Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Jan 28;65(Pt 2):o390. doi: 10.1107/S1600536809002748

4-(4-Bromo­phen­yl)-6-(4-chloro­phen­yl)­pyrimidin-2-ylamine

Mujahid Hussain Bukhari a, Hamid Latif Siddiqui a,*, Naveed Ahmad a, Waseeq Ahmad Siddiqui b, Masood Parvez c
PMCID: PMC2968275  PMID: 21581985

Abstract

The title compound, C16H11BrClN3, contains pairs of mol­ecules lying about inversion centers linked by amino–pyrimidine N—H⋯N hydrogen bonds. The eight-membered rings thus formed are represented by the R 2 2(8) motif in graph-set notation. The second H atom of the amine group shows a rather weak inter­action with two Br atoms, resulting in bifurcated N—H⋯(Br,Br) hydrogen bonds. The dihedral angles between the mean planes of the benzene rings and the mean plane of the heterocyclic ring are 8.98 (15) and 35.58 (10)°. The Br and Cl atoms show substitutional disorder, with site-occupancy factors of 0.599 (2) and 0.401 (2), respectively.

Related literature

For related structures, see: Bukhari et al. (2008); Fun et al. (2006); Gallagher et al. (2004). For pharmacological activities of pyrimidines, see: Gangjee et al. (1999); Grivsky et al. (1980); Malik et al. (2006); Rao et al. (2003). For graph-set notation, see: Bernstein et al. (1994).graphic file with name e-65-0o390-scheme1.jpg

Experimental

Crystal data

  • C16H11BrClN3

  • M r = 360.64

  • Monoclinic, Inline graphic

  • a = 39.343 (8) Å

  • b = 3.851 (2) Å

  • c = 22.620 (6) Å

  • β = 123.81 (2)°

  • V = 2847.6 (18) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 3.07 mm−1

  • T = 173 (2) K

  • 0.20 × 0.03 × 0.02 mm

Data collection

  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SORTAV; Blessing, 1997) T min = 0.579, T max = 0.941

  • 8088 measured reflections

  • 2589 independent reflections

  • 1944 reflections with I > 2σ(I)

  • R int = 0.048

Refinement

  • R[F 2 > 2σ(F 2)] = 0.039

  • wR(F 2) = 0.094

  • S = 1.05

  • 2589 reflections

  • 203 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.58 e Å−3

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997); data reduction: SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809002748/fj2180sup1.cif

e-65-0o390-sup1.cif (18.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809002748/fj2180Isup2.hkl

e-65-0o390-Isup2.hkl (124.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯Br1i 0.92 (4) 2.97 (4) 3.803 (4) 153 (3)
N3—H3A⋯Br1ii 0.92 (4) 3.11 (4) 3.540 (4) 111 (3)
N3—H3B⋯N2iii 0.80 (4) 2.28 (5) 3.073 (5) 174 (4)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

supplementary crystallographic information

Comment

Pyrimidines are a class of biologically active compounds having utility in the pharmaceutical and the agrochemical industries. Compounds with the ring system show pharmacological activity such as antitumor (Gangjee et al., 1999; Grivsky et al., 1980), antiviral (Rao et al., 2003), anti-HIV (Malik et al., 2006), etc. In continuation of our research work (Bukhari et al., 2008), we have prepared several pyrimidines. In this article, we report the crystal structure of the title compound, (I).

The structure of (I), (Fig. 1), contains dimeric pairs of molecules lying about inversion centers resulting from N3—H3B···N2iii hydrogen bonds (N3···N2 = 3.071 (5) Å; Table 1 and Fig. 2). The 8-membered rings thus formed represent R22(8) motif in the graph set notation (Bernstein et al., 1994). The second H-atom of the amine, N3A, shows rather week interactions with two Br atoms representing bifurcated hydrogen bonds (H3A···Br1 2.97 (4) and 3.11 (4) Å). The mean-planes of the two phenyl rings, C5—C10 and C11—C16, are oriented with respect to the mean-plane of the heterocyclic ring at 8.98 (15) and 35.58 (10)°, respectively. The molecular dimensions in (I) agree with the corresponding molecular dimensions reported for 4,6-(diphenyl)pyrimidin-2-amine (Gallagher et al., 2004; Fun et al., 2006). The structure is devoid of any C—H···π(arene) contacts observed in the structures reported above.

Experimental

The title compound was synthesized by the procedure reported earlier (Bukhari et al., 2008). Crystals of (I) suitable for crystallographic analysis were grown by slow evaporation at 313 K from a solutuion of CHCl3 (Yield 58%; m.p. 512–514 K).

Refinement

The Br and Cl atoms showed substitutional disorder with site occupancy factors refined for Br1 and Cl1 to 0.559 (2) and Br1' and Cl1' to 0.401 (2) values. C—Cl and C—Br distances were constrained using DFIX command in SHELXL97 (Sheldrick, 2008). Though all the H atoms could be distinguished in the difference Fourier map the H-atoms bonded to C-atoms were included at geometrically idealized positions and refined in riding-model approximation with the following constraints: C—H distances were set to 0.95 Å and Uiso(H) = 1.2Ueq(C). H-atoms bonded to N3 were taken from the difference map and were allowed to refine with Uiso = 1.2 times Ueq of the parent atom. The final difference map was free of any chemically significant features.

Figures

Fig. 1.

Fig. 1.

ORTEP-3 (Farrugia, 1997) drawing of (I) with displacement ellipsoids plotted at 50% probability level. Hollow bonds represent smaller fractions of the disordered Br and Cl atoms (Br1 and Cl1, respectively).

Fig. 2.

Fig. 2.

Unit cell packing of (I) showing hydrogen bonds with dashed lines; H-atoms not involved in H-bonds have been omitted.

Crystal data

C16H11BrClN3 F(000) = 1440
Mr = 360.64 Dx = 1.682 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yc Cell parameters from 8088 reflections
a = 39.343 (8) Å θ = 3.1–25.3°
b = 3.851 (2) Å µ = 3.07 mm1
c = 22.620 (6) Å T = 173 K
β = 123.81 (2)° Needle, colorless
V = 2847.6 (18) Å3 0.20 × 0.03 × 0.02 mm
Z = 8

Data collection

Nonius KappaCCD diffractometer 2589 independent reflections
Radiation source: fine-focus sealed tube 1944 reflections with I > 2σ(I)
graphite Rint = 0.048
ω and φ scans θmax = 25.3°, θmin = 3.1°
Absorption correction: multi-scan (SORTAV; Blessing, 1997) h = −46→45
Tmin = 0.579, Tmax = 0.941 k = −4→4
8088 measured reflections l = −26→26

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.094 H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0319P)2 + 9.7534P] where P = (Fo2 + 2Fc2)/3
2589 reflections (Δ/σ)max < 0.001
203 parameters Δρmax = 0.43 e Å3
4 restraints Δρmin = −0.58 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Br1 0.07275 (3) 0.3788 (4) −0.23596 (6) 0.0284 (2) 0.599 (2)
Cl1 0.28850 (8) 0.8754 (7) 0.45607 (13) 0.0257 (5) 0.599 (2)
Br1' 0.28731 (6) 0.8681 (5) 0.47100 (9) 0.0284 (2) 0.401 (2)
Cl1' 0.08059 (14) 0.3789 (17) −0.2222 (2) 0.0257 (5) 0.401 (2)
N1 0.09743 (9) 0.9631 (7) 0.16544 (15) 0.0239 (6)
N2 0.05683 (9) 0.8645 (8) 0.03909 (15) 0.0231 (6)
N3 0.02841 (10) 1.0562 (9) 0.09907 (18) 0.0302 (8)
H3A 0.0318 (12) 1.151 (11) 0.139 (2) 0.036*
H3B 0.0070 (14) 1.073 (11) 0.061 (2) 0.036*
C1 0.06220 (11) 0.9592 (9) 0.10129 (18) 0.0239 (8)
C2 0.13100 (11) 0.8621 (9) 0.16862 (18) 0.0223 (7)
C3 0.12903 (11) 0.7667 (9) 0.10744 (18) 0.0249 (8)
H3 0.1529 0.6995 0.1095 0.030*
C4 0.09094 (11) 0.7729 (9) 0.04318 (18) 0.0223 (8)
C5 0.16972 (10) 0.8644 (9) 0.24074 (18) 0.0233 (7)
C6 0.17017 (11) 1.0069 (9) 0.29802 (19) 0.0261 (8)
H6 0.1458 1.1041 0.2901 0.031*
C7 0.20533 (11) 1.0093 (10) 0.3658 (2) 0.0291 (8)
H7 0.2053 1.1065 0.4044 0.035*
C8 0.24065 (9) 0.8673 (10) 0.37647 (15) 0.0283 (8)
C9 0.24130 (11) 0.7212 (10) 0.3213 (2) 0.0294 (8)
H9 0.2658 0.6224 0.3297 0.035*
C10 0.20581 (11) 0.7210 (9) 0.25364 (19) 0.0267 (8)
H10 0.2060 0.6216 0.2154 0.032*
C11 0.08642 (11) 0.6800 (9) −0.02477 (18) 0.0233 (8)
C12 0.05169 (11) 0.5079 (9) −0.07802 (19) 0.0244 (8)
H12 0.0308 0.4484 −0.0708 0.029*
C13 0.04712 (11) 0.4215 (9) −0.14167 (18) 0.0245 (8)
H13 0.0233 0.3047 −0.1782 0.029*
C14 0.07789 (11) 0.5087 (9) −0.15093 (16) 0.0239 (8)
C15 0.11279 (11) 0.6792 (9) −0.09883 (19) 0.0270 (8)
H15 0.1336 0.7372 −0.1062 0.032*
C16 0.11689 (11) 0.7644 (9) −0.03569 (19) 0.0255 (8)
H16 0.1408 0.8818 0.0006 0.031*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.0312 (5) 0.0367 (4) 0.0141 (5) 0.0009 (4) 0.0106 (4) −0.0020 (4)
Cl1 0.0220 (8) 0.0441 (11) 0.0050 (9) 0.0017 (7) 0.0039 (7) −0.0014 (7)
Br1' 0.0312 (5) 0.0367 (4) 0.0141 (5) 0.0009 (4) 0.0106 (4) −0.0020 (4)
Cl1' 0.0220 (8) 0.0441 (11) 0.0050 (9) 0.0017 (7) 0.0039 (7) −0.0014 (7)
N1 0.0256 (16) 0.0279 (16) 0.0216 (14) 0.0007 (13) 0.0152 (13) 0.0007 (12)
N2 0.0241 (15) 0.0273 (15) 0.0228 (14) 0.0024 (13) 0.0161 (13) 0.0015 (13)
N3 0.0247 (16) 0.045 (2) 0.0243 (16) 0.0089 (16) 0.0157 (14) 0.0010 (16)
C1 0.0259 (18) 0.0262 (19) 0.0234 (18) 0.0024 (15) 0.0161 (16) 0.0030 (15)
C2 0.0280 (19) 0.0195 (17) 0.0249 (18) 0.0003 (15) 0.0181 (16) 0.0022 (15)
C3 0.0226 (18) 0.0301 (19) 0.0265 (19) 0.0036 (15) 0.0164 (17) 0.0014 (15)
C4 0.0260 (19) 0.0199 (17) 0.0246 (18) 0.0010 (14) 0.0163 (17) 0.0034 (14)
C5 0.0240 (18) 0.0244 (18) 0.0250 (18) 0.0002 (16) 0.0159 (16) 0.0019 (15)
C6 0.0246 (19) 0.0292 (19) 0.0298 (19) 0.0010 (15) 0.0184 (17) 0.0011 (16)
C7 0.029 (2) 0.030 (2) 0.0274 (19) −0.0011 (16) 0.0154 (17) −0.0020 (16)
C8 0.0229 (19) 0.0275 (19) 0.0270 (19) −0.0033 (16) 0.0092 (16) 0.0027 (16)
C9 0.0251 (19) 0.030 (2) 0.035 (2) 0.0061 (16) 0.0181 (18) 0.0052 (16)
C10 0.029 (2) 0.029 (2) 0.0276 (19) −0.0001 (16) 0.0193 (18) 0.0004 (15)
C11 0.0275 (19) 0.0218 (19) 0.0251 (18) 0.0054 (15) 0.0173 (16) 0.0033 (14)
C12 0.0262 (19) 0.0240 (18) 0.0267 (18) 0.0029 (15) 0.0169 (17) 0.0010 (15)
C13 0.0237 (18) 0.0240 (19) 0.0229 (17) 0.0021 (15) 0.0112 (16) −0.0009 (15)
C14 0.032 (2) 0.0217 (17) 0.0219 (17) 0.0064 (15) 0.0171 (17) 0.0043 (14)
C15 0.0261 (19) 0.033 (2) 0.0278 (19) 0.0024 (16) 0.0190 (17) 0.0043 (16)
C16 0.0233 (18) 0.030 (2) 0.0228 (18) 0.0000 (16) 0.0126 (16) −0.0004 (15)

Geometric parameters (Å, °)

Br1—C14 1.886 (3) C6—C7 1.380 (5)
Cl1—C8 1.736 (3) C6—H6 0.9500
Br1'—C8 1.891 (3) C7—C8 1.384 (5)
Cl1'—C14 1.746 (4) C7—H7 0.9500
N1—C1 1.337 (5) C8—C9 1.382 (5)
N1—C2 1.340 (4) C9—C10 1.384 (5)
N2—C4 1.340 (4) C9—H9 0.9500
N2—C1 1.352 (4) C10—H10 0.9500
N3—C1 1.354 (4) C11—C12 1.388 (5)
N3—H3A 0.92 (4) C11—C16 1.391 (5)
N3—H3B 0.80 (4) C12—C13 1.388 (5)
C2—C3 1.392 (5) C12—H12 0.9500
C2—C5 1.489 (5) C13—C14 1.380 (5)
C3—C4 1.391 (5) C13—H13 0.9500
C3—H3 0.9500 C14—C15 1.380 (5)
C4—C11 1.489 (5) C15—C16 1.385 (5)
C5—C10 1.395 (5) C15—H15 0.9500
C5—C6 1.398 (5) C16—H16 0.9500
C1—N1—C2 116.8 (3) C9—C8—Br1' 121.8 (3)
C4—N2—C1 115.4 (3) C7—C8—Br1' 116.4 (3)
C1—N3—H3A 118 (3) C10—C9—C8 119.0 (3)
C1—N3—H3B 119 (3) C10—C9—H9 120.5
H3A—N3—H3B 121 (4) C8—C9—H9 120.5
N1—C1—N2 126.8 (3) C9—C10—C5 121.0 (3)
N1—C1—N3 116.1 (3) C9—C10—H10 119.5
N2—C1—N3 117.0 (3) C5—C10—H10 119.5
N1—C2—C3 121.0 (3) C12—C11—C16 119.2 (3)
N1—C2—C5 115.7 (3) C12—C11—C4 120.3 (3)
C3—C2—C5 123.2 (3) C16—C11—C4 120.5 (3)
C4—C3—C2 117.8 (3) C11—C12—C13 120.8 (3)
C4—C3—H3 121.1 C11—C12—H12 119.6
C2—C3—H3 121.1 C13—C12—H12 119.6
N2—C4—C3 122.1 (3) C14—C13—C12 118.7 (3)
N2—C4—C11 116.9 (3) C14—C13—H13 120.6
C3—C4—C11 121.0 (3) C12—C13—H13 120.6
C10—C5—C6 118.4 (3) C13—C14—C15 121.8 (3)
C10—C5—C2 121.9 (3) C13—C14—Cl1' 125.4 (3)
C6—C5—C2 119.7 (3) C15—C14—Cl1' 112.4 (3)
C7—C6—C5 121.4 (3) C13—C14—Br1 119.0 (3)
C7—C6—H6 119.3 C15—C14—Br1 119.2 (3)
C5—C6—H6 119.3 C14—C15—C16 118.9 (3)
C6—C7—C8 118.6 (3) C14—C15—H15 120.6
C6—C7—H7 120.7 C16—C15—H15 120.6
C8—C7—H7 120.7 C15—C16—C11 120.7 (3)
C9—C8—C7 121.7 (3) C15—C16—H16 119.6
C9—C8—Cl1 112.9 (3) C11—C16—H16 119.6
C7—C8—Cl1 125.3 (3)
C2—N1—C1—N2 −0.1 (5) C7—C8—C9—C10 0.8 (6)
C2—N1—C1—N3 178.9 (3) Cl1—C8—C9—C10 −175.4 (3)
C4—N2—C1—N1 −1.5 (5) Br1'—C8—C9—C10 178.3 (3)
C4—N2—C1—N3 179.5 (3) C8—C9—C10—C5 −0.2 (6)
C1—N1—C2—C3 1.5 (5) C6—C5—C10—C9 −0.4 (5)
C1—N1—C2—C5 −179.2 (3) C2—C5—C10—C9 −179.0 (3)
N1—C2—C3—C4 −1.3 (5) N2—C4—C11—C12 −35.5 (5)
C5—C2—C3—C4 179.5 (3) C3—C4—C11—C12 145.1 (4)
C1—N2—C4—C3 1.7 (5) N2—C4—C11—C16 144.5 (3)
C1—N2—C4—C11 −177.7 (3) C3—C4—C11—C16 −34.9 (5)
C2—C3—C4—N2 −0.4 (5) C16—C11—C12—C13 −0.3 (5)
C2—C3—C4—C11 179.0 (3) C4—C11—C12—C13 179.7 (3)
N1—C2—C5—C10 170.9 (3) C11—C12—C13—C14 0.3 (5)
C3—C2—C5—C10 −9.9 (5) C12—C13—C14—C15 −0.2 (5)
N1—C2—C5—C6 −7.7 (5) C12—C13—C14—Cl1' 172.1 (4)
C3—C2—C5—C6 171.5 (3) C12—C13—C14—Br1 177.9 (3)
C10—C5—C6—C7 0.4 (5) C13—C14—C15—C16 0.0 (5)
C2—C5—C6—C7 179.1 (3) Cl1'—C14—C15—C16 −173.1 (4)
C5—C6—C7—C8 0.1 (5) Br1—C14—C15—C16 −178.1 (3)
C6—C7—C8—C9 −0.7 (6) C14—C15—C16—C11 0.0 (5)
C6—C7—C8—Cl1 174.9 (3) C12—C11—C16—C15 0.1 (5)
C6—C7—C8—Br1' −178.4 (3) C4—C11—C16—C15 −179.9 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N3—H3A···Br1i 0.92 (4) 2.97 (4) 3.803 (4) 153 (3)
N3—H3A···Br1ii 0.92 (4) 3.11 (4) 3.540 (4) 111 (3)
N3—H3B···N2iii 0.80 (4) 2.28 (5) 3.073 (5) 174 (4)

Symmetry codes: (i) x, −y+2, z+1/2; (ii) x, −y+1, z+1/2; (iii) −x, −y+2, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2180).

References

  1. Bernstein, J., Etter, M. C. & Leiserowitz, L. (1994). Structure Correlation, edited by H.-B. Bürgi & J. D. Dunitz, Vol. 2, pp. 431–507. New York: VCH.
  2. Blessing, R. H. (1997). J. Appl. Cryst.30, 421–426.
  3. Bukhari, M. H., Siddiqui, H. L., Chaudhary, M. A., Hussain, T. & Parvez, M. (2008). Acta Cryst. E64, o963. [DOI] [PMC free article] [PubMed]
  4. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  5. Fun, H.-K., Goswami, S., Jana, S. & Chantrapromma, S. (2006). Acta Cryst. E62, o5332–o5334.
  6. Gallagher, J. F., Goswami, S., Chatterjee, B., Jana, S. & Dutta, K. (2004). Acta Cryst. C60, o229–o231. [DOI] [PubMed]
  7. Gangjee, A., Aldair, O. & Queener, S. F. (1999). J. Med. Chem.42, 2447–2455. [DOI] [PubMed]
  8. Grivsky, E. D., Lee, S., Sigel, C. W., Duch, D. S. & Nichol, C. A. (1980). J. Med. Chem.23, 227–229. [DOI] [PubMed]
  9. Hooft, R. (1998). COLLECT Nonius BV, Delft, The Netherlands.
  10. Malik, V., Singh, P. & Kumar, S. (2006). Tetrahedron, 62, 5944–5951.
  11. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  12. Rao, M. S., Ehso, N., Sergeant, C. & Dembinski, R. (2003). J. Org. Chem.68, 6788–6790. [DOI] [PubMed]
  13. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809002748/fj2180sup1.cif

e-65-0o390-sup1.cif (18.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809002748/fj2180Isup2.hkl

e-65-0o390-Isup2.hkl (124.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES