—Pt1 114.88 (19) C15—C14—H14 120.4
C20—N4—C16 120.3 (3) C13—C14—H14 120.4
C20—N4—Pt1 124.9 (2) N3—C15—C14 120.8 (3)
C16—N4—Pt1 114.6 (2) N3—C15—C16 115.1 (3)
N1—C1—C2 120.6 (3) C14—C15—C16 124.1 (3)
N1—C1—H1 119.7 N4—C16—C17 120.7 (3)
C2—C1—H1 119.7 N4—C16—C15 114.8 (3)
C3—C2—C1 119.5 (3) C17—C16—C15 124.5 (3)
C3—C2—H2 120.2 C16—C17—C18 118.9 (3)
C1—C2—H2 120.2 C16—C17—H17 120.6
C2—C3—C4 119.9 (3) C18—C17—H17 120.6
C2—C3—H3 120.0 C19—C18—C17 120.1 (3)
C4—C3—H3 120.0 C19—C18—H18 119.9
C5—C4—C3 118.7 (3) C17—C18—H18 119.9
C5—C4—H4 120.6 C18—C19—C20 119.1 (3)
C3—C4—H4 120.6 C18—C19—H19 120.4
N1—C5—C4 120.7 (3) C20—C19—H19 120.4
N1—C5—C6 115.0 (3) N4—C20—C19 120.8 (3)
C4—C5—C6 124.2 (3) N4—C20—H20 119.6
N2—C6—C7 120.6 (3) C19—C20—H20 119.6
N2—C6—C5 115.2 (3) H1A—O1—H1B 120.8
N3—Pt1—N1—C1 6.2 (3) C3—C4—C5—C6 −175.4 (3)
N2—Pt1—N1—C1 −176.1 (3) C10—N2—C6—C7 −0.4 (4)
N4—Pt1—N1—C1 86.8 (3) Pt1—N2—C6—C7 174.8 (2)
Cl2—Pt1—N1—C1 −90.5 (2) C10—N2—C6—C5 −177.7 (3)
N3—Pt1—N1—C5 −179.5 (2) Pt1—N2—C6—C5 −2.6 (3)
N2—Pt1—N1—C5 −1.9 (2) N1—C5—C6—N2 1.0 (4)
N4—Pt1—N1—C5 −99.0 (2) C4—C5—C6—N2 179.9 (3)
Cl2—Pt1—N1—C5 83.7 (2) N1—C5—C6—C7 −176.2 (3)
N4—Pt1—N2—C10 −91.0 (3) C4—C5—C6—C7 2.7 (5)
N1—Pt1—N2—C10 177.4 (3) N2—C6—C7—C8 0.2 (5)
Cl2—Pt1—N2—C10 87.9 (2) C5—C6—C7—C8 177.3 (3)
Cl1—Pt1—N2—C10 −3.3 (3) C6—C7—C8—C9 0.1 (5)
N4—Pt1—N2—C6 94.0 (2) C7—C8—C9—C10 −0.2 (5)
N1—Pt1—N2—C6 2.4 (2) C6—N2—C10—C9 0.3 (5)
Cl2—Pt1—N2—C6 −87.0 (2) Pt1—N2—C10—C9 −174.4 (3)
Cl1—Pt1—N2—C6 −178.28 (19) C8—C9—C10—N2 0.0 (5)
N4—Pt1—N3—C11 −178.1 (3) C15—N3—C11—C12 1.1 (5)
N1—Pt1—N3—C11 −86.4 (3) Pt1—N3—C11—C12 −176.5 (2)
Cl2—Pt1—N3—C11 3.1 (2) N3—C11—C12—C13 −0.8 (5)
Cl1—Pt1—N3—C11 94.4 (2) C11—C12—C13—C14 −0.3 (5)
N4—Pt1—N3—C15 4.2 (2) C12—C13—C14—C15 1.0 (5)
N1—Pt1—N3—C15 95.9 (2) C11—N3—C15—C14 −0.3 (4)
Cl2—Pt1—N3—C15 −174.61 (19) Pt1—N3—C15—C14 177.5 (2)
Cl1—Pt1—N3—C15 −83.3 (2) C11—N3—C15—C16 −179.7 (3)
N3—Pt1—N4—C20 178.5 (3) Pt1—N3—C15—C16 −1.8 (3)
N2—Pt1—N4—C20 1.2 (3) C13—C14—C15—N3 −0.7 (5)
N1—Pt1—N4—C20 81.8 (3) C13—C14—C15—C16 178.6 (3)
Cl1—Pt1—N4—C20 −94.9 (3) C20—N4—C16—C17 2.6 (5)
N3—Pt1—N4—C16 −6.0 (2) Pt1—N4—C16—C17 −173.2 (2)
N2—Pt1—N4—C16 176.7 (2) C20—N4—C16—C15 −177.5 (3)
N1—Pt1—N4—C16 −102.7 (2) Pt1—N4—C16—C15 6.8 (3)
Cl1—Pt1—N4—C16 80.5 (2) N3—C15—C16—N4 −3.3 (4)
C5—N1—C1—C2 0.8 (5) C14—C15—C16—N4 177.4 (3)
Pt1—N1—C1—C2 174.7 (2) N3—C15—C16—C17 176.6 (3)
N1—C1—C2—C3 1.6 (5) C14—C15—C16—C17 −2.7 (5)
C1—C2—C3—C4 −1.5 (5) N4—C16—C17—C18 −2.3 (5)
C2—C3—C4—C5 −1.0 (5) C15—C16—C17—C18 177.8 (3)
C1—N1—C5—C4 −3.4 (4) C16—C17—C18—C19 0.7 (5)
Pt1—N1—C5—C4 −177.9 (2) C17—C18—C19—C20 0.6 (5)
C1—N1—C5—C6 175.6 (3) C16—N4—C20—C19 −1.3 (5)
Pt1—N1—C5—C6 1.1 (3) Pt1—N4—C20—C19 174.0 (2)
C3—C4—C5—N1 3.4 (5) C18—C19—C20—N4 −0.3 (5)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H1A···Cl3i 1.033 2.21 3.150 (3) 149.79 (16)
O1—H1B···Cl4ii 0.924 2.31 3.139 (3) 149.3 (2)

Symmetry codes: (i) x−1/2, −y+1/2, −z+1; (ii) −x, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2846).

References

  1. Bruker (2000). SADABS, SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  3. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  4. Hambley, T. W. (1986). Acta Cryst. C42, 49–51.
  5. Hojjat Kashani, L., Amani, V., Yousefi, M. & Khavasi, H. R. (2008). Acta Cryst. E64, m905–m906. [DOI] [PMC free article] [PubMed]
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809000725/bt2846sup1.cif

e-65-0m180-sup1.cif (22.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809000725/bt2846Isup2.hkl

e-65-0m180-Isup2.hkl (218.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES