Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Jan 8;65(Pt 2):m163–m164. doi: 10.1107/S1600536808044048

catena-Poly[dieth­yl(2-hydroxy­ethyl)­ammonium [[tetra-μ-acetato-κ8 O:O′-dicuprate(II)(CuCu)]-μ-acetato-κ2 O:O′] dichloro­methane solvate]

Muhammad Shahid a, Muhammad Mazhar a,*, Paul O’Brien b, Mohammad Afzaal b, James Raftery b
PMCID: PMC2968312  PMID: 21581773

Abstract

The title compound, {(C6H16NO)[Cu2(CH3COO)5]·CH2Cl2}n, consists of acetate-bridged Cu2(CH3COO)4 units that are connected via another acetate anion at each terminus to form infinite anionic [{Cu2(CH3COO)4}(CH3COO)]n chains along [100]. The connecting acetate is hydrogen bonded to the dieth­yl(2-hydroxy­ethyl)ammonium cation, and the dichloro­methane solvent mol­ecule fills the remaining voids in the structure. The O—Cu—Cu angles along the polymeric chain are nearly linear [175.49 (5)°], but individual O—Cu—Cu—O units along the chain are bent and rotated against each other at the bridging acetate ion. Translation of each Cu2(CH3COO)4 unit along the chain, represented by the least-squares plane of the two copper ions along with four of the acetate O atoms, rotated these units by 35.16 (3)°.

Related literature

Shahid, Mazhar, Helliwell et al. (2008) describe the study of dinuclear Cu complexes; Van Niekerk & Schoening (1953) provide X-ray evidence for Cu—Cu bonds in cupric acetate; Brown & Chidambaram (1973) report the redetermination of the structure of cupric acetate by neutron-diffraction; Shahid, Mazhar, Malik et al. (2008); Hamid et al. (2007) and Zhang et al. (2004) describe geometric parameters of organo–copper complexes. graphic file with name e-65-0m163-scheme1.jpg

Experimental

Crystal data

  • (C6H16NO)[Cu2(C2H3O2)5]·CH2Cl2

  • M r = 625.42

  • Orthorhombic, Inline graphic

  • a = 17.6366 (11) Å

  • b = 12.1078 (8) Å

  • c = 11.9148 (7) Å

  • V = 2544.3 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.94 mm−1

  • T = 100 (2) K

  • 0.40 × 0.40 × 0.10 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001) T min = 0.657, T max = 0.830

  • 21202 measured reflections

  • 5939 independent reflections

  • 5693 reflections with I > 2σ(I)

  • R int = 0.029

Refinement

  • R[F 2 > 2σ(F 2)] = 0.034

  • wR(F 2) = 0.080

  • S = 1.08

  • 5939 reflections

  • 306 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.75 e Å−3

  • Δρmin = −0.40 e Å−3

  • Absolute structure: Flack (1983), 2726 Friedel pairs

  • Flack parameter: 0.017 (11)

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2003); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808044048/zl2161sup1.cif

e-65-0m163-sup1.cif (25.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808044048/zl2161Isup2.hkl

e-65-0m163-Isup2.hkl (290.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O10i 0.93 1.97 2.832 (4) 153
N1—H1⋯O9i 0.93 2.45 3.056 (3) 123
O11—H11⋯O9i 0.84 2.04 2.840 (3) 159

Symmetry code: (i) Inline graphic.

Acknowledgments

MS is grateful to the Higher Education Commission of Pakistan and the Pakistan Science Foundation for financial support via their PhD program.

supplementary crystallographic information

Comment

The background of this study has been set out in our previous work on the structural chemistry of metal-organic compounds (Shahid, Mazhar, Helliwell et al., 2008). Herein, as a continuation of these studies, the structure of the title compound is described which consists of acetate bridged Cu2(CH3COO)4 units that are connected via another acetate anion at each terminus to form infinite anionic [{Cu2(CH3COO)4}(CH3COO)]n chains along the [100] direction of the crystal. Crystallographically speaking the chain is generated from a glide related copies of the monomer. The connecting acetate is hydrogen bonded to the (diethylammonium)ethanol cation (Fig. 2). The dichloromethane solvate molecule occupies voids in the structure. The O—Cu—Cu angles along the polymeric chain are nearly linear (175.49 (5)°), but individual O—Cu—Cu—O units along the chain are rotated relative to each other. Representing the orientation of Cu2(CH3COO)4 unit by the least squares plane Cu1 Cu2 O1 O2 O5 O6, translation along the chain rotates the orientation by 35.16 (3)°.

In the title compound (Fig.1), the two metal centers are similar; each has a coordination number of six having a coordination geometry close to octahedral, with a CuO5Cu core similar to that of Cu centers in Cu2(OAc)4(H2O)2. The basal planes of Cu(1) and Cu(2) are each composed of an oxygen from each of the four acetate groups (O(1), O(3), O(5), O(8) and O(2), O(4), O(6), O(7) respectively), which link the two copper atoms in the monomer. Coordination by the fifth acetate's O atoms, O(9) and O(10) (from a symmetry generated copy), form one apical bond for Cu(2) and Cu(1) respectively. The octahedral coordination of the copper atoms is completed by the apical Cu(1)—Cu(2) bond of 2.6259 (4) Å. This is significantly shorter than the 2.64 Å as reported for dinuclear copper (II) acetate monohydrate in 1953 (Van Niekerk & Schoening, 1953), but close to the more accurate value obtained in a redetermination by neutron diffraction analysis (2.6143 (17) Å, Brown & Chidambaram, 1973). The Cu—O bond lengths in the basal planes for both the Cu atoms range from 1.949 (2) to 1.985 (2) Å and the average distance is in good agreement with 1.97 Å, as reported for copper acetate (Van Niekerk & Schoening, 1953). The most striking structural difference between the title compound and the dinuclear units in cupric acetate appears to be the weaker apixal bonds Cu—O which are 2.148 (18) and 2.124 (18) Å for Cu(1) and Cu(2), respectively in the title compound and 2.20 Å in the cupric acetate. The distortion is further evident from the slight deviation of trans angles in the basal plane and axial angle from ideal value of 180°. This is in good agreement with the literature (Shahid, Mazhar, Malik et al., 2008); Hamid et al., 2007; Zhang et al., 2004). In the structure, the (diethylamonium)ethanol cations are linked through hydrogen bonds [O(11)—H(11)···O(9)], [N(1)—H(1)···O(9)] and [N(1)—H(1)···O(10)] to the connecting acetate group occupying cis positions at the main polymeric chain (Table 1, Fig. 3).

Experimental

N,N-Diethylaminoethanol (deaeH) (0.27 g, 2.34 mmol) and acetic acid (0.14 g, 2.34 mmol) were added to a stirred suspension of Cu(CH3COO)2.H2O (0.85 g, 4.67 mmol) in 25 ml dichloromethane. After two hours stirring, the mixture was vacuum evaporated to dryness and the solid was redissolved in minimum amount of dichloromethane to give blue block-shaped crystals at room temperature after two weeks.

Refinement

The non-hydrogen atoms were refined anisotropically. H atoms were included in calculated positions with C—H lengths of 0.95(CH), 0.99(CH2) & 0.98(CH3)Å; Uiso(H) values were fixed at 1.2Ueq(C) except for CH3 where it was 1.5Ueq(C). For N—H and O—H the lengths and Uiso were 0.98Å and 1.2Ueq(N) and 0.84Å and 1.5Ueq(O) respectively.

Figures

Fig. 1.

Fig. 1.

View of the title compound (50% probability displacement ellipsoids)

Fig. 2.

Fig. 2.

Fragment of the chain showing the H-bonding interactions.

Fig. 3.

Fig. 3.

View down the b axis showing the infinite chains.

Crystal data

(C6H16NO)[Cu2(C2H3O2)5]·CH2Cl2 Dx = 1.633 Mg m3
Mr = 625.42 Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pna21 Cell parameters from 7814 reflections
a = 17.6366 (11) Å θ = 2.4–28.1°
b = 12.1078 (8) Å µ = 1.94 mm1
c = 11.9148 (7) Å T = 100 K
V = 2544.3 (3) Å3 Plate, turquoise
Z = 4 0.40 × 0.40 × 0.10 mm
F(000) = 1288

Data collection

Bruker SMART CCD area-detector diffractometer 5939 independent reflections
Radiation source: fine-focus sealed tube 5693 reflections with I > 2σ(I)
graphite Rint = 0.029
φ and ω scans θmax = 28.3°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Bruker, 2001) h = −22→22
Tmin = 0.657, Tmax = 0.830 k = −16→15
21202 measured reflections l = −15→15

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034 H-atom parameters constrained
wR(F2) = 0.080 w = 1/[σ2(Fo2) + (0.0393P)2 + 1.2652P] where P = (Fo2 + 2Fc2)/3
S = 1.08 (Δ/σ)max = 0.013
5939 reflections Δρmax = 0.75 e Å3
306 parameters Δρmin = −0.40 e Å3
1 restraint Absolute structure: Flack (1983), 2726 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: 0.017 (11)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O10 1.03029 (10) 0.66475 (16) 0.5408 (2) 0.0152 (4)
C1 0.75148 (17) 0.9544 (3) 0.6165 (2) 0.0176 (6)
C2 0.77083 (18) 1.0672 (3) 0.6609 (3) 0.0206 (6)
H2A 0.7588 1.0707 0.7411 0.031*
H2B 0.7413 1.1230 0.6206 0.031*
H2C 0.8250 1.0813 0.6500 0.031*
C3 0.73249 (17) 0.8234 (2) 0.3482 (2) 0.0166 (6)
C4 0.73934 (19) 0.8662 (3) 0.2292 (3) 0.0222 (7)
H4A 0.7896 0.8478 0.1994 0.033*
H4B 0.7327 0.9465 0.2289 0.033*
H4C 0.7002 0.8319 0.1823 0.033*
C5 0.68347 (17) 0.5689 (3) 0.4849 (3) 0.0191 (6)
C6 0.66262 (19) 0.4540 (3) 0.4463 (3) 0.0283 (8)
H6A 0.7085 0.4087 0.4414 0.042*
H6B 0.6384 0.4581 0.3724 0.042*
H6C 0.6274 0.4208 0.5002 0.042*
C7 0.71363 (17) 0.6985 (3) 0.7522 (3) 0.0173 (6)
C8 0.71030 (19) 0.6623 (3) 0.8732 (3) 0.0257 (7)
H8A 0.6693 0.7017 0.9116 0.039*
H8B 0.7587 0.6791 0.9100 0.039*
H8C 0.7008 0.5826 0.8767 0.039*
C9 0.96959 (15) 0.7062 (2) 0.5798 (2) 0.0133 (6)
C10 0.97463 (17) 0.7894 (3) 0.6744 (3) 0.0189 (6)
H10A 1.0156 0.7682 0.7256 0.028*
H10B 0.9265 0.7909 0.7154 0.028*
H10C 0.9851 0.8628 0.6433 0.028*
C11 0.54065 (17) 0.9990 (3) 0.2860 (3) 0.0210 (7)
H11A 0.5795 0.9515 0.2504 0.025*
H11B 0.5183 1.0463 0.2268 0.025*
C12 0.57806 (18) 1.0711 (3) 0.3723 (3) 0.0240 (7)
H12A 0.5967 1.0253 0.4342 0.036*
H12B 0.5412 1.1246 0.4012 0.036*
H12C 0.6206 1.1106 0.3379 0.036*
C13 0.4783 (2) 0.8130 (3) 0.2850 (3) 0.0265 (7)
H13A 0.4413 0.7669 0.3262 0.032*
H13B 0.5290 0.7792 0.2947 0.032*
C14 0.4581 (2) 0.8124 (4) 0.1617 (3) 0.0350 (9)
H14A 0.4934 0.8599 0.1205 0.052*
H14B 0.4063 0.8399 0.1519 0.052*
H14C 0.4615 0.7368 0.1327 0.052*
C15 0.40137 (17) 0.9772 (3) 0.3296 (3) 0.0249 (7)
H15A 0.3913 0.9998 0.2512 0.030*
H15B 0.3635 0.9203 0.3499 0.030*
C16 0.39024 (18) 1.0753 (3) 0.4043 (3) 0.0280 (7)
H16A 0.4225 1.1365 0.3771 0.034*
H16B 0.3368 1.0996 0.3991 0.034*
C17 0.9547 (2) 0.9492 (3) 0.4356 (3) 0.0292 (8)
H17A 0.9991 0.9018 0.4520 0.035*
H17B 0.9086 0.9093 0.4601 0.035*
Cl1 0.96272 (5) 1.07456 (9) 0.51185 (9) 0.0367 (2)
Cl2 0.94975 (7) 0.97421 (9) 0.29049 (9) 0.0475 (3)
Cu1 0.647405 (16) 0.78765 (2) 0.55145 (3) 0.01289 (8)
Cu2 0.791704 (16) 0.73425 (3) 0.54933 (4) 0.01346 (8)
N1 0.47907 (14) 0.9266 (2) 0.3355 (2) 0.0182 (5)
H1 0.4905 0.9179 0.4112 0.022*
O1 0.68332 (11) 0.93608 (17) 0.59168 (18) 0.0168 (4)
O2 0.80508 (12) 0.88517 (18) 0.60953 (19) 0.0211 (5)
O3 0.66724 (12) 0.82111 (19) 0.39116 (18) 0.0184 (4)
O4 0.79321 (12) 0.79520 (19) 0.39662 (19) 0.0194 (5)
O5 0.62993 (11) 0.63224 (17) 0.51139 (19) 0.0193 (4)
O6 0.75254 (11) 0.59322 (18) 0.4873 (2) 0.0202 (5)
O7 0.77446 (12) 0.67809 (19) 0.70047 (19) 0.0212 (5)
O8 0.65654 (12) 0.7454 (2) 0.71140 (18) 0.0188 (4)
O9 0.90593 (10) 0.67911 (16) 0.5416 (2) 0.0172 (4)
O11 0.40773 (14) 1.05419 (19) 0.5170 (2) 0.0306 (6)
H11 0.3963 0.9886 0.5327 0.046*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O10 0.0095 (8) 0.0212 (9) 0.0148 (10) −0.0006 (6) 0.0011 (8) −0.0015 (10)
C1 0.0178 (15) 0.0243 (16) 0.0107 (14) −0.0011 (12) 0.0035 (11) 0.0009 (12)
C2 0.0197 (15) 0.0206 (16) 0.0215 (15) −0.0048 (12) 0.0025 (13) −0.0057 (12)
C3 0.0190 (14) 0.0160 (14) 0.0148 (14) −0.0009 (11) −0.0020 (12) −0.0026 (11)
C4 0.0220 (16) 0.0293 (17) 0.0153 (15) 0.0007 (13) 0.0025 (12) 0.0042 (13)
C5 0.0186 (15) 0.0205 (15) 0.0182 (15) 0.0010 (12) 0.0025 (12) 0.0014 (12)
C6 0.0172 (16) 0.0200 (16) 0.048 (2) −0.0038 (12) 0.0046 (15) −0.0101 (15)
C7 0.0172 (15) 0.0179 (14) 0.0168 (15) −0.0019 (11) 0.0000 (11) −0.0016 (12)
C8 0.0232 (16) 0.0366 (19) 0.0173 (16) 0.0060 (14) 0.0024 (13) 0.0091 (14)
C9 0.0139 (13) 0.0139 (13) 0.0123 (15) −0.0011 (10) −0.0003 (10) 0.0017 (9)
C10 0.0144 (14) 0.0209 (16) 0.0213 (16) 0.0000 (11) −0.0036 (12) −0.0091 (12)
C11 0.0150 (15) 0.0296 (18) 0.0185 (16) −0.0010 (12) 0.0033 (12) 0.0075 (13)
C12 0.0144 (15) 0.0294 (17) 0.0283 (17) −0.0048 (13) −0.0006 (13) 0.0063 (14)
C13 0.0315 (19) 0.0241 (16) 0.0240 (17) −0.0013 (14) −0.0016 (14) 0.0000 (14)
C14 0.040 (2) 0.043 (2) 0.0215 (17) −0.0088 (17) −0.0011 (16) −0.0045 (16)
C15 0.0135 (15) 0.0404 (19) 0.0208 (16) −0.0001 (13) −0.0038 (12) 0.0141 (14)
C16 0.0133 (15) 0.0298 (17) 0.041 (2) 0.0028 (13) 0.0025 (14) 0.0116 (15)
C17 0.0277 (18) 0.036 (2) 0.0242 (18) −0.0045 (14) 0.0010 (15) 0.0061 (15)
Cl1 0.0248 (4) 0.0460 (5) 0.0393 (5) 0.0034 (4) −0.0039 (4) −0.0083 (4)
Cl2 0.0826 (8) 0.0327 (5) 0.0272 (5) −0.0082 (5) 0.0083 (5) 0.0062 (4)
Cu1 0.00720 (13) 0.01831 (15) 0.01316 (15) 0.00109 (10) 0.00003 (17) −0.00089 (17)
Cu2 0.00722 (13) 0.01905 (15) 0.01411 (15) 0.00129 (10) 0.00009 (19) −0.00129 (18)
N1 0.0148 (12) 0.0255 (14) 0.0142 (12) −0.0033 (10) −0.0022 (10) 0.0056 (11)
O1 0.0117 (10) 0.0184 (10) 0.0205 (10) 0.0008 (8) −0.0007 (8) −0.0027 (8)
O2 0.0119 (10) 0.0253 (12) 0.0260 (12) 0.0025 (9) −0.0020 (9) −0.0077 (10)
O3 0.0117 (10) 0.0290 (12) 0.0145 (10) 0.0008 (9) −0.0004 (8) 0.0014 (9)
O4 0.0127 (10) 0.0295 (12) 0.0161 (11) 0.0003 (8) 0.0025 (8) 0.0018 (9)
O5 0.0123 (10) 0.0200 (10) 0.0255 (11) −0.0005 (8) −0.0006 (8) −0.0045 (8)
O6 0.0103 (10) 0.0207 (11) 0.0295 (13) −0.0016 (8) 0.0002 (9) −0.0022 (9)
O7 0.0138 (10) 0.0317 (12) 0.0183 (11) 0.0069 (9) 0.0001 (9) 0.0054 (9)
O8 0.0153 (10) 0.0273 (12) 0.0137 (10) 0.0043 (9) 0.0023 (8) 0.0023 (9)
O9 0.0083 (8) 0.0220 (9) 0.0213 (11) 0.0002 (7) −0.0008 (10) −0.0075 (10)
O11 0.0310 (13) 0.0231 (11) 0.0378 (15) −0.0031 (10) 0.0034 (11) −0.0001 (10)

Geometric parameters (Å, °)

O10—C9 1.271 (3) C12—H12A 0.9800
O10—Cu1i 2.1482 (18) C12—H12B 0.9800
C1—O1 1.258 (4) C12—H12C 0.9800
C1—O2 1.266 (4) C13—N1 1.500 (4)
C1—C2 1.504 (4) C13—C14 1.512 (5)
C2—H2A 0.9800 C13—H13A 0.9900
C2—H2B 0.9800 C13—H13B 0.9900
C2—H2C 0.9800 C14—H14A 0.9800
C3—O3 1.260 (4) C14—H14B 0.9800
C3—O4 1.263 (4) C14—H14C 0.9800
C3—C4 1.514 (4) C15—C16 1.496 (5)
C4—H4A 0.9800 C15—N1 1.503 (4)
C4—H4B 0.9800 C15—H15A 0.9900
C4—H4C 0.9800 C15—H15B 0.9900
C5—O6 1.254 (4) C16—O11 1.400 (4)
C5—O5 1.257 (4) C16—H16A 0.9900
C5—C6 1.510 (4) C16—H16B 0.9900
C6—H6A 0.9800 C17—Cl2 1.758 (4)
C6—H6B 0.9800 C17—Cl1 1.775 (4)
C6—H6C 0.9800 C17—H17A 0.9900
C7—O8 1.254 (4) C17—H17B 0.9900
C7—O7 1.262 (4) Cu1—O1 1.965 (2)
C7—C8 1.508 (4) Cu1—O5 1.966 (2)
C8—H8A 0.9800 Cu1—O8 1.980 (2)
C8—H8B 0.9800 Cu1—O3 1.983 (2)
C8—H8C 0.9800 Cu1—O10ii 2.1482 (18)
C9—O9 1.255 (3) Cu1—Cu2 2.6259 (4)
C9—C10 1.514 (4) Cu2—O7 1.949 (2)
C10—H10A 0.9800 Cu2—O4 1.964 (2)
C10—H10B 0.9800 Cu2—O2 1.977 (2)
C10—H10C 0.9800 Cu2—O6 1.985 (2)
C11—C12 1.502 (5) Cu2—O9 2.1243 (18)
C11—N1 1.515 (4) N1—H1 0.9300
C11—H11A 0.9900 O11—H11 0.8400
C11—H11B 0.9900
C9—O10—Cu1i 133.03 (19) C13—C14—H14C 109.5
O1—C1—O2 125.5 (3) H14A—C14—H14C 109.5
O1—C1—C2 117.4 (3) H14B—C14—H14C 109.5
O2—C1—C2 117.1 (3) C16—C15—N1 114.6 (3)
C1—C2—H2A 109.5 C16—C15—H15A 108.6
C1—C2—H2B 109.5 N1—C15—H15A 108.6
H2A—C2—H2B 109.5 C16—C15—H15B 108.6
C1—C2—H2C 109.5 N1—C15—H15B 108.6
H2A—C2—H2C 109.5 H15A—C15—H15B 107.6
H2B—C2—H2C 109.5 O11—C16—C15 113.4 (3)
O3—C3—O4 125.6 (3) O11—C16—H16A 108.9
O3—C3—C4 117.4 (3) C15—C16—H16A 108.9
O4—C3—C4 116.9 (3) O11—C16—H16B 108.9
C3—C4—H4A 109.5 C15—C16—H16B 108.9
C3—C4—H4B 109.5 H16A—C16—H16B 107.7
H4A—C4—H4B 109.5 Cl2—C17—Cl1 111.1 (2)
C3—C4—H4C 109.5 Cl2—C17—H17A 109.4
H4A—C4—H4C 109.5 Cl1—C17—H17A 109.4
H4B—C4—H4C 109.5 Cl2—C17—H17B 109.4
O6—C5—O5 125.5 (3) Cl1—C17—H17B 109.4
O6—C5—C6 117.4 (3) H17A—C17—H17B 108.0
O5—C5—C6 117.1 (3) O1—Cu1—O5 170.19 (8)
C5—C6—H6A 109.5 O1—Cu1—O8 88.59 (10)
C5—C6—H6B 109.5 O5—Cu1—O8 89.95 (10)
H6A—C6—H6B 109.5 O1—Cu1—O3 89.50 (9)
C5—C6—H6C 109.5 O5—Cu1—O3 89.39 (10)
H6A—C6—H6C 109.5 O8—Cu1—O3 164.87 (9)
H6B—C6—H6C 109.5 O1—Cu1—O10ii 94.53 (8)
O8—C7—O7 125.6 (3) O5—Cu1—O10ii 95.26 (8)
O8—C7—C8 118.1 (3) O8—Cu1—O10ii 101.81 (9)
O7—C7—C8 116.3 (3) O3—Cu1—O10ii 93.31 (9)
C7—C8—H8A 109.5 O1—Cu1—Cu2 85.13 (6)
C7—C8—H8B 109.5 O5—Cu1—Cu2 85.06 (6)
H8A—C8—H8B 109.5 O8—Cu1—Cu2 82.34 (6)
C7—C8—H8C 109.5 O3—Cu1—Cu2 82.54 (6)
H8A—C8—H8C 109.5 O10ii—Cu1—Cu2 175.83 (7)
H8B—C8—H8C 109.5 O7—Cu2—O4 171.68 (9)
O9—C9—O10 121.2 (3) O7—Cu2—O2 90.33 (10)
O9—C9—C10 119.7 (2) O4—Cu2—O2 89.27 (10)
O10—C9—C10 119.1 (2) O7—Cu2—O6 89.42 (10)
C9—C10—H10A 109.5 O4—Cu2—O6 89.01 (10)
C9—C10—H10B 109.5 O2—Cu2—O6 166.35 (9)
H10A—C10—H10B 109.5 O7—Cu2—O9 94.49 (9)
C9—C10—H10C 109.5 O4—Cu2—O9 93.75 (9)
H10A—C10—H10C 109.5 O2—Cu2—O9 101.13 (8)
H10B—C10—H10C 109.5 O6—Cu2—O9 92.50 (8)
C12—C11—N1 112.6 (3) O7—Cu2—Cu1 85.74 (6)
C12—C11—H11A 109.1 O4—Cu2—Cu1 85.95 (6)
N1—C11—H11A 109.1 O2—Cu2—Cu1 83.37 (6)
C12—C11—H11B 109.1 O6—Cu2—Cu1 83.00 (6)
N1—C11—H11B 109.1 O9—Cu2—Cu1 175.49 (5)
H11A—C11—H11B 107.8 C13—N1—C15 110.3 (3)
C11—C12—H12A 109.5 C13—N1—C11 112.4 (3)
C11—C12—H12B 109.5 C15—N1—C11 113.5 (3)
H12A—C12—H12B 109.5 C13—N1—H1 106.7
C11—C12—H12C 109.5 C15—N1—H1 106.7
H12A—C12—H12C 109.5 C11—N1—H1 106.7
H12B—C12—H12C 109.5 C1—O1—Cu1 121.79 (19)
N1—C13—C14 113.4 (3) C1—O2—Cu2 123.1 (2)
N1—C13—H13A 108.9 C3—O3—Cu1 123.84 (19)
C14—C13—H13A 108.9 C3—O4—Cu2 120.88 (19)
N1—C13—H13B 108.9 C5—O5—Cu1 121.84 (19)
C14—C13—H13B 108.9 C5—O6—Cu2 123.3 (2)
H13A—C13—H13B 107.7 C7—O7—Cu2 121.1 (2)
C13—C14—H14A 109.5 C7—O8—Cu1 123.7 (2)
C13—C14—H14B 109.5 C9—O9—Cu2 138.64 (19)
H14A—C14—H14B 109.5 C16—O11—H11 109.5
Cu1i—O10—C9—O9 163.2 (2) O8—Cu1—O3—C3 −7.4 (5)
Cu1i—O10—C9—C10 −17.2 (4) O10ii—Cu1—O3—C3 169.8 (2)
N1—C15—C16—O11 −54.5 (4) Cu2—Cu1—O3—C3 −9.9 (2)
O1—Cu1—Cu2—O7 97.97 (10) O3—C3—O4—Cu2 3.4 (4)
O5—Cu1—Cu2—O7 −81.87 (10) C4—C3—O4—Cu2 −178.2 (2)
O8—Cu1—Cu2—O7 8.74 (10) O2—Cu2—O4—C3 −91.6 (2)
O3—Cu1—Cu2—O7 −171.90 (10) O6—Cu2—O4—C3 74.9 (2)
O1—Cu1—Cu2—O4 −82.60 (9) O9—Cu2—O4—C3 167.3 (2)
O5—Cu1—Cu2—O4 97.56 (10) Cu1—Cu2—O4—C3 −8.2 (2)
O8—Cu1—Cu2—O4 −171.83 (10) O6—C5—O5—Cu1 4.7 (4)
O3—Cu1—Cu2—O4 7.53 (9) C6—C5—O5—Cu1 −175.0 (2)
O1—Cu1—Cu2—O2 7.13 (9) O8—Cu1—O5—C5 −91.6 (2)
O5—Cu1—Cu2—O2 −172.71 (10) O3—Cu1—O5—C5 73.3 (2)
O8—Cu1—Cu2—O2 −82.10 (10) O10ii—Cu1—O5—C5 166.5 (2)
O3—Cu1—Cu2—O2 97.26 (10) Cu2—Cu1—O5—C5 −9.3 (2)
O1—Cu1—Cu2—O6 −172.10 (10) O5—C5—O6—Cu2 6.5 (4)
O5—Cu1—Cu2—O6 8.06 (9) C6—C5—O6—Cu2 −173.8 (2)
O8—Cu1—Cu2—O6 98.67 (10) O7—Cu2—O6—C5 75.7 (2)
O3—Cu1—Cu2—O6 −81.97 (10) O4—Cu2—O6—C5 −96.2 (2)
C14—C13—N1—C15 62.7 (4) O2—Cu2—O6—C5 −13.3 (6)
C14—C13—N1—C11 −65.1 (4) O9—Cu2—O6—C5 170.1 (2)
C16—C15—N1—C13 163.9 (3) Cu1—Cu2—O6—C5 −10.1 (2)
C16—C15—N1—C11 −68.9 (3) O8—C7—O7—Cu2 7.2 (4)
C12—C11—N1—C13 −141.1 (3) C8—C7—O7—Cu2 −173.0 (2)
C12—C11—N1—C15 92.8 (3) O2—Cu2—O7—C7 72.4 (2)
O2—C1—O1—Cu1 6.5 (4) O6—Cu2—O7—C7 −94.0 (2)
C2—C1—O1—Cu1 −171.9 (2) O9—Cu2—O7—C7 173.6 (2)
O8—Cu1—O1—C1 73.2 (2) Cu1—Cu2—O7—C7 −11.0 (2)
O3—Cu1—O1—C1 −91.8 (2) O7—C7—O8—Cu1 4.9 (5)
O10ii—Cu1—O1—C1 174.9 (2) C8—C7—O8—Cu1 −174.9 (2)
Cu2—Cu1—O1—C1 −9.2 (2) O1—Cu1—O8—C7 −95.1 (3)
O1—C1—O2—Cu2 3.4 (4) O5—Cu1—O8—C7 75.2 (3)
C2—C1—O2—Cu2 −178.2 (2) O3—Cu1—O8—C7 −12.3 (6)
O7—Cu2—O2—C1 −93.5 (2) O10ii—Cu1—O8—C7 170.5 (2)
O4—Cu2—O2—C1 78.2 (2) Cu2—Cu1—O8—C7 −9.9 (2)
O6—Cu2—O2—C1 −4.6 (6) O10—C9—O9—Cu2 −166.8 (2)
O9—Cu2—O2—C1 171.9 (2) C10—C9—O9—Cu2 13.5 (5)
Cu1—Cu2—O2—C1 −7.8 (2) O7—Cu2—O9—C9 −75.7 (3)
O4—C3—O3—Cu1 7.0 (4) O4—Cu2—O9—C9 105.5 (3)
C4—C3—O3—Cu1 −171.4 (2) O2—Cu2—O9—C9 15.5 (3)
O1—Cu1—O3—C3 75.3 (2) O6—Cu2—O9—C9 −165.4 (3)
O5—Cu1—O3—C3 −94.9 (2)

Symmetry codes: (i) x+1/2, −y+3/2, z; (ii) x−1/2, −y+3/2, z.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1···O10ii 0.93 1.97 2.832 (4) 153
N1—H1···O9ii 0.93 2.45 3.056 (3) 123
O11—H11···O9ii 0.84 2.04 2.840 (3) 159

Symmetry codes: (ii) x−1/2, −y+3/2, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZL2161).

References

  1. Brown, G. M. & Chidambaram, R. (1973). Acta Cryst. B29, 2393–2403.
  2. Bruker (2001). SMART and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Bruker (2003). SAINT-Plus Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  5. Hamid, M., Tahir, A. A., Mazhar, M., Zeller, M. & Hunter, A. D. (2007). Inorg. Chem.46, 4120–4127. [DOI] [PubMed]
  6. Shahid, M., Mazhar, M., Helliwell, M., Akhtar, J. & Ahmad, K. (2008). Acta Cryst. E64, m1139–m1140. [DOI] [PMC free article] [PubMed]
  7. Shahid, M., Mazhar, M., Malik, M. A., O’Brien, P. & Raftery, J. (2008). Polyhedron, 27, 3337–3342.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Van Niekerk, J. N. & Schoening, F. R. L. (1953). Nature (London), 171, 36–37.
  10. Zhang, Y.-L., Chen, S.-W., Liu, W.-S. & Wang, D.-Q. (2004). Acta Cryst. E60, m196–m197.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808044048/zl2161sup1.cif

e-65-0m163-sup1.cif (25.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808044048/zl2161Isup2.hkl

e-65-0m163-Isup2.hkl (290.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES