Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Jan 17;65(Pt 2):o326. doi: 10.1107/S1600536809001275

(1S,4S,5S,6R)-6-(4-Bromo­phen­yl)-5-nitro­bicyclo­[2.2.2]octan-2-one

Aibao Xia a, Jie Tang a, Yifeng Wang a, Junrong Jiang a, Shuping Luo a,*
PMCID: PMC2968281  PMID: 21581931

Abstract

The title compound, C14H14BrNO3, contains a bicyclic ring system with four chiral centers. The absolute structure was established by the Flack method.

Related literature

For the asymmetric Diels-Alder reaction, which in principle allows the formation of four contiguous asymmetric centers, see: Anrendt et al. (2000); Northrup & MacMillan (2002); Xu et al. (2007); Xu et al. (2008).graphic file with name e-65-0o326-scheme1.jpg

Experimental

Crystal data

  • C14H14BrNO3

  • M r = 324.17

  • Orthorhombic, Inline graphic

  • a = 6.4675 (8) Å

  • b = 10.0007 (13) Å

  • c = 20.108 (3) Å

  • V = 1300.6 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.16 mm−1

  • T = 293 (2) K

  • 0.38 × 0.33 × 0.27 mm

Data collection

  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.758, T max = 1.000 (expected range = 0.325–0.428)

  • 7669 measured reflections

  • 2823 independent reflections

  • 2201 reflections with I > 2σ(I)

  • R int = 0.057

Refinement

  • R[F 2 > 2σ(F 2)] = 0.038

  • wR(F 2) = 0.084

  • S = 0.90

  • 2823 reflections

  • 173 parameters

  • H-atom parameters constrained

  • Δρmax = 0.63 e Å−3

  • Δρmin = −0.53 e Å−3

  • Absolute structure: Flack (1983), 1161 Friedel pairs

  • Flack parameter: 0.024 (12)

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809001275/pv2129sup1.cif

e-65-0o326-sup1.cif (18.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809001275/pv2129Isup2.hkl

e-65-0o326-Isup2.hkl (138.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We acknowledge the help of Professor Jie Sun of Shanghai Institute of Organic Chemistry.

supplementary crystallographic information

Comment

There has been growing interest in the study of asymmetric Diels-Alder reaction because it allows in principle the formation of four contiguous asymmetric centers (Anrendt et al., 2000; Northrup & MacMillan, 2002; Xu et al., 2007, 2008). Consequently, we have synthesized a series of Diels-Alder products in our laboratory and the crystal structure and absolute configuration of one of these, the title compound, (I), is reported in this article.

In the title compound (Fig. 1), the nitryl and the 4-bromophenyl groups lie on different sides of the plane defined by C3/C4/C5 atoms with O2—N1—C4—C5 and N1—C4—C5—C9 torsion angles of 141.4 (4) and 92.5 (5)°, respectively. The C5—H5 bond and 4-bromophenyl group are almost coplanar with H5—C5—C9—C10 torsion angle of -2.3°. The structure is devoid of any classical hydrogen bonding and the molecules of (I) are separated by normal van der Waal's forces (Fig. 2).

Experimental

A THF (1.0 ml) solution of trans-nitrostyrene (0.75 mmol) and cyclohex-2-enone (1.0 mmol) in the presence of (S)-1-methyl-2-(pyrrolidin-2-ylmethylthio)-1H-imidazole (0.15 mmol) as amine catalyst and benzoic acid (0.15 mmol) as additive at room temperature was subjected to vigorous stirring. After completion of the reaction, the mixture was washed with water (appoximately 300 ml) and extracted with ethyl acetate. The solvent was removed under reduced pressure and the residue was purified by silica gel column chromatography (eluent: petroleum ether-ethoxyethane). Single crystals were obtained by slow evaporation of an ethyl acetate solution.

Refinement

H atoms were placed in calculated position with C—H = 0.98, 0.97 and 0.93 Å for methine, methylene and aryl H-atoms. All H atoms were included in the final cycles of refinement in riding mode, with Uiso(H) = 1.2Ueq of the carrier atoms. An absolute structure was established using 1226 Friedel pairs and has been presented in this article.

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound with atomic labeling scheme; displacement ellipsoids are drawn at the 30% probability level.

Fig. 2.

Fig. 2.

Unit cell packing of the title compound.

Crystal data

C14H14BrNO3 F(000) = 656
Mr = 324.17 Dx = 1.656 Mg m3
Orthorhombic, P212121 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2ab Cell parameters from 2565 reflections
a = 6.4675 (8) Å θ = 4.6–48.7°
b = 10.0007 (13) Å µ = 3.16 mm1
c = 20.108 (3) Å T = 293 K
V = 1300.6 (3) Å3 Prismatic, colorless
Z = 4 0.38 × 0.33 × 0.27 mm

Data collection

Bruker SMART APEX CCD area-detector diffractometer 2823 independent reflections
Radiation source: fine-focus sealed tube 2201 reflections with I > 2σ(I)
graphite Rint = 0.057
φ and ω scans θmax = 27.0°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −8→8
Tmin = 0.758, Tmax = 1.000 k = −12→12
7669 measured reflections l = −25→18

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.038 w = 1/[σ2(Fo2) + (0.043P)2] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.084 (Δ/σ)max = 0.010
S = 0.90 Δρmax = 0.63 e Å3
2823 reflections Δρmin = −0.53 e Å3
173 parameters Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraints Extinction coefficient: 0.0251 (15)
Primary atom site location: structure-invariant direct methods Absolute structure: Flack (1983), 1161 Friedel pairs
Secondary atom site location: difference Fourier map Flack parameter: 0.024 (12)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br 0.60615 (7) 0.37916 (4) 0.992203 (17) 0.05507 (17)
N1 0.1712 (5) 0.1860 (3) 0.66087 (18) 0.0450 (8)
O1 0.8682 (4) 0.4856 (3) 0.64840 (13) 0.0589 (8)
O2 0.1115 (4) 0.1257 (3) 0.61231 (14) 0.0583 (7)
O3 0.0748 (5) 0.1934 (4) 0.71214 (16) 0.0764 (10)
C1 0.7048 (6) 0.4361 (4) 0.63535 (17) 0.0390 (9)
C2 0.6837 (6) 0.3111 (4) 0.5941 (2) 0.0446 (10)
H2A 0.7602 0.2389 0.6148 0.054*
H2B 0.7415 0.3264 0.5502 0.054*
C3 0.4587 (5) 0.2721 (4) 0.58773 (18) 0.0381 (9)
H3 0.4457 0.1883 0.5628 0.046*
C4 0.3809 (5) 0.2536 (3) 0.65847 (16) 0.0321 (7)
H4 0.4797 0.1964 0.6821 0.038*
C5 0.3716 (5) 0.3892 (3) 0.69495 (14) 0.0306 (7)
H5 0.2273 0.4190 0.6935 0.037*
C6 0.4991 (6) 0.4916 (4) 0.65427 (17) 0.0353 (8)
H6 0.5158 0.5749 0.6793 0.042*
C7 0.3820 (6) 0.5176 (3) 0.58930 (16) 0.0394 (8)
H7A 0.4634 0.5755 0.5608 0.047*
H7B 0.2523 0.5623 0.5989 0.047*
C8 0.3387 (5) 0.3837 (4) 0.55301 (16) 0.0432 (9)
H8A 0.1918 0.3642 0.5541 0.052*
H8B 0.3815 0.3902 0.5069 0.052*
C9 0.4318 (4) 0.3813 (4) 0.76760 (14) 0.0316 (7)
C10 0.2904 (6) 0.4189 (3) 0.81598 (18) 0.0405 (9)
H10 0.1590 0.4467 0.8033 0.049*
C11 0.3406 (6) 0.4160 (4) 0.88210 (17) 0.0454 (10)
H11 0.2429 0.4391 0.9140 0.054*
C12 0.5348 (5) 0.3790 (4) 0.90080 (15) 0.0384 (8)
C13 0.6804 (6) 0.3425 (3) 0.85488 (17) 0.0374 (9)
H13 0.8123 0.3169 0.8681 0.045*
C14 0.6269 (5) 0.3446 (3) 0.78835 (16) 0.0365 (8)
H14 0.7252 0.3207 0.7567 0.044*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br 0.0759 (3) 0.0602 (3) 0.0292 (2) −0.0056 (2) −0.00768 (18) −0.00532 (18)
N1 0.049 (2) 0.0307 (16) 0.055 (2) −0.0033 (14) −0.0048 (17) 0.0069 (15)
O1 0.0375 (17) 0.081 (2) 0.0584 (18) −0.0188 (17) −0.0023 (14) 0.0023 (15)
O2 0.0513 (15) 0.0495 (16) 0.0741 (18) −0.0076 (18) −0.0139 (15) −0.0171 (16)
O3 0.076 (2) 0.090 (2) 0.062 (2) −0.040 (2) 0.0159 (18) 0.0028 (18)
C1 0.038 (2) 0.048 (2) 0.031 (2) −0.0038 (18) 0.0005 (16) 0.0104 (16)
C2 0.041 (2) 0.049 (2) 0.044 (2) 0.0109 (18) 0.0129 (17) −0.0059 (18)
C3 0.049 (2) 0.033 (2) 0.0330 (19) 0.0027 (17) −0.0010 (15) −0.0093 (15)
C4 0.0306 (17) 0.0311 (18) 0.0344 (17) −0.0006 (17) −0.0064 (16) −0.0025 (13)
C5 0.0308 (16) 0.0275 (16) 0.0335 (16) 0.0018 (18) 0.0013 (14) −0.0029 (15)
C6 0.047 (2) 0.0310 (19) 0.0283 (19) −0.0028 (18) −0.0020 (15) −0.0039 (15)
C7 0.043 (2) 0.0356 (19) 0.0392 (19) 0.0000 (18) −0.0011 (19) 0.0051 (15)
C8 0.060 (2) 0.0377 (19) 0.0321 (17) 0.002 (2) −0.0035 (15) −0.0038 (17)
C9 0.0344 (18) 0.0287 (16) 0.0317 (16) −0.0055 (18) 0.0025 (12) −0.0006 (15)
C10 0.0364 (18) 0.047 (2) 0.038 (2) 0.0073 (17) 0.0027 (16) −0.0044 (16)
C11 0.052 (3) 0.050 (3) 0.034 (2) 0.0054 (18) 0.0104 (17) −0.0127 (16)
C12 0.053 (2) 0.0354 (19) 0.0268 (16) −0.0065 (19) 0.0000 (14) −0.0052 (18)
C13 0.0367 (18) 0.035 (2) 0.041 (2) −0.0027 (15) −0.0031 (15) 0.0042 (15)
C14 0.0351 (19) 0.042 (2) 0.0323 (17) 0.0020 (16) 0.0073 (16) −0.0009 (14)

Geometric parameters (Å, °)

Br—C12 1.895 (3) C6—C7 1.532 (5)
N1—O3 1.207 (4) C6—H6 0.9800
N1—O2 1.211 (4) C7—C8 1.550 (5)
N1—C4 1.516 (4) C7—H7A 0.9700
O1—C1 1.196 (4) C7—H7B 0.9700
C1—C6 1.491 (5) C8—H8A 0.9700
C1—C2 1.506 (5) C8—H8B 0.9700
C2—C3 1.512 (5) C9—C14 1.379 (5)
C2—H2A 0.9700 C9—C10 1.387 (4)
C2—H2B 0.9700 C10—C11 1.369 (5)
C3—C4 1.520 (5) C10—H10 0.9300
C3—C8 1.529 (5) C11—C12 1.362 (5)
C3—H3 0.9800 C11—H11 0.9300
C4—C5 1.543 (4) C12—C13 1.368 (5)
C4—H4 0.9800 C13—C14 1.382 (5)
C5—C9 1.514 (4) C13—H13 0.9300
C5—C6 1.549 (5) C14—H14 0.9300
C5—H5 0.9800
O3—N1—O2 123.7 (3) C1—C6—H6 110.4
O3—N1—C4 117.5 (3) C7—C6—H6 110.4
O2—N1—C4 118.8 (3) C5—C6—H6 110.4
O1—C1—C6 125.3 (3) C6—C7—C8 110.1 (3)
O1—C1—C2 123.0 (4) C6—C7—H7A 109.6
C6—C1—C2 111.6 (3) C8—C7—H7A 109.6
C1—C2—C3 110.4 (3) C6—C7—H7B 109.6
C1—C2—H2A 109.6 C8—C7—H7B 109.6
C3—C2—H2A 109.6 H7A—C7—H7B 108.1
C1—C2—H2B 109.6 C3—C8—C7 108.9 (3)
C3—C2—H2B 109.6 C3—C8—H8A 109.9
H2A—C2—H2B 108.1 C7—C8—H8A 109.9
C2—C3—C4 105.7 (3) C3—C8—H8B 109.9
C2—C3—C8 109.8 (3) C7—C8—H8B 109.9
C4—C3—C8 110.4 (3) H8A—C8—H8B 108.3
C2—C3—H3 110.3 C14—C9—C10 117.6 (3)
C4—C3—H3 110.3 C14—C9—C5 122.8 (3)
C8—C3—H3 110.3 C10—C9—C5 119.6 (3)
N1—C4—C3 112.4 (3) C11—C10—C9 121.3 (3)
N1—C4—C5 110.0 (3) C11—C10—H10 119.4
C3—C4—C5 110.5 (3) C9—C10—H10 119.4
N1—C4—H4 107.9 C12—C11—C10 119.5 (3)
C3—C4—H4 107.9 C12—C11—H11 120.3
C5—C4—H4 107.9 C10—C11—H11 120.3
C9—C5—C4 113.7 (3) C11—C12—C13 121.4 (3)
C9—C5—C6 114.1 (3) C11—C12—Br 119.5 (3)
C4—C5—C6 108.0 (3) C13—C12—Br 119.2 (3)
C9—C5—H5 106.9 C12—C13—C14 118.5 (3)
C4—C5—H5 106.9 C12—C13—H13 120.7
C6—C5—H5 106.9 C14—C13—H13 120.7
C1—C6—C7 106.7 (3) C9—C14—C13 121.7 (3)
C1—C6—C5 111.3 (3) C9—C14—H14 119.1
C7—C6—C5 107.4 (3) C13—C14—H14 119.1
O1—C1—C2—C3 178.7 (4) C9—C5—C6—C7 −163.8 (3)
C6—C1—C2—C3 −4.0 (4) C4—C5—C6—C7 68.7 (3)
C1—C2—C3—C4 −58.0 (4) C1—C6—C7—C8 65.1 (4)
C1—C2—C3—C8 61.1 (4) C5—C6—C7—C8 −54.4 (4)
O3—N1—C4—C3 −163.6 (3) C2—C3—C8—C7 −52.1 (4)
O2—N1—C4—C3 17.8 (4) C4—C3—C8—C7 64.1 (4)
O3—N1—C4—C5 −40.0 (4) C6—C7—C8—C3 −9.6 (4)
O2—N1—C4—C5 141.4 (3) C4—C5—C9—C14 63.5 (4)
C2—C3—C4—N1 −167.8 (3) C6—C5—C9—C14 −61.0 (4)
C8—C3—C4—N1 73.5 (3) C4—C5—C9—C10 −120.1 (3)
C2—C3—C4—C5 68.9 (3) C6—C5—C9—C10 115.4 (3)
C8—C3—C4—C5 −49.8 (4) C14—C9—C10—C11 −1.9 (5)
N1—C4—C5—C9 92.5 (3) C5—C9—C10—C11 −178.5 (3)
C3—C4—C5—C9 −142.8 (3) C9—C10—C11—C12 1.8 (6)
N1—C4—C5—C6 −139.8 (3) C10—C11—C12—C13 −1.0 (6)
C3—C4—C5—C6 −15.1 (4) C10—C11—C12—Br 178.5 (3)
O1—C1—C6—C7 119.8 (4) C11—C12—C13—C14 0.4 (6)
C2—C1—C6—C7 −57.4 (4) Br—C12—C13—C14 −179.1 (3)
O1—C1—C6—C5 −123.4 (4) C10—C9—C14—C13 1.2 (5)
C2—C1—C6—C5 59.5 (4) C5—C9—C14—C13 177.7 (3)
C9—C5—C6—C1 79.8 (3) C12—C13—C14—C9 −0.5 (5)
C4—C5—C6—C1 −47.7 (4)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2129).

References

  1. Anrendt, K. A., Borths, C. J. & MacMillan, D. W. C. (2000). J. Am. Chem. Soc.122, 4243–4244.
  2. Bruker (2000). SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Bruker (2001). SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  5. Northrup, A. B. & MacMillan, D. W. C. (2002). J. Am. Chem. Soc.124, 2548–2549.
  6. Sheldrick, G. M. (1996). SADABS University Of Göttingen, Germany.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Xu, D. Q., Luo, S. P., Wang, Y. F., Xia, A. B., Yue, H. D., Wang, L. P. & Xu, Z. Y. (2007). Chem. Commun. pp. 4393–4395. [DOI] [PubMed]
  9. Xu, D. Q., Wang, Y. F., Luo, S. P., Zhang, S., Zhong, A. G., Chen, H. & Xu, Z. Y. (2008). Adv. Synth. Catal. pp. 2610–2616.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809001275/pv2129sup1.cif

e-65-0o326-sup1.cif (18.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809001275/pv2129Isup2.hkl

e-65-0o326-Isup2.hkl (138.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES