Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Jan 8;65(Pt 2):o241. doi: 10.1107/S1600536808044164

(E)-2-[(2-Amino-4,5-dibromo­phen­yl)imino­meth­yl]-6-methoxy­phenol

Zhan-Xian Li a, Hui Yang a, Ming Yu a, Qiu-Zhi Shi a, Ming-Ming Yu a,*
PMCID: PMC2968274  PMID: 21581858

Abstract

The title compound, C14H12Br2N2O2, was prepared from the condensation of 4,5-dibromo-1,2-phenyl­enediamine and 2-hydr­oxy-3-methoxy­benzaldehyde in methanol. The N=C double bond shows a trans conformation and the dihedral angle between the aromatic ring planes is 5.9 (4)°. In the crystal structure, there are intra­molecular O—H⋯N and N—H⋯N and inter­molecular N—H⋯O hydrogen bonds, the latter resulting in inversion dimers.

Related literature

For related literature on the design of ligands for polynuclear coordination complexes with novel magnetic properties, see: Fernández et al. (2001); Pardo et al. (2003); Yu et al. (2007). For the synthesis and structure of a related compound, see: Xia et al. (2007). graphic file with name e-65-0o241-scheme1.jpg

Experimental

Crystal data

  • C14H12Br2N2O2

  • M r = 400.08

  • Triclinic, Inline graphic

  • a = 6.9500 (4) Å

  • b = 7.4383 (4) Å

  • c = 14.7877 (10) Å

  • α = 100.351 (5)°

  • β = 97.218 (5)°

  • γ = 109.967 (3)°

  • V = 692.21 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 5.86 mm−1

  • T = 292 (3) K

  • 0.50 × 0.40 × 0.22 mm

Data collection

  • Bruker SMART 1K CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000) T min = 0.072, T max = 0.275

  • 6557 measured reflections

  • 3154 independent reflections

  • 2695 reflections with I > 2σ(I)

  • R int = 0.018

Refinement

  • R[F 2 > 2σ(F 2)] = 0.025

  • wR(F 2) = 0.071

  • S = 1.02

  • 3154 reflections

  • 190 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.60 e Å−3

  • Δρmin = −0.46 e Å−3

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808044164/hg2454sup1.cif

e-65-0o241-sup1.cif (16.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808044164/hg2454Isup2.hkl

e-65-0o241-Isup2.hkl (154.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯N1 0.82 1.88 2.608 (2) 147
N2—H2A⋯N1 0.84 (3) 2.39 (3) 2.756 (3) 107 (2)
N2—H2B⋯O1i 0.81 (3) 2.30 (3) 3.114 (3) 174.19

Symmetry code: (i) Inline graphic.

Acknowledgments

This work was supported by the Natural Science Foundation of China (grant No. 50873093).

supplementary crystallographic information

Comment

The design and synthesis of new ligands with the potential for forming polynuclear coordination complexes with novel magnetic properties is of current research interest (Pardo, et al., 2003; Yu, et al., 2007; Fernández,et al., 2001) and we report here the synthesis and crystal structure of the title complex (I).

The molecular structure of title compound is showing in Fig. 1. In the structure, there are intramolecular O—H···N, N—H···N and intermolecular N—H···O hydrogen bonds in the crystal lattice.

Experimental

The title compound was synthesized according to modified reported methods (Xia, et al., 2007). 1 mmol (265.9 mg) 4,5-dibromo-1,2-phenylenediamine and 1.1 mmol (167.4 mg) 2-hydroxy-3-methoxybenzaldehyde were dissolved in 30 ml solution of methanol, then refluxed for 2 h. The solution was cooled and filtered. Crystals suitable for X-ray diffraction analysis were obtained by slow evaporation at room temperature for 10 days.

Refinement

All H atoms were placed in geometrically calculated positions with C—H = 0.96 Å for methyl H atoms, C—H = 0.93 Å for aromatic H atoms and 0.82 Å for N—H. H atoms and were refined isotropic with Uiso(H) = 1.2Ueq(C) of parent atom using a riding model. The H atom of the hydroxy group was located from difference maps and refined with a distance restraint O—H = 0.82 (1) Å. Uiso(H) = 1.2Ueq(O).

Figures

Fig. 1.

Fig. 1.

A view of complex (I), showing 30% probability displacement ellipsoids and the atom-numbering scheme.

Fig. 2.

Fig. 2.

The crystal packing of title compound, viewed along the a axis. Hydrogen bonds are shown as dashed lines.

Crystal data

C14H12Br2N2O2 Z = 2
Mr = 400.08 F(000) = 392
Triclinic, P1 Dx = 1.919 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 6.9500 (4) Å Cell parameters from 3154 reflections
b = 7.4383 (4) Å θ = 1.4–27.6°
c = 14.7877 (10) Å µ = 5.86 mm1
α = 100.351 (5)° T = 292 K
β = 97.218 (5)° Block, colourless
γ = 109.967 (3)° 0.50 × 0.40 × 0.22 mm
V = 692.21 (8) Å3

Data collection

Bruker SMART 1K CCD area-detector diffractometer 3154 independent reflections
Radiation source: fine-focus sealed tube 2695 reflections with I > 2σ(I)
graphite Rint = 0.018
φ and ω scans θmax = 27.6°, θmin = 1.4°
Absorption correction: multi-scan (SADABS; Bruker, 2000) h = −9→8
Tmin = 0.072, Tmax = 0.275 k = −9→9
6557 measured reflections l = −12→19

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.025 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.071 w = 1/[σ2(Fo2) + (0.0379P)2 + 0.3429P] where P = (Fo2 + 2Fc2)/3
S = 1.02 (Δ/σ)max < 0.001
3154 reflections Δρmax = 0.60 e Å3
190 parameters Δρmin = −0.46 e Å3
0 restraints Extinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0093 (11)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 0.04544 (4) 0.75243 (4) 0.476886 (17) 0.05025 (11)
Br2 0.48830 (4) 0.77615 (4) 0.397735 (17) 0.04846 (10)
O2 −0.2559 (2) 0.1156 (3) −0.08390 (11) 0.0429 (4)
H2 −0.2248 0.1805 −0.0295 0.064*
O1 −0.3008 (3) −0.0863 (3) −0.25537 (11) 0.0458 (4)
N1 −0.0125 (3) 0.3290 (3) 0.07626 (12) 0.0310 (4)
C9 0.0126 (3) 0.4297 (3) 0.17005 (14) 0.0287 (4)
C5 0.2944 (3) 0.2066 (4) −0.09082 (17) 0.0378 (5)
H5 0.4265 0.2712 −0.0525 0.045*
N2 −0.3662 (3) 0.2994 (3) 0.14823 (17) 0.0429 (5)
C2 −0.0994 (3) 0.0097 (3) −0.20552 (14) 0.0318 (4)
C8 0.1432 (3) 0.3179 (3) 0.04022 (15) 0.0334 (5)
H8 0.2770 0.3794 0.0771 0.040*
C14 −0.1716 (3) 0.4098 (3) 0.20455 (15) 0.0314 (4)
C6 0.1178 (3) 0.2131 (3) −0.05579 (14) 0.0298 (4)
C10 0.2057 (3) 0.5418 (3) 0.22926 (15) 0.0316 (4)
H10 0.3274 0.5541 0.2067 0.038*
C7 −0.0805 (3) 0.1144 (3) −0.11378 (14) 0.0298 (4)
C13 −0.1544 (3) 0.5092 (3) 0.29647 (16) 0.0351 (5)
H13 −0.2750 0.5003 0.3195 0.042*
C3 0.0768 (4) 0.0078 (3) −0.23831 (16) 0.0375 (5)
H3 0.0639 −0.0598 −0.2995 0.045*
C1 −0.3285 (4) −0.1801 (4) −0.35196 (16) 0.0471 (6)
H1A −0.4751 −0.2415 −0.3792 0.071*
H1B −0.2670 −0.2781 −0.3566 0.071*
H1C −0.2621 −0.0836 −0.3849 0.071*
C11 0.2199 (3) 0.6352 (3) 0.32091 (15) 0.0320 (4)
C12 0.0382 (4) 0.6204 (3) 0.35391 (15) 0.0329 (4)
C4 0.2745 (4) 0.1064 (4) −0.18074 (17) 0.0403 (5)
H4 0.3927 0.1039 −0.2035 0.048*
H2A −0.360 (4) 0.212 (4) 0.105 (2) 0.043 (7)*
H2B −0.455 (5) 0.251 (4) 0.177 (2) 0.049 (8)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.05665 (18) 0.04947 (16) 0.03545 (15) 0.01522 (13) 0.01513 (11) −0.00727 (10)
Br2 0.03535 (14) 0.06002 (18) 0.03276 (14) 0.01257 (11) −0.00551 (10) −0.01218 (11)
O2 0.0239 (7) 0.0630 (11) 0.0291 (8) 0.0100 (7) 0.0034 (6) −0.0066 (7)
O1 0.0331 (8) 0.0600 (11) 0.0258 (8) 0.0038 (8) 0.0011 (6) −0.0050 (7)
N1 0.0293 (9) 0.0321 (9) 0.0252 (8) 0.0078 (7) 0.0017 (7) 0.0010 (7)
C9 0.0290 (10) 0.0287 (9) 0.0243 (9) 0.0093 (8) 0.0021 (8) 0.0015 (8)
C5 0.0263 (10) 0.0465 (12) 0.0367 (12) 0.0122 (10) 0.0043 (9) 0.0047 (10)
N2 0.0267 (10) 0.0477 (12) 0.0423 (12) 0.0055 (9) 0.0046 (9) −0.0001 (10)
C2 0.0313 (10) 0.0340 (10) 0.0246 (10) 0.0078 (9) 0.0036 (8) 0.0040 (8)
C8 0.0266 (10) 0.0377 (11) 0.0286 (11) 0.0094 (9) −0.0016 (8) −0.0001 (8)
C14 0.0290 (10) 0.0294 (10) 0.0332 (11) 0.0093 (8) 0.0040 (8) 0.0059 (8)
C6 0.0273 (10) 0.0325 (10) 0.0270 (10) 0.0101 (8) 0.0031 (8) 0.0042 (8)
C10 0.0279 (10) 0.0339 (10) 0.0285 (10) 0.0103 (9) 0.0042 (8) 0.0003 (8)
C7 0.0264 (10) 0.0346 (10) 0.0263 (10) 0.0099 (8) 0.0052 (8) 0.0049 (8)
C13 0.0305 (11) 0.0338 (10) 0.0389 (12) 0.0106 (9) 0.0108 (9) 0.0039 (9)
C3 0.0444 (13) 0.0399 (12) 0.0285 (11) 0.0164 (10) 0.0110 (9) 0.0048 (9)
C1 0.0529 (15) 0.0477 (14) 0.0236 (11) 0.0061 (12) −0.0004 (10) −0.0025 (10)
C11 0.0305 (10) 0.0312 (10) 0.0275 (10) 0.0095 (8) −0.0008 (8) −0.0011 (8)
C12 0.0396 (11) 0.0299 (10) 0.0275 (10) 0.0137 (9) 0.0075 (8) 0.0010 (8)
C4 0.0329 (11) 0.0523 (14) 0.0405 (13) 0.0196 (11) 0.0141 (10) 0.0107 (10)

Geometric parameters (Å, °)

Br1—C12 1.891 (2) C2—C7 1.404 (3)
Br2—C11 1.890 (2) C8—C6 1.449 (3)
O2—C7 1.350 (3) C8—H8 0.9300
O2—H2 0.8200 C14—C13 1.395 (3)
O1—C2 1.372 (3) C6—C7 1.400 (3)
O1—C1 1.430 (3) C10—C11 1.382 (3)
N1—C8 1.285 (3) C10—H10 0.9300
N1—C9 1.411 (3) C13—C12 1.379 (3)
C9—C10 1.393 (3) C13—H13 0.9300
C9—C14 1.408 (3) C3—C4 1.394 (3)
C5—C4 1.368 (3) C3—H3 0.9300
C5—C6 1.403 (3) C1—H1A 0.9600
C5—H5 0.9300 C1—H1B 0.9600
N2—C14 1.382 (3) C1—H1C 0.9600
N2—H2A 0.84 (3) C11—C12 1.388 (3)
N2—H2B 0.81 (3) C4—H4 0.9300
C2—C3 1.376 (3)
C7—O2—H2 109.5 C9—C10—H10 119.3
C2—O1—C1 117.15 (19) O2—C7—C6 121.88 (18)
C8—N1—C9 122.27 (18) O2—C7—C2 118.60 (18)
C10—C9—C14 119.32 (18) C6—C7—C2 119.52 (19)
C10—C9—N1 124.08 (19) C12—C13—C14 121.3 (2)
C14—C9—N1 116.59 (18) C12—C13—H13 119.4
C4—C5—C6 120.7 (2) C14—C13—H13 119.4
C4—C5—H5 119.6 C2—C3—C4 120.7 (2)
C6—C5—H5 119.6 C2—C3—H3 119.7
C14—N2—H2A 111.2 (19) C4—C3—H3 119.7
C14—N2—H2B 114 (2) O1—C1—H1A 109.5
H2A—N2—H2B 111 (3) O1—C1—H1B 109.5
O1—C2—C3 125.3 (2) H1A—C1—H1B 109.5
O1—C2—C7 114.79 (19) O1—C1—H1C 109.5
C3—C2—C7 119.9 (2) H1A—C1—H1C 109.5
N1—C8—C6 122.43 (19) H1B—C1—H1C 109.5
N1—C8—H8 118.8 C10—C11—C12 119.28 (19)
C6—C8—H8 118.8 C10—C11—Br2 118.48 (16)
N2—C14—C13 120.2 (2) C12—C11—Br2 122.23 (16)
N2—C14—C9 121.2 (2) C13—C12—C11 120.21 (19)
C13—C14—C9 118.57 (19) C13—C12—Br1 118.15 (16)
C7—C6—C5 119.27 (19) C11—C12—Br1 121.63 (16)
C7—C6—C8 121.15 (19) C5—C4—C3 119.9 (2)
C5—C6—C8 119.57 (19) C5—C4—H4 120.0
C11—C10—C9 121.3 (2) C3—C4—H4 120.0
C11—C10—H10 119.3

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O2—H2···N1 0.82 1.88 2.608 (2) 147
N2—H2A···N1 0.84 (3) 2.39 (3) 2.756 (3) 107 (2)
N2—H2B···O1i 0.81 (3) 2.30 (3) 3.114 (3) 174.19

Symmetry codes: (i) −x−1, −y, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2454).

References

  1. Bruker (2000). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Fernández, I., Ruiz, R., Faus, J., Julve, M., Lloret, F., Cano, J., Ottenwaelder, X., Journaux, Y. & Muñoz, C. (2001). Angew. Chem. Int. Ed.40, 3039–3042. [DOI] [PubMed]
  3. Pardo, E., Faus, J., Julve, M., Lloret, F., Muñoz, C., Cano, J., Ottenwaelder, X., Journaux, Y., Carrasco, R., Blay, G., Fernàndez, I. & Ruiz-Garcìa, R. (2003). J. Am. Chem. Soc.125, 10770–10771. [DOI] [PubMed]
  4. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  5. Xia, H.-T., Liu, Y.-F., Yang, S.-P. & Wang, D.-Q. (2007). Acta Cryst. E63, o40–o41.
  6. Yu, M.-M., Ni, Z.-H., Zhao, C.-C., Cui, A.-L. & Kou, H.-Z. (2007). Eur. J. Inorg. Chem. pp. 5670–5676.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808044164/hg2454sup1.cif

e-65-0o241-sup1.cif (16.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808044164/hg2454Isup2.hkl

e-65-0o241-Isup2.hkl (154.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES