Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Jan 31;65(Pt 2):o431. doi: 10.1107/S1600536809002931

(E)-Methyl 3-(2-methyl-1-phenyl­sulfonyl-1H-indol-3-yl)but-2-enoate

T Kavitha a, M Thenmozhi a, G Gobi Rajeshwaran b, A K Mohanakrishnan b, M N Ponnuswamy a,*
PMCID: PMC2968289  PMID: 21582017

Abstract

In the title compound, C20H19NO4S, the indole ring system is planar [r.m.s. deviation = 0.023 (2) Å]. The sulfonyl-bound phenyl ring is almost perpendicular to the indole ring system [dihedral angle = 86.75 (7)°]. The ester group is almost planar (r.m.s. deviation = 0.030 Å) and is oriented at an angle of 62.53 (5)° with respect to the indole ring system. Mol­ecules are linked into a two-dimensional network parallel to the ab plane by inter­molecular C—H⋯O hydrogen bonds.

Related literature

For the biological activities of indole and its derivatives, see: Chandrakantha et al. (1992); Rodriguez et al. (1985). For related literature For the configuration at the S atom, see: Bassindale (1984). For the N atom hybridization, see: Beddoes et al. (1986).graphic file with name e-65-0o431-scheme1.jpg

Experimental

Crystal data

  • C20H19NO4S

  • M r = 369.42

  • Monoclinic, Inline graphic

  • a = 8.9498 (3) Å

  • b = 8.8427 (2) Å

  • c = 23.2836 (7) Å

  • β = 97.085 (1)°

  • V = 1828.60 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.20 mm−1

  • T = 293 (2) K

  • 0.25 × 0.20 × 0.16 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2001) T min = 0.957, T max = 0.968

  • 23203 measured reflections

  • 5673 independent reflections

  • 3833 reflections with I > 2σ(I)

  • R int = 0.026

Refinement

  • R[F 2 > 2σ(F 2)] = 0.046

  • wR(F 2) = 0.137

  • S = 1.01

  • 5673 reflections

  • 239 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.29 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809002931/ci2752sup1.cif

e-65-0o431-sup1.cif (21.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809002931/ci2752Isup2.hkl

e-65-0o431-Isup2.hkl (272.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯O2i 0.93 2.58 3.391 (2) 146
C13—H13⋯O3ii 0.93 2.50 3.277 (2) 141

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

TK thanks Dr Babu Varghese, SAIF, IIT-Madras, Chennai, India, for his help with the data collection.

supplementary crystallographic information

Comment

Indole and its derivatives have long been known for their chemical and biological activities (Chandrakantha et al., 1992). The indole ring system is present in a number of natural products, many of which are found to possess pharmacological properties like anti-microbial, anti-inflammatory and anti-implantation activities (Rodriguez et al., 1985).

Due to Thorpe–Ignold effect (Bassindale, 1984), bond angles around atom S1 show significant deviation from ideal tetrahedral value, with significant deviations in angles O1—S1—O2 [120.37 (9)°] and N1—S1—C10 [104.96 (6)°]. The indole ring system is essentially planar. The sum of the bond angles around atom N1 (355.9°) indicates sp2 hybridization (Beddoes et al., 1986). The sulfonyl bound phenyl ring is oriented almost perpendicular to the indole ring system as can be seen from the dihedral angle of 86.75 (7)°. The ester group attached to the indole ring system adopts an extended conformation which is confirmed by the torsion angles C3—C17—C19—C20 = -177.59 (14)°, C17—C19—C20—O4 = -176.02 (15)° and C19—C20—O4—C21 = -178.62 (15)°.

In the crystal structure, intermolecular C—H···O hydrogen bonds (Table 1) link the molecules into a two-dimensional network parallel to the ab plane (Fig. 2).

Experimental

To a stirred suspension of NaH (29 mg, 1.20 mmol, hexane washed) in THF (5 ml), a solution of vinyl indole (0.23 g, 1 mmol) in THF (5 ml) was added and stirred for 30 min at room temperature. To the reaction mixture, a solution of PhSO2Cl (0.21 g, 1.20 mmol) was added and stirring was continued for further 6 h. After the indole was consumed (monitored by TLC), the reaction mixture was quenched with cold diluted HCl (25 ml), extracted with ethyl acetate (2 × 10 ml) and dried (Na2SO4). Removal of solvent followed by recrystallization (MeOH) afforded yellow crystals of the title compound.

Refinement

H atoms were positioned geometrically (C—H = 0.93–0.96 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.5Ueq(C) for methyl H and 1.2Ueq(C) for other H atoms.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound. Displacement ellipsoids are drawn at the 20% probability level.

Fig. 2.

Fig. 2.

Crystal packing of the title compound, viewed down the a axis. H atoms not involved in hydrogen bonding have been omitted for clarity.

Crystal data

C20H19NO4S F(000) = 776
Mr = 369.42 Dx = 1.342 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 5673 reflections
a = 8.9498 (3) Å θ = 2.3–31.0°
b = 8.8427 (2) Å µ = 0.20 mm1
c = 23.2836 (7) Å T = 293 K
β = 97.085 (1)° Block, yellow
V = 1828.60 (9) Å3 0.25 × 0.20 × 0.16 mm
Z = 4

Data collection

Bruker APEXII CCD area-detector diffractometer 5673 independent reflections
Radiation source: fine-focus sealed tube 3833 reflections with I > 2σ(I)
graphite Rint = 0.026
ω and φ scans θmax = 31.0°, θmin = 2.3°
Absorption correction: multi-scan (SADABS; Sheldrick, 2001) h = −12→11
Tmin = 0.957, Tmax = 0.968 k = −7→12
23203 measured reflections l = −32→33

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.046 H-atom parameters constrained
wR(F2) = 0.137 w = 1/[σ2(Fo2) + (0.0625P)2 + 0.402P] where P = (Fo2 + 2Fc2)/3
S = 1.01 (Δ/σ)max = 0.016
5673 reflections Δρmax = 0.30 e Å3
239 parameters Δρmin = −0.29 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0057 (11)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C2 0.71830 (17) 0.73053 (17) 0.13969 (7) 0.0461 (3)
C3 0.85936 (15) 0.68775 (16) 0.13101 (6) 0.0406 (3)
C4 0.89541 (15) 0.54808 (16) 0.16149 (6) 0.0408 (3)
C5 0.77241 (15) 0.50989 (17) 0.19043 (6) 0.0430 (3)
C6 0.77105 (19) 0.3804 (2) 0.22371 (7) 0.0587 (4)
H6 0.6889 0.3562 0.2428 0.070*
C7 0.8966 (2) 0.2887 (2) 0.22744 (8) 0.0703 (5)
H7 0.8983 0.2001 0.2490 0.084*
C8 1.0202 (2) 0.3256 (2) 0.19985 (9) 0.0682 (5)
H8 1.1036 0.2621 0.2036 0.082*
C9 1.02144 (17) 0.45440 (19) 0.16699 (7) 0.0546 (4)
H9 1.1050 0.4786 0.1487 0.065*
C10 0.42383 (15) 0.44900 (18) 0.13523 (7) 0.0462 (3)
C11 0.38591 (18) 0.4876 (2) 0.07757 (7) 0.0550 (4)
H11 0.3946 0.5871 0.0655 0.066*
C12 0.3352 (2) 0.3766 (2) 0.03848 (9) 0.0702 (5)
H12 0.3097 0.4009 −0.0003 0.084*
C13 0.3223 (2) 0.2295 (2) 0.05676 (10) 0.0739 (6)
H13 0.2870 0.1553 0.0302 0.089*
C14 0.3607 (2) 0.1917 (2) 0.11349 (11) 0.0720 (5)
H14 0.3524 0.0919 0.1253 0.086*
C15 0.41202 (19) 0.3013 (2) 0.15350 (9) 0.0598 (4)
H15 0.4382 0.2760 0.1922 0.072*
C16 0.6333 (2) 0.8675 (2) 0.11697 (10) 0.0724 (5)
H16A 0.6151 0.9315 0.1487 0.109*
H16B 0.5389 0.8374 0.0960 0.109*
H16C 0.6911 0.9218 0.0916 0.109*
C17 0.96483 (16) 0.77322 (16) 0.09861 (6) 0.0430 (3)
C18 1.0118 (2) 0.92731 (19) 0.12070 (8) 0.0648 (5)
H18A 1.1128 0.9231 0.1400 0.097*
H18B 0.9452 0.9609 0.1474 0.097*
H18C 1.0074 0.9967 0.0888 0.097*
C19 1.01726 (16) 0.70573 (17) 0.05409 (7) 0.0466 (3)
H19 0.9820 0.6090 0.0444 0.056*
C20 1.12631 (18) 0.77169 (18) 0.01894 (7) 0.0497 (4)
C21 1.2556 (2) 0.7283 (2) −0.06194 (8) 0.0670 (5)
H21A 1.2073 0.7956 −0.0909 0.101*
H21B 1.2938 0.6419 −0.0804 0.101*
H21C 1.3373 0.7801 −0.0395 0.101*
N1 0.66229 (13) 0.62376 (15) 0.17753 (5) 0.0465 (3)
O1 0.48023 (16) 0.53321 (19) 0.24184 (5) 0.0801 (4)
O2 0.40094 (14) 0.72716 (15) 0.16816 (7) 0.0756 (4)
O3 1.1914 (2) 0.88897 (17) 0.02638 (7) 0.0984 (6)
O4 1.14823 (13) 0.67953 (13) −0.02447 (5) 0.0583 (3)
S1 0.48136 (4) 0.59233 (5) 0.185184 (18) 0.05532 (15)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C2 0.0440 (7) 0.0399 (7) 0.0552 (8) −0.0028 (6) 0.0092 (6) −0.0070 (6)
C3 0.0391 (7) 0.0365 (7) 0.0464 (7) −0.0050 (6) 0.0066 (5) −0.0042 (6)
C4 0.0347 (6) 0.0432 (7) 0.0444 (7) −0.0066 (6) 0.0039 (5) −0.0023 (6)
C5 0.0372 (7) 0.0527 (8) 0.0390 (7) −0.0063 (6) 0.0038 (5) −0.0022 (6)
C6 0.0520 (9) 0.0750 (12) 0.0489 (8) −0.0117 (8) 0.0058 (7) 0.0168 (8)
C7 0.0648 (11) 0.0738 (13) 0.0695 (11) −0.0025 (10) −0.0021 (9) 0.0318 (10)
C8 0.0492 (9) 0.0664 (12) 0.0872 (13) 0.0085 (9) 0.0006 (9) 0.0222 (10)
C9 0.0373 (7) 0.0568 (10) 0.0698 (10) 0.0002 (7) 0.0074 (7) 0.0080 (8)
C10 0.0295 (6) 0.0496 (8) 0.0607 (9) 0.0002 (6) 0.0104 (6) −0.0014 (7)
C11 0.0497 (9) 0.0484 (9) 0.0661 (10) −0.0034 (7) 0.0034 (7) 0.0018 (7)
C12 0.0663 (12) 0.0699 (12) 0.0706 (12) −0.0108 (10) −0.0063 (9) −0.0070 (9)
C13 0.0593 (11) 0.0595 (12) 0.0994 (15) −0.0112 (9) −0.0042 (10) −0.0160 (11)
C14 0.0521 (10) 0.0459 (10) 0.1173 (17) −0.0077 (8) 0.0082 (10) 0.0056 (10)
C15 0.0433 (8) 0.0582 (10) 0.0782 (11) −0.0038 (7) 0.0079 (8) 0.0114 (9)
C16 0.0593 (11) 0.0506 (10) 0.1084 (16) 0.0094 (8) 0.0149 (10) 0.0063 (10)
C17 0.0406 (7) 0.0369 (7) 0.0511 (8) −0.0059 (6) 0.0045 (6) 0.0012 (6)
C18 0.0794 (12) 0.0473 (9) 0.0714 (11) −0.0209 (9) 0.0234 (9) −0.0137 (8)
C19 0.0461 (8) 0.0376 (7) 0.0576 (8) −0.0109 (6) 0.0119 (6) −0.0019 (6)
C20 0.0513 (8) 0.0421 (8) 0.0574 (9) −0.0096 (7) 0.0139 (7) −0.0024 (7)
C21 0.0692 (11) 0.0700 (12) 0.0673 (11) −0.0114 (9) 0.0306 (9) −0.0010 (9)
N1 0.0389 (6) 0.0512 (7) 0.0510 (7) −0.0031 (5) 0.0118 (5) −0.0068 (5)
O1 0.0728 (8) 0.1164 (12) 0.0584 (7) −0.0149 (8) 0.0369 (6) −0.0148 (7)
O2 0.0534 (7) 0.0642 (8) 0.1135 (11) 0.0126 (6) 0.0278 (7) −0.0269 (8)
O3 0.1299 (14) 0.0687 (9) 0.1106 (12) −0.0562 (9) 0.0702 (10) −0.0333 (8)
O4 0.0646 (7) 0.0522 (7) 0.0626 (7) −0.0135 (6) 0.0255 (5) −0.0074 (5)
S1 0.0418 (2) 0.0660 (3) 0.0624 (3) −0.00185 (18) 0.02337 (17) −0.01782 (19)

Geometric parameters (Å, °)

C2—C3 1.357 (2) C13—H13 0.93
C2—N1 1.4241 (19) C14—C15 1.383 (3)
C2—C16 1.493 (2) C14—H14 0.93
C3—C4 1.441 (2) C15—H15 0.93
C3—C17 1.4857 (19) C16—H16A 0.96
C4—C9 1.393 (2) C16—H16B 0.96
C4—C5 1.4012 (19) C16—H16C 0.96
C5—C6 1.383 (2) C17—C19 1.331 (2)
C5—N1 1.415 (2) C17—C18 1.498 (2)
C6—C7 1.380 (3) C18—H18A 0.96
C6—H6 0.93 C18—H18B 0.96
C7—C8 1.385 (3) C18—H18C 0.96
C7—H7 0.93 C19—C20 1.470 (2)
C8—C9 1.373 (2) C19—H19 0.93
C8—H8 0.93 C20—O3 1.1915 (19)
C9—H9 0.93 C20—O4 1.3315 (19)
C10—C15 1.381 (2) C21—O4 1.4415 (19)
C10—C11 1.386 (2) C21—H21A 0.96
C10—S1 1.7540 (16) C21—H21B 0.96
C11—C12 1.377 (3) C21—H21C 0.96
C11—H11 0.93 N1—S1 1.6740 (12)
C12—C13 1.378 (3) O1—S1 1.4202 (14)
C12—H12 0.93 O2—S1 1.4234 (14)
C13—C14 1.365 (3)
C3—C2—N1 108.20 (13) C10—C15—H15 120.4
C3—C2—C16 128.09 (15) C14—C15—H15 120.4
N1—C2—C16 123.67 (14) C2—C16—H16A 109.5
C2—C3—C4 108.77 (12) C2—C16—H16B 109.5
C2—C3—C17 126.51 (13) H16A—C16—H16B 109.5
C4—C3—C17 124.64 (12) C2—C16—H16C 109.5
C9—C4—C5 119.20 (14) H16A—C16—H16C 109.5
C9—C4—C3 133.22 (14) H16B—C16—H16C 109.5
C5—C4—C3 107.57 (13) C19—C17—C3 118.34 (13)
C6—C5—C4 122.05 (14) C19—C17—C18 124.36 (14)
C6—C5—N1 130.83 (13) C3—C17—C18 117.20 (13)
C4—C5—N1 107.12 (13) C17—C18—H18A 109.5
C7—C6—C5 117.28 (15) C17—C18—H18B 109.5
C7—C6—H6 121.4 H18A—C18—H18B 109.5
C5—C6—H6 121.4 C17—C18—H18C 109.5
C6—C7—C8 121.55 (17) H18A—C18—H18C 109.5
C6—C7—H7 119.2 H18B—C18—H18C 109.5
C8—C7—H7 119.2 C17—C19—C20 125.32 (14)
C9—C8—C7 121.06 (17) C17—C19—H19 117.3
C9—C8—H8 119.5 C20—C19—H19 117.3
C7—C8—H8 119.5 O3—C20—O4 121.87 (14)
C8—C9—C4 118.85 (15) O3—C20—C19 127.63 (15)
C8—C9—H9 120.6 O4—C20—C19 110.48 (13)
C4—C9—H9 120.6 O4—C21—H21A 109.5
C15—C10—C11 120.80 (16) O4—C21—H21B 109.5
C15—C10—S1 120.41 (13) H21A—C21—H21B 109.5
C11—C10—S1 118.76 (12) O4—C21—H21C 109.5
C12—C11—C10 119.07 (17) H21A—C21—H21C 109.5
C12—C11—H11 120.5 H21B—C21—H21C 109.5
C10—C11—H11 120.5 C5—N1—C2 108.30 (11)
C11—C12—C13 120.15 (19) C5—N1—S1 121.12 (10)
C11—C12—H12 119.9 C2—N1—S1 126.50 (11)
C13—C12—H12 119.9 C20—O4—C21 116.60 (13)
C14—C13—C12 120.61 (19) O1—S1—O2 120.37 (9)
C14—C13—H13 119.7 O1—S1—N1 106.13 (7)
C12—C13—H13 119.7 O2—S1—N1 107.09 (8)
C13—C14—C15 120.24 (18) O1—S1—C10 108.35 (9)
C13—C14—H14 119.9 O2—S1—C10 108.88 (8)
C15—C14—H14 119.9 N1—S1—C10 104.96 (6)
C10—C15—C14 119.12 (18)
N1—C2—C3—C4 2.26 (16) C2—C3—C17—C18 60.7 (2)
C16—C2—C3—C4 179.74 (16) C4—C3—C17—C18 −115.44 (17)
N1—C2—C3—C17 −174.38 (13) C3—C17—C19—C20 −177.59 (14)
C16—C2—C3—C17 3.1 (3) C18—C17—C19—C20 −1.3 (3)
C2—C3—C4—C9 179.15 (16) C17—C19—C20—O3 5.1 (3)
C17—C3—C4—C9 −4.1 (3) C17—C19—C20—O4 −176.02 (15)
C2—C3—C4—C5 −1.70 (16) C6—C5—N1—C2 −178.24 (16)
C17—C3—C4—C5 175.01 (13) C4—C5—N1—C2 0.92 (15)
C9—C4—C5—C6 −1.0 (2) C6—C5—N1—S1 −19.6 (2)
C3—C4—C5—C6 179.68 (14) C4—C5—N1—S1 159.59 (10)
C9—C4—C5—N1 179.72 (13) C3—C2—N1—C5 −2.00 (16)
C3—C4—C5—N1 0.44 (15) C16—C2—N1—C5 −179.62 (15)
C4—C5—C6—C7 −0.1 (2) C3—C2—N1—S1 −159.21 (11)
N1—C5—C6—C7 178.98 (16) C16—C2—N1—S1 23.2 (2)
C5—C6—C7—C8 1.0 (3) O3—C20—O4—C21 0.4 (3)
C6—C7—C8—C9 −0.9 (3) C19—C20—O4—C21 −178.62 (15)
C7—C8—C9—C4 −0.3 (3) C5—N1—S1—O1 50.95 (13)
C5—C4—C9—C8 1.2 (2) C2—N1—S1—O1 −154.49 (13)
C3—C4—C9—C8 −179.75 (17) C5—N1—S1—O2 −179.29 (11)
C15—C10—C11—C12 0.4 (2) C2—N1—S1—O2 −24.73 (14)
S1—C10—C11—C12 −177.57 (14) C5—N1—S1—C10 −63.66 (12)
C10—C11—C12—C13 0.2 (3) C2—N1—S1—C10 90.89 (13)
C11—C12—C13—C14 −0.6 (3) C15—C10—S1—O1 −11.22 (15)
C12—C13—C14—C15 0.6 (3) C11—C10—S1—O1 166.71 (12)
C11—C10—C15—C14 −0.4 (2) C15—C10—S1—O2 −143.79 (13)
S1—C10—C15—C14 177.49 (13) C11—C10—S1—O2 34.14 (14)
C13—C14—C15—C10 −0.1 (3) C15—C10—S1—N1 101.83 (13)
C2—C3—C17—C19 −122.74 (17) C11—C10—S1—N1 −80.24 (13)
C4—C3—C17—C19 61.1 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C6—H6···O2i 0.93 2.58 3.391 (2) 146
C13—H13···O3ii 0.93 2.50 3.277 (2) 141

Symmetry codes: (i) −x+1, y−1/2, −z+1/2; (ii) x−1, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2752).

References

  1. Bassindale, A. (1984). The Third Dimension in Organic Chemistry, ch. 1, p. 11. New York: John Wiley and Sons.
  2. Beddoes, R. L., Dalton, L., Joule, T. A., Mills, O. S., Street, J. D. & Watt, C. I. F. (1986). J. Chem. Soc. Perkin Trans. 2, pp. 787–797.
  3. Bruker (2004). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Chandrakantha, T. N., Puttaraja, & Nethaji, M. (1992). Acta Cryst. C48, 60–62.
  5. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  6. Rodriguez, J. G., Temprano, F., Esteban-Calderon, C., Martinez-Ripoll, M. & Garcia-Blanco, S. (1985). Tetrahedron, 41, 3813–3823.
  7. Sheldrick, G. M. (2001). SADABS University of Göttingen, Germany.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809002931/ci2752sup1.cif

e-65-0o431-sup1.cif (21.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809002931/ci2752Isup2.hkl

e-65-0o431-Isup2.hkl (272.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES