Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Jan 28;65(Pt 2):m232. doi: 10.1107/S1600536809002426

[N-(3-Meth­oxy-2-oxidobenzyl­idene-κO 2)alaninato-κ2 N,O]diphenyl­tin(IV)

Hong-Jun Yang a, Yan-Qiu Dang b,*
PMCID: PMC2968303  PMID: 21581822

Abstract

The Sn atom of the title compound, [Sn(C6H5)2(C11H11NO4)], adopts a distorted SnNC2O2 trigonal–bipyramidal geometry with the O atoms in the axial positions. The metal atom forms five- and six-membered chelate rings with the O,N,O′-tridentate ligand.

Related literature

For background, see: Rivera et al. (2006). For related structures, see: Beltran et al. (2003); Tian et al. (2007).graphic file with name e-65-0m232-scheme1.jpg

Experimental

Crystal data

  • [Sn(C6H5)2(C11H11NO4)]

  • M r = 494.10

  • Monoclinic, Inline graphic

  • a = 13.3881 (10) Å

  • b = 9.0304 (6) Å

  • c = 17.3398 (12) Å

  • β = 95.077 (1)°

  • V = 2088.2 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.25 mm−1

  • T = 295 (2) K

  • 0.16 × 0.12 × 0.10 mm

Data collection

  • Bruker APEX area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002) T min = 0.825, T max = 0.885

  • 16481 measured reflections

  • 4326 independent reflections

  • 3475 reflections with I > 2σ(I)

  • R int = 0.022

Refinement

  • R[F 2 > 2σ(F 2)] = 0.024

  • wR(F 2) = 0.063

  • S = 1.04

  • 4326 reflections

  • 262 parameters

  • H-atom parameters constrained

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.26 e Å−3

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809002426/hb2900sup1.cif

e-65-0m232-sup1.cif (22.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809002426/hb2900Isup2.hkl

e-65-0m232-Isup2.hkl (207.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Sn1—C1 2.109 (2)
Sn1—C7 2.113 (2)
Sn1—O1 2.1360 (16)
Sn1—O3 2.0752 (14)
Sn1—N1 2.1493 (17)

Acknowledgments

The authors thank the Science Foundation of Binzhou University for supporting this work (grant No. BZXYQNLG200820).

supplementary crystallographic information

Comment

The diorganotin complexes with Schiff bases derived from α-amino acids continue to receive attention because of their biological activities and their quadratic nonlinear optical properties (e.g. Rivera et al., 2006). The structures of two diorganotin complexes based on the Schiff base ligand [N-(2-hydroxyphenylmethylene)alanine, [N-(2-oxidophenylmethylene)alaninato]diphenyltin(IV) (Beltran et al., 2003) and dicyclohexyl[N-(3,5-dibromo-2-oxidophenylmethylene)alaninato]tin(IV) (Tian et al., 2007) have been reported. As a continuation of these studies, the structure of the title compound, (I), is now described.

The coordination geometry of the Sn atom in (I) is that of a distorted trigonal bipyramid with two phenyl groups and the imino N1 atom occupying the equatorial positions and the axial positions being occupied by a unidentate carboxylate O1 atom and phenoxide O3 atom (Fig. 1). The Sn atom is 0.061 (3) Å out of the NC2 trigonal plane in the direction of the O3 atom. The bond length of Sn1—O1 [2.1360 (16) Å] is longer than that of Sn1—O3 [2.0752 (14) Å]. The bond angle O1—Sn1—O3 is 158.35 (6)°, which is slightly larger than that observed in [N-(2-oxidophenylmethylene)alaninato]diphenyltin(IV) [156.90 (9)°] (Beltran et al., 2003) and dicyclohexyl[N-(3,5-dibromo-2-oxidophenylmethylene)alaninato]tin(IV) [154.9 (1)°] (Tian et al., 2007). The monodentate mode of coordination of carboxylate is reflected in the disparate C23—O1 and C23—O2 bond lengths of 1.290 (3) and 1.213 (3) Å, respectively.

Experimental

The title compound was prepared by the reaction of diphenyltin dichloride (0.69 g, 2 mmol) with potassium N-(3-methoxy-2-hydroxyphenylmethylene)alaninate (0.29 g, 2 mmol) in the presence of Et3N (0.20 g, 2 mmol) in methanol (30 ml). The reaction mixture was refluxed for 2 h and filtered. The yellow solid obtained by removal of solvent under reduced pressure was recrystallized from methanol and yellow blocks of (I) were obtained from dichloromethane–hexane (1:1 v/v) by slow evaporation at room temperature (yield 76%, m.p. 535–536 K).

Refinement

The H atoms were placed at calculated positions (C—H = 0.93–0.98Å) and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C).

Figures

Fig. 1.

Fig. 1.

The structure of (I) with displacement ellipsoids drawn at the 30% probability level. The H atoms have been omitted for clarity.

Crystal data

[Sn(C6H5)2(C11H11NO4)] F(000) = 992
Mr = 494.10 Dx = 1.572 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 6772 reflections
a = 13.3881 (10) Å θ = 2.4–27.7°
b = 9.0304 (6) Å µ = 1.25 mm1
c = 17.3398 (12) Å T = 295 K
β = 95.077 (1)° Block, yellow
V = 2088.2 (3) Å3 0.16 × 0.12 × 0.10 mm
Z = 4

Data collection

Bruker SMART APEX area-detector diffractometer 4326 independent reflections
Radiation source: fine-focus sealed tube 3475 reflections with I > 2σ(I)
graphite Rint = 0.022
φ and ω scans θmax = 26.5°, θmin = 1.5°
Absorption correction: multi-scan (SADABS; Bruker, 2002) h = −16→16
Tmin = 0.825, Tmax = 0.885 k = −11→11
16481 measured reflections l = −21→20

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.063 H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.029P)2 + 0.7005P] where P = (Fo2 + 2Fc2)/3
4326 reflections (Δ/σ)max = 0.002
262 parameters Δρmax = 0.44 e Å3
0 restraints Δρmin = −0.26 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Sn1 0.292357 (11) 0.503657 (15) 0.348838 (8) 0.03542 (6)
N1 0.32598 (13) 0.28485 (19) 0.30979 (10) 0.0385 (4)
O1 0.41792 (13) 0.53434 (17) 0.28262 (10) 0.0467 (4)
O2 0.52345 (14) 0.4293 (2) 0.20800 (11) 0.0638 (5)
O3 0.18288 (11) 0.39202 (16) 0.40344 (9) 0.0450 (4)
O4 0.07445 (14) 0.3448 (2) 0.51854 (10) 0.0609 (5)
C1 0.36449 (17) 0.6022 (2) 0.44906 (13) 0.0415 (5)
C2 0.4416 (2) 0.7013 (3) 0.44224 (16) 0.0575 (7)
H2 0.4664 0.7151 0.3943 0.069*
C3 0.4825 (2) 0.7803 (4) 0.50548 (18) 0.0727 (9)
H3 0.5340 0.8476 0.5001 0.087*
C4 0.4471 (2) 0.7590 (4) 0.57586 (18) 0.0782 (10)
H4 0.4736 0.8131 0.6185 0.094*
C5 0.3736 (3) 0.6596 (5) 0.58371 (17) 0.0905 (11)
H5 0.3515 0.6432 0.6323 0.109*
C6 0.3305 (2) 0.5816 (4) 0.52079 (15) 0.0706 (8)
H6 0.2787 0.5154 0.5269 0.085*
C7 0.18958 (16) 0.6179 (2) 0.27068 (12) 0.0403 (5)
C8 0.2149 (2) 0.7542 (3) 0.24244 (18) 0.0664 (8)
H8 0.2765 0.7965 0.2588 0.080*
C9 0.1487 (3) 0.8287 (4) 0.1896 (2) 0.0847 (10)
H9 0.1664 0.9206 0.1708 0.102*
C10 0.0582 (2) 0.7683 (4) 0.16505 (18) 0.0717 (9)
H10 0.0144 0.8184 0.1295 0.086*
C11 0.0321 (2) 0.6336 (4) 0.19299 (16) 0.0660 (8)
H11 −0.0297 0.5920 0.1766 0.079*
C12 0.0976 (2) 0.5588 (3) 0.24582 (16) 0.0554 (6)
H12 0.0791 0.4674 0.2647 0.066*
C13 0.18852 (16) 0.2585 (2) 0.43474 (13) 0.0383 (5)
C14 0.24719 (17) 0.1438 (3) 0.40775 (13) 0.0426 (5)
C15 0.2462 (2) 0.0026 (3) 0.44269 (19) 0.0591 (7)
H15 0.2848 −0.0735 0.4247 0.071*
C16 0.1894 (2) −0.0228 (3) 0.50210 (19) 0.0670 (8)
H16 0.1900 −0.1159 0.5251 0.080*
C17 0.1301 (2) 0.0894 (3) 0.52905 (15) 0.0575 (7)
H17 0.0906 0.0702 0.5694 0.069*
C18 0.12930 (18) 0.2276 (3) 0.49671 (13) 0.0461 (5)
C19 0.0072 (2) 0.3215 (4) 0.57615 (18) 0.0810 (10)
H19A −0.0259 0.4129 0.5862 0.121*
H19B 0.0438 0.2872 0.6228 0.121*
H19C −0.0417 0.2487 0.5584 0.121*
C20 0.30727 (16) 0.1628 (2) 0.34391 (13) 0.0434 (5)
H20 0.3358 0.0776 0.3252 0.052*
C21 0.38800 (17) 0.2828 (3) 0.24357 (13) 0.0441 (5)
H21 0.4326 0.1967 0.2476 0.053*
C22 0.3194 (2) 0.2741 (4) 0.16856 (15) 0.0698 (8)
H22A 0.2807 0.1846 0.1681 0.105*
H22B 0.3592 0.2745 0.1252 0.105*
H22C 0.2751 0.3579 0.1652 0.105*
C23 0.45012 (17) 0.4244 (3) 0.24431 (13) 0.0422 (5)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Sn1 0.03617 (10) 0.03374 (10) 0.03691 (10) 0.00146 (6) 0.00633 (6) −0.00038 (6)
N1 0.0354 (10) 0.0370 (10) 0.0442 (10) −0.0001 (8) 0.0092 (8) −0.0041 (8)
O1 0.0492 (10) 0.0413 (9) 0.0520 (10) −0.0067 (7) 0.0170 (8) −0.0066 (7)
O2 0.0622 (12) 0.0598 (11) 0.0751 (13) −0.0118 (10) 0.0371 (10) −0.0114 (10)
O3 0.0425 (9) 0.0395 (9) 0.0553 (10) 0.0031 (7) 0.0178 (7) 0.0053 (7)
O4 0.0676 (12) 0.0582 (11) 0.0616 (11) −0.0035 (9) 0.0319 (9) −0.0034 (9)
C1 0.0420 (12) 0.0427 (12) 0.0393 (12) 0.0061 (10) 0.0013 (10) −0.0014 (10)
C2 0.0552 (16) 0.0639 (17) 0.0529 (15) −0.0079 (13) 0.0025 (12) −0.0048 (13)
C3 0.0643 (19) 0.076 (2) 0.075 (2) −0.0132 (16) −0.0058 (16) −0.0190 (16)
C4 0.065 (2) 0.100 (3) 0.066 (2) 0.0131 (18) −0.0173 (16) −0.0356 (18)
C5 0.081 (2) 0.148 (3) 0.0427 (17) −0.009 (2) 0.0074 (15) −0.0224 (19)
C6 0.0678 (19) 0.099 (2) 0.0462 (16) −0.0162 (18) 0.0093 (14) −0.0058 (16)
C7 0.0389 (12) 0.0427 (12) 0.0398 (12) 0.0056 (10) 0.0064 (10) −0.0013 (10)
C8 0.0541 (16) 0.0578 (17) 0.085 (2) −0.0018 (13) −0.0081 (14) 0.0189 (15)
C9 0.078 (2) 0.069 (2) 0.105 (3) 0.0064 (17) −0.0068 (19) 0.0410 (18)
C10 0.0600 (19) 0.084 (2) 0.069 (2) 0.0265 (17) −0.0059 (15) 0.0106 (17)
C11 0.0445 (15) 0.084 (2) 0.0676 (18) 0.0065 (14) −0.0082 (13) −0.0043 (16)
C12 0.0507 (15) 0.0580 (15) 0.0571 (16) −0.0025 (13) 0.0030 (12) 0.0009 (13)
C13 0.0336 (11) 0.0410 (12) 0.0399 (12) −0.0044 (9) 0.0006 (9) 0.0014 (9)
C14 0.0359 (12) 0.0401 (12) 0.0520 (14) −0.0024 (10) 0.0040 (10) 0.0032 (10)
C15 0.0550 (16) 0.0432 (15) 0.080 (2) 0.0048 (11) 0.0086 (15) 0.0113 (13)
C16 0.072 (2) 0.0533 (17) 0.076 (2) −0.0052 (14) 0.0070 (17) 0.0236 (14)
C17 0.0606 (16) 0.0632 (17) 0.0498 (15) −0.0092 (14) 0.0106 (13) 0.0099 (13)
C18 0.0444 (13) 0.0507 (14) 0.0434 (13) −0.0088 (11) 0.0041 (10) −0.0001 (11)
C19 0.084 (2) 0.085 (2) 0.081 (2) −0.0113 (18) 0.0471 (18) −0.0079 (18)
C20 0.0364 (12) 0.0348 (12) 0.0594 (15) 0.0014 (9) 0.0062 (11) −0.0048 (10)
C21 0.0411 (12) 0.0447 (13) 0.0476 (13) 0.0002 (10) 0.0110 (10) −0.0062 (10)
C22 0.0623 (18) 0.098 (2) 0.0494 (16) −0.0171 (16) 0.0049 (13) −0.0207 (15)
C23 0.0406 (12) 0.0460 (13) 0.0406 (12) −0.0002 (10) 0.0065 (10) −0.0008 (10)

Geometric parameters (Å, °)

Sn1—C1 2.109 (2) C9—C10 1.363 (4)
Sn1—C7 2.113 (2) C9—H9 0.9300
Sn1—O1 2.1360 (16) C10—C11 1.366 (4)
Sn1—O3 2.0752 (14) C10—H10 0.9300
Sn1—N1 2.1493 (17) C11—C12 1.387 (4)
N1—C20 1.286 (3) C11—H11 0.9300
N1—C21 1.475 (3) C12—H12 0.9300
O1—C23 1.290 (3) C13—C14 1.405 (3)
O2—C23 1.213 (3) C13—C18 1.418 (3)
O3—C13 1.321 (2) C14—C15 1.412 (3)
O4—C18 1.361 (3) C14—C20 1.435 (3)
O4—C19 1.418 (3) C15—C16 1.353 (4)
C1—C6 1.374 (3) C15—H15 0.9300
C1—C2 1.379 (3) C16—C17 1.394 (4)
C2—C3 1.380 (4) C16—H16 0.9300
C2—H2 0.9300 C17—C18 1.368 (3)
C3—C4 1.361 (4) C17—H17 0.9300
C3—H3 0.9300 C19—H19A 0.9600
C4—C5 1.348 (5) C19—H19B 0.9600
C4—H4 0.9300 C19—H19C 0.9600
C5—C6 1.381 (4) C20—H20 0.9300
C5—H5 0.9300 C21—C23 1.525 (3)
C6—H6 0.9300 C21—C22 1.527 (3)
C7—C12 1.376 (3) C21—H21 0.9800
C7—C8 1.378 (3) C22—H22A 0.9600
C8—C9 1.391 (4) C22—H22B 0.9600
C8—H8 0.9300 C22—H22C 0.9600
O3—Sn1—C1 96.86 (8) C10—C11—H11 120.0
O3—Sn1—C7 94.80 (7) C12—C11—H11 120.0
C1—Sn1—C7 123.18 (9) C7—C12—C11 121.0 (3)
O3—Sn1—O1 158.35 (6) C7—C12—H12 119.5
C1—Sn1—O1 93.64 (8) C11—C12—H12 119.5
C7—Sn1—O1 95.20 (8) O3—C13—C14 123.3 (2)
O3—Sn1—N1 82.71 (6) O3—C13—C18 118.4 (2)
C1—Sn1—N1 123.66 (8) C14—C13—C18 118.3 (2)
C7—Sn1—N1 112.92 (8) C13—C14—C15 119.7 (2)
O1—Sn1—N1 75.71 (6) C13—C14—C20 122.5 (2)
C20—N1—C21 119.56 (19) C15—C14—C20 117.8 (2)
C20—N1—Sn1 126.04 (15) C16—C15—C14 120.5 (3)
C21—N1—Sn1 113.85 (14) C16—C15—H15 119.8
C23—O1—Sn1 119.47 (15) C14—C15—H15 119.8
C13—O3—Sn1 127.85 (13) C15—C16—C17 120.5 (2)
C18—O4—C19 118.2 (2) C15—C16—H16 119.8
C6—C1—C2 118.4 (2) C17—C16—H16 119.8
C6—C1—Sn1 121.65 (19) C18—C17—C16 120.7 (3)
C2—C1—Sn1 119.66 (17) C18—C17—H17 119.7
C1—C2—C3 121.0 (3) C16—C17—H17 119.7
C1—C2—H2 119.5 O4—C18—C17 125.5 (2)
C3—C2—H2 119.5 O4—C18—C13 114.1 (2)
C4—C3—C2 119.6 (3) C17—C18—C13 120.4 (2)
C4—C3—H3 120.2 O4—C19—H19A 109.5
C2—C3—H3 120.2 O4—C19—H19B 109.5
C5—C4—C3 120.0 (3) H19A—C19—H19B 109.5
C5—C4—H4 120.0 O4—C19—H19C 109.5
C3—C4—H4 120.0 H19A—C19—H19C 109.5
C4—C5—C6 121.1 (3) H19B—C19—H19C 109.5
C4—C5—H5 119.4 N1—C20—C14 127.0 (2)
C6—C5—H5 119.4 N1—C20—H20 116.5
C1—C6—C5 119.9 (3) C14—C20—H20 116.5
C1—C6—H6 120.1 N1—C21—C23 109.11 (18)
C5—C6—H6 120.1 N1—C21—C22 109.03 (19)
C12—C7—C8 118.5 (2) C23—C21—C22 109.7 (2)
C12—C7—Sn1 121.71 (18) N1—C21—H21 109.7
C8—C7—Sn1 119.80 (18) C23—C21—H21 109.7
C7—C8—C9 120.2 (3) C22—C21—H21 109.7
C7—C8—H8 119.9 C21—C22—H22A 109.5
C9—C8—H8 119.9 C21—C22—H22B 109.5
C10—C9—C8 120.6 (3) H22A—C22—H22B 109.5
C10—C9—H9 119.7 C21—C22—H22C 109.5
C8—C9—H9 119.7 H22A—C22—H22C 109.5
C9—C10—C11 119.6 (3) H22B—C22—H22C 109.5
C9—C10—H10 120.2 O2—C23—O1 124.2 (2)
C11—C10—H10 120.2 O2—C23—C21 119.5 (2)
C10—C11—C12 120.1 (3) O1—C23—C21 116.3 (2)
O3—Sn1—N1—C20 −25.19 (18) C12—C7—C8—C9 −0.5 (4)
C1—Sn1—N1—C20 68.2 (2) Sn1—C7—C8—C9 178.5 (2)
C7—Sn1—N1—C20 −117.34 (19) C7—C8—C9—C10 0.0 (5)
O1—Sn1—N1—C20 153.0 (2) C8—C9—C10—C11 0.4 (5)
O3—Sn1—N1—C21 163.36 (15) C9—C10—C11—C12 −0.2 (5)
C1—Sn1—N1—C21 −103.22 (16) C8—C7—C12—C11 0.6 (4)
C7—Sn1—N1—C21 71.22 (16) Sn1—C7—C12—C11 −178.3 (2)
O1—Sn1—N1—C21 −18.44 (14) C10—C11—C12—C7 −0.3 (4)
O3—Sn1—O1—C23 11.9 (3) Sn1—O3—C13—C14 −30.4 (3)
C1—Sn1—O1—C23 130.87 (18) Sn1—O3—C13—C18 152.16 (16)
C7—Sn1—O1—C23 −105.33 (18) O3—C13—C14—C15 −177.7 (2)
N1—Sn1—O1—C23 7.03 (16) C18—C13—C14—C15 −0.3 (3)
C1—Sn1—O3—C13 −87.66 (18) O3—C13—C14—C20 0.7 (3)
C7—Sn1—O3—C13 148.07 (18) C18—C13—C14—C20 178.1 (2)
O1—Sn1—O3—C13 30.8 (3) C13—C14—C15—C16 −0.2 (4)
N1—Sn1—O3—C13 35.53 (18) C20—C14—C15—C16 −178.7 (3)
O3—Sn1—C1—C6 −1.4 (2) C14—C15—C16—C17 0.8 (5)
C7—Sn1—C1—C6 98.9 (2) C15—C16—C17—C18 −0.9 (5)
O1—Sn1—C1—C6 −162.4 (2) C19—O4—C18—C17 −4.3 (4)
N1—Sn1—C1—C6 −87.2 (2) C19—O4—C18—C13 175.4 (2)
O3—Sn1—C1—C2 −174.98 (19) C16—C17—C18—O4 −179.9 (3)
C7—Sn1—C1—C2 −74.7 (2) C16—C17—C18—C13 0.4 (4)
O1—Sn1—C1—C2 24.0 (2) O3—C13—C18—O4 −2.0 (3)
N1—Sn1—C1—C2 99.2 (2) C14—C13—C18—O4 −179.5 (2)
C6—C1—C2—C3 −1.3 (4) O3—C13—C18—C17 177.7 (2)
Sn1—C1—C2—C3 172.5 (2) C14—C13—C18—C17 0.2 (3)
C1—C2—C3—C4 0.7 (5) C21—N1—C20—C14 −178.7 (2)
C2—C3—C4—C5 1.1 (5) Sn1—N1—C20—C14 10.3 (3)
C3—C4—C5—C6 −2.3 (6) C13—C14—C20—N1 9.1 (4)
C2—C1—C6—C5 0.1 (5) C15—C14—C20—N1 −172.4 (2)
Sn1—C1—C6—C5 −173.6 (3) C20—N1—C21—C23 −146.0 (2)
C4—C5—C6—C1 1.7 (6) Sn1—N1—C21—C23 26.0 (2)
O3—Sn1—C7—C12 −29.5 (2) C20—N1—C21—C22 94.2 (3)
C1—Sn1—C7—C12 −130.88 (19) Sn1—N1—C21—C22 −93.8 (2)
O1—Sn1—C7—C12 131.3 (2) Sn1—O1—C23—O2 −176.5 (2)
N1—Sn1—C7—C12 54.6 (2) Sn1—O1—C23—C21 5.7 (3)
O3—Sn1—C7—C8 151.6 (2) N1—C21—C23—O2 161.4 (2)
C1—Sn1—C7—C8 50.2 (2) C22—C21—C23—O2 −79.3 (3)
O1—Sn1—C7—C8 −47.6 (2) N1—C21—C23—O1 −20.8 (3)
N1—Sn1—C7—C8 −124.3 (2) C22—C21—C23—O1 98.6 (2)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2900).

References

  1. Beltran, H. I., Zamudio-Rivera, L. S., Mancilla, T., Santillan, R. & Farfan, N. (2003). Chem. Eur. J.9, 2291–2306. [DOI] [PubMed]
  2. Bruker (2002). SADABS, SAINT and SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  4. Rivera, J. M., Reyes, H., Cortes, A., Santillan, R., Lacroix, P. G., Lepetit, C., Nakatani, K. & Farfan, N. (2006). Chem. Mater.18, 1174–1183.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Tian, L., Sun, Y., Zheng, X., Liu, X., You, Y., Liu, X. & Qian, B. (2007). Chin. J. Chem.25, 312–318.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809002426/hb2900sup1.cif

e-65-0m232-sup1.cif (22.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809002426/hb2900Isup2.hkl

e-65-0m232-Isup2.hkl (207.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES