Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Jan 23;65(Pt 2):o365. doi: 10.1107/S1600536809002086

3,3′-(p-Phenyl­enedimethyl­ene)di­imidazol-1-ium bis­(3-carb­oxy-4-hydroxy­benzene­sulfonate) dihydrate

Yong-Li Peng a, Li-Hui Jia a,*
PMCID: PMC2968313  PMID: 21581963

Abstract

In the title compound, C14H16N4 2+·2C7H5O6S·2H2O, the 3,3′-(p-phenyl­enedimethyl­ene)diimidazol-1-ium dication lies on a crystallographic inversion center. In the crystal structure, dications, anions and solvent water mol­ecules are linked via O—H⋯O, N—H⋯O and C—H⋯O hydrogen bonds, and C—H⋯π inter­actions, forming a three-dimensional network containing R 2 2(4), R 2 4(12), R 4 4(22), R 8 10(32) and R 12 14(66) ring motifs.

Related literature

For information on hydrogen-bond graph-set motifs, see: Bernstein et al. (1995). For the synthesis and crystal structure of 1,4-bis­(imidazol-1-ylmeth­yl)benzene, see: Hoskins et al. (1997). For related crystal structures, see: Meng et al. (2007, 2008); Muthiah et al. (2003); Smith et al. (2004, 2005a ,b ,c ).graphic file with name e-65-0o365-scheme1.jpg

Experimental

Crystal data

  • C14H16N4 2+·2C7H5O6S·2H2O

  • M r = 710.68

  • Triclinic, Inline graphic

  • a = 7.9975 (6) Å

  • b = 8.8060 (7) Å

  • c = 11.2419 (8) Å

  • α = 90.784 (1)°

  • β = 96.656 (1)°

  • γ = 97.342 (1)°

  • V = 779.61 (10) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 292 (2) K

  • 0.20 × 0.10 × 0.10 mm

Data collection

  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1997) T min = 0.942, T max = 0.976

  • 8434 measured reflections

  • 3168 independent reflections

  • 2524 reflections with I > 2σ(I)

  • R int = 0.024

Refinement

  • R[F 2 > 2σ(F 2)] = 0.050

  • wR(F 2) = 0.142

  • S = 1.12

  • 3168 reflections

  • 232 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.24 e Å−3

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: PLATON.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809002086/lh2757sup1.cif

e-65-0o365-sup1.cif (19.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809002086/lh2757Isup2.hkl

e-65-0o365-Isup2.hkl (155.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of atoms N1/N2/C12–C14.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O7i 0.93 (4) 1.68 (4) 2.593 (3) 168 (3)
O3—H3A⋯O2 0.87 (2) 2.038 (19) 2.591 (3) 121 (3)
O3—H3A⋯O3ii 0.87 (2) 2.46 (2) 2.883 (4) 111 (2)
O7—H7B⋯O4iii 0.81 (4) 1.93 (4) 2.741 (3) 173 (4)
O7—H7A⋯O5 0.88 (4) 1.93 (4) 2.799 (3) 172 (4)
N1—H1A⋯O6 0.79 (3) 1.95 (3) 2.707 (3) 160 (3)
C4—H4⋯O6iv 0.93 2.51 3.411 (4) 164
C12—H12⋯O2v 0.93 2.22 3.035 (3) 146
C14—H14⋯O6vi 0.93 2.52 3.219 (4) 132
C3—H3⋯Cg1vii 0.93 2.97 (1) 3.889 (3) 170

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic; (vii) Inline graphic.

supplementary crystallographic information

Comment

5-Sulfosaliyclic acid (5-H2SSA), a strong organic acid (pKa1=2.6), can easily release its sulfonic hydrogen atom to a nitrogen-containing Lewis bases (Muthiah et al., 2003; Smith et al., 2004, 2005a, 2005b, 2005c; Meng et al., 2007; Meng et al., 2008), forming organic salts in most cases. In this paper, we report the crystal structure of the title compound, C14H16N4.2(C7H5O6S).2(H2O) (I) , which was obtained by crystallization of the 95% methanol solution of 5-H2SSA and 1,4-Bis(imidazol-1-ylmethyl)benzene) (bix) (molar ratio 2:1) at room temperature.

In (I), the asymmetric unit consists of one half bix2+ dication, one complete 5-HSSA- anion and one water molecule (see Fig. 1 for symmetry complete formula unit). Similar to some analogs (Meng et al., 2007, 2008), the hydrogen atom was transferred from the sulfonic group to the imidazole nitrogen atom, forming an 1:2 organic salt (cation to anion). The hydroxyl O3 atom forms an intramolecular S(6) and an intermolecular R22(4) ring, resulting in a 5-HSSA- dimer (Bernstein, et al., 1995). The carboxyl O1 atom is only hydrogen-bonded to a water molecule at (x, y, z - 1). The plane defined by sulfonic O4/O5/O6 atoms makes a dihedral angle of 88.7 (1)° with the C1—C6 plane, with the distances of each oxygen atom away from the benzene-plane being 0.211 (1), 1.126 (1) and 1.237 (1) Å, respectively, which is slightly different from those recently reported by Meng, et al., 2007, 2008. In the bix2+ dication, there is an crystallogrphic inversion centre at the centre of gravity of the benzene ring.

In the crystal structure of (I), the ionic components are linked by a cooperative action of N—H···O, O—H···O and C—H···O hydrogen bonds into a continuous three-dimensional network which is further consolidated by a C—H···π interaction (Table 1). In more detail, the supramolecular structure in (I) can be analyzed in terms of three substructures. First, by utilizing three intermolecular O1—H1···O7i [symmetry code: (i) x, y, z - 1], O7—H7A···O5 and O7—H7B···O4ii [symmetry code: (ii) 1 - x, 1 - y, 1 - z] hydrogen bonds, the 5-HSSA- anions and water molecules are linked into a one-dimensional tape structure running parallel to the [001] direction (Fig.2) in which alternating R24(12) and R44(20) (Bernstein, et al., 1995) hydrogen-bonded rings are formed. Secondly, these adjacent one-dimensional tapes are further joined together by the hydroxylic R22(4) hydrogen-bonded ring, resulting in a two-dimensional wrinkled sheet running parallel to the (110) plane. In addition to, the intramolecular S(6) and intermolecular R22(4) hydrogen-bonded rings, another R810(32) hydrogen-bond motif is formed in the sheet (Fig.2). These sheets are joined by means of the N1—H1A···O6 hydrogen bond, forming a three-dimensional network (Fig.3) in which larger R1214(66) hydrogen-bonded rings are observed. Further analysis (using the program PLATON [Spek, 2003]) shows that these three-dimensional networks are strengthened by C—H···O hydrogen bonds and weak C—H···π interactions (Table 1).

Experimental

1,4-Bis(imidazol-1-ylmethyl)benzene) (bix) was prepared according to a literature method (Hoskins et al., 1997). 1:2 molar amounts of bix (47.6 mg, 0.2 mmol) and 5-sulfosalicylic acid dihydrate (101.6 mg, 0.4 mmol) were dissolved in 95% methanol (20 ml). The mixture was stirred for 30 min at ambient temperature and then filtered. The resulting colourless solution was kept in air for one week. Block colourless crystals of (I) suitable for single-crystal X-ray diffraction analysis were grown at the bottom of the vessel by slow evaporation of the solution (yield 86.4 mg, 60.8%, based on a 1:2 salt).

Refinement

H atoms bonded to C atoms were positioned geometrically with C–H = 0.93Å (aromatic) and 0.97Å (methylene) and refined in a riding-model approximation Uiso(H) = 1.2Ueq(C). H atoms bonded to O and N atoms were found in difference Fourier maps and the N—H and O—H distances were refined freely [the refined distances are given in Table 1; Uiso(H) = 1.2Ueq(N) and 1.5Ueq(O)].

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii. Atoms marked with 'a' are at position -x, -1 - y, -z. The H-bonds are shown as dashed lines.

Fig. 2.

Fig. 2.

Part of the crystal structure of (I), showing the formation of the two-dimensional sheet running parallel to (110) plane. Hydrogen bonds are shown as dashed lines. Hydrogen atoms not involved in the motif have been omitted for clarity. The outlined area shows the one-dimensional tape running parallel to the [001] direction.

Fig. 3.

Fig. 3.

Part of the crystal structure of (I), showing the formation of the three-dimensional network. Hydrogen bonds are shown as dashed lines. Hydrogen atoms not involved in the motif have been omitted for clarity. The outlined area shows the two-dimensional wrinkled sheet parallel to the (110) plane.

Crystal data

C14H16N42+·2C7H5O6S·2H2O Z = 1
Mr = 710.68 F(000) = 370
Triclinic, P1 Dx = 1.514 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 7.9975 (6) Å Cell parameters from 2637 reflections
b = 8.8060 (7) Å θ = 2.3–28.0°
c = 11.2419 (8) Å µ = 0.25 mm1
α = 90.784 (1)° T = 292 K
β = 96.656 (1)° Block, colorless
γ = 97.342 (1)° 0.20 × 0.10 × 0.10 mm
V = 779.61 (10) Å3

Data collection

Bruker SMART APEX CCD area-detector diffractometer 3168 independent reflections
Radiation source: fine focus sealed Siemens Mo tube 2524 reflections with I > 2σ(I)
graphite Rint = 0.024
0.3° wide ω exposures scans θmax = 26.5°, θmin = 1.8°
Absorption correction: multi-scan (SADABS; Sheldrick, 1997) h = −9→10
Tmin = 0.942, Tmax = 0.976 k = −11→11
8434 measured reflections l = −12→14

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.142 H atoms treated by a mixture of independent and constrained refinement
S = 1.12 w = 1/[σ2(Fo2) + (0.0671P)2 + 0.3146P] where P = (Fo2 + 2Fc2)/3
3168 reflections (Δ/σ)max < 0.001
232 parameters Δρmax = 0.34 e Å3
0 restraints Δρmin = −0.24 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.6276 (3) 0.1488 (3) 0.0830 (2) 0.0345 (5)
C2 0.7379 (3) 0.0442 (3) 0.1231 (2) 0.0411 (6)
C3 0.7390 (4) −0.0098 (3) 0.2385 (3) 0.0498 (7)
H3 0.8114 −0.0803 0.2645 0.060*
C4 0.6339 (4) 0.0403 (3) 0.3140 (2) 0.0460 (6)
H4 0.6351 0.0032 0.3911 0.055*
C5 0.5250 (3) 0.1465 (3) 0.2763 (2) 0.0341 (5)
C6 0.5211 (3) 0.1995 (3) 0.1617 (2) 0.0333 (5)
H6 0.4474 0.2693 0.1362 0.040*
C7 0.6258 (3) 0.2045 (3) −0.0404 (2) 0.0367 (6)
C8 −0.0498 (4) −0.5225 (3) 0.1136 (2) 0.0445 (6)
C9 0.0677 (4) −0.6056 (3) 0.0730 (2) 0.0501 (7)
H9 0.1143 −0.6774 0.1221 0.060*
C10 −0.1170 (4) −0.4163 (3) 0.0397 (3) 0.0517 (7)
H10 −0.1963 −0.3591 0.0661 0.062*
C11 −0.1021 (5) −0.5466 (4) 0.2371 (3) 0.0625 (9)
H11A −0.2250 −0.5643 0.2315 0.075*
H11B −0.0586 −0.6370 0.2699 0.075*
C12 0.0904 (4) −0.3092 (3) 0.3061 (2) 0.0489 (7)
H12 0.1579 −0.3061 0.2439 0.059*
C13 −0.1055 (4) −0.3780 (3) 0.4208 (2) 0.0474 (7)
H13 −0.1979 −0.4325 0.4511 0.057*
C14 −0.0133 (4) −0.2505 (3) 0.4685 (3) 0.0513 (7)
H14 −0.0291 −0.1992 0.5384 0.062*
N1 0.1078 (3) −0.2097 (3) 0.3962 (2) 0.0523 (6)
H1A 0.175 (4) −0.135 (4) 0.406 (3) 0.063*
N2 −0.0387 (3) −0.4140 (2) 0.31870 (18) 0.0419 (5)
O1 0.5166 (2) 0.3008 (2) −0.07003 (16) 0.0477 (5)
H1 0.520 (4) 0.323 (4) −0.150 (3) 0.072*
O2 0.7193 (2) 0.1627 (2) −0.10967 (16) 0.0504 (5)
O3 0.8439 (3) −0.0099 (3) 0.05360 (19) 0.0635 (6)
H3A 0.858 (4) 0.013 (4) −0.0196 (15) 0.095*
O4 0.3120 (3) 0.3311 (2) 0.32481 (17) 0.0513 (5)
O5 0.5091 (3) 0.2577 (3) 0.48529 (18) 0.0677 (6)
O6 0.2758 (3) 0.0777 (2) 0.4006 (2) 0.0664 (6)
O7 0.5030 (3) 0.3928 (2) 0.71130 (18) 0.0563 (6)
H7A 0.506 (5) 0.342 (4) 0.644 (4) 0.084*
H7B 0.565 (5) 0.471 (5) 0.700 (3) 0.084*
S1 0.39522 (9) 0.20854 (7) 0.37902 (5) 0.0380 (2)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0372 (13) 0.0356 (11) 0.0304 (13) −0.0014 (10) 0.0101 (10) 0.0005 (9)
C2 0.0420 (15) 0.0447 (13) 0.0394 (14) 0.0077 (11) 0.0145 (12) 0.0024 (11)
C3 0.0516 (17) 0.0541 (15) 0.0497 (17) 0.0238 (13) 0.0114 (13) 0.0118 (13)
C4 0.0571 (17) 0.0473 (14) 0.0346 (14) 0.0080 (12) 0.0068 (12) 0.0105 (11)
C5 0.0408 (14) 0.0367 (12) 0.0239 (11) −0.0020 (10) 0.0084 (10) −0.0001 (9)
C6 0.0362 (13) 0.0355 (11) 0.0282 (12) 0.0018 (10) 0.0074 (10) 0.0017 (9)
C7 0.0391 (14) 0.0405 (12) 0.0302 (12) −0.0023 (11) 0.0115 (11) 0.0009 (10)
C8 0.0486 (16) 0.0490 (14) 0.0329 (14) −0.0049 (12) 0.0056 (12) −0.0065 (11)
C9 0.0567 (18) 0.0533 (16) 0.0403 (15) 0.0168 (13) −0.0047 (13) 0.0036 (12)
C10 0.0493 (17) 0.0607 (17) 0.0476 (17) 0.0155 (14) 0.0082 (13) −0.0092 (13)
C11 0.083 (2) 0.0612 (18) 0.0376 (16) −0.0217 (16) 0.0181 (15) −0.0101 (13)
C12 0.0461 (16) 0.0579 (16) 0.0411 (15) −0.0069 (13) 0.0142 (13) −0.0036 (12)
C13 0.0448 (15) 0.0683 (18) 0.0301 (13) 0.0035 (13) 0.0134 (12) 0.0044 (12)
C14 0.0567 (18) 0.0588 (17) 0.0397 (15) 0.0109 (14) 0.0087 (13) −0.0068 (13)
N1 0.0543 (16) 0.0512 (14) 0.0470 (14) −0.0095 (11) 0.0055 (12) −0.0062 (11)
N2 0.0443 (13) 0.0500 (12) 0.0300 (11) −0.0033 (10) 0.0100 (9) −0.0018 (9)
O1 0.0577 (12) 0.0605 (11) 0.0293 (10) 0.0153 (9) 0.0142 (9) 0.0116 (8)
O2 0.0561 (12) 0.0623 (11) 0.0374 (10) 0.0087 (9) 0.0237 (9) 0.0049 (9)
O3 0.0681 (14) 0.0761 (14) 0.0585 (14) 0.0311 (12) 0.0333 (12) 0.0130 (11)
O4 0.0595 (12) 0.0561 (11) 0.0436 (11) 0.0171 (9) 0.0170 (9) 0.0094 (9)
O5 0.0763 (15) 0.0925 (16) 0.0349 (11) 0.0276 (13) −0.0058 (10) −0.0228 (11)
O6 0.0833 (15) 0.0500 (11) 0.0726 (15) −0.0035 (10) 0.0506 (13) 0.0020 (10)
O7 0.0863 (17) 0.0511 (12) 0.0309 (10) 0.0033 (11) 0.0104 (10) 0.0057 (9)
S1 0.0512 (4) 0.0382 (3) 0.0258 (3) 0.0028 (3) 0.0128 (3) 0.0011 (2)

Geometric parameters (Å, °)

C1—C2 1.399 (4) C10—H10 0.9300
C1—C6 1.403 (3) C11—N2 1.474 (3)
C1—C7 1.476 (3) C11—H11A 0.9700
C2—O3 1.343 (3) C11—H11B 0.9700
C2—C3 1.386 (4) C12—N1 1.313 (4)
C3—C4 1.368 (4) C12—N2 1.316 (3)
C3—H3 0.9300 C12—H12 0.9300
C4—C5 1.396 (4) C13—C14 1.331 (4)
C4—H4 0.9300 C13—N2 1.371 (3)
C5—C6 1.374 (3) C13—H13 0.9300
C5—S1 1.765 (2) C14—N1 1.353 (4)
C6—H6 0.9300 C14—H14 0.9300
C7—O2 1.224 (3) N1—H1A 0.79 (3)
C7—O1 1.313 (3) O1—H1 0.93 (4)
C8—C9 1.376 (4) O3—H3A 0.87 (2)
C8—C10 1.378 (4) O4—S1 1.4444 (19)
C8—C11 1.505 (4) O5—S1 1.441 (2)
C9—C10i 1.379 (4) O6—S1 1.442 (2)
C9—H9 0.9300 O7—H7A 0.88 (4)
C10—C9i 1.379 (4) O7—H7B 0.81 (4)
C2—C1—C6 119.0 (2) N2—C11—C8 112.1 (2)
C2—C1—C7 119.7 (2) N2—C11—H11A 109.2
C6—C1—C7 121.3 (2) C8—C11—H11A 109.2
O3—C2—C3 117.2 (2) N2—C11—H11B 109.2
O3—C2—C1 122.7 (2) C8—C11—H11B 109.2
C3—C2—C1 120.1 (2) H11A—C11—H11B 107.9
C4—C3—C2 120.3 (2) N1—C12—N2 108.4 (2)
C4—C3—H3 119.9 N1—C12—H12 125.8
C2—C3—H3 119.9 N2—C12—H12 125.8
C3—C4—C5 120.5 (2) C14—C13—N2 107.2 (2)
C3—C4—H4 119.8 C14—C13—H13 126.4
C5—C4—H4 119.8 N2—C13—H13 126.4
C6—C5—C4 119.8 (2) C13—C14—N1 107.1 (2)
C6—C5—S1 121.96 (19) C13—C14—H14 126.5
C4—C5—S1 118.19 (18) N1—C14—H14 126.5
C5—C6—C1 120.3 (2) C12—N1—C14 109.2 (2)
C5—C6—H6 119.8 C12—N1—H1A 126 (3)
C1—C6—H6 119.8 C14—N1—H1A 124 (3)
O2—C7—O1 122.8 (2) C12—N2—C13 108.1 (2)
O2—C7—C1 122.1 (2) C12—N2—C11 126.2 (2)
O1—C7—C1 115.1 (2) C13—N2—C11 125.7 (2)
C9—C8—C10 118.8 (2) C7—O1—H1 108 (2)
C9—C8—C11 120.3 (3) C2—O3—H3A 128.1 (11)
C10—C8—C11 120.9 (3) H7A—O7—H7B 100 (4)
C8—C9—C10i 120.7 (3) O5—S1—O6 111.68 (15)
C8—C9—H9 119.6 O5—S1—O4 112.97 (13)
C10i—C9—H9 119.6 O6—S1—O4 112.13 (13)
C8—C10—C9i 120.5 (3) O5—S1—C5 105.30 (12)
C8—C10—H10 119.8 O6—S1—C5 106.67 (11)
C9i—C10—H10 119.8 O4—S1—C5 107.55 (11)
C6—C1—C2—O3 −180.0 (2) C9—C8—C10—C9i 0.2 (5)
C7—C1—C2—O3 −0.3 (4) C11—C8—C10—C9i 179.6 (3)
C6—C1—C2—C3 1.0 (4) C9—C8—C11—N2 110.3 (3)
C7—C1—C2—C3 −179.3 (2) C10—C8—C11—N2 −69.2 (4)
O3—C2—C3—C4 −179.8 (3) N2—C13—C14—N1 0.0 (3)
C1—C2—C3—C4 −0.8 (4) N2—C12—N1—C14 −0.3 (4)
C2—C3—C4—C5 −0.3 (4) C13—C14—N1—C12 0.2 (4)
C3—C4—C5—C6 1.1 (4) N1—C12—N2—C13 0.3 (3)
C3—C4—C5—S1 −179.0 (2) N1—C12—N2—C11 179.9 (3)
C4—C5—C6—C1 −0.8 (4) C14—C13—N2—C12 −0.2 (3)
S1—C5—C6—C1 179.28 (17) C14—C13—N2—C11 −179.8 (3)
C2—C1—C6—C5 −0.2 (4) C8—C11—N2—C12 −21.6 (5)
C7—C1—C6—C5 −179.8 (2) C8—C11—N2—C13 157.9 (3)
C2—C1—C7—O2 −0.5 (4) C6—C5—S1—O5 −128.2 (2)
C6—C1—C7—O2 179.2 (2) C4—C5—S1—O5 52.0 (2)
C2—C1—C7—O1 179.2 (2) C6—C5—S1—O6 113.1 (2)
C6—C1—C7—O1 −1.2 (3) C4—C5—S1—O6 −66.8 (2)
C10—C8—C9—C10i −0.2 (5) C6—C5—S1—O4 −7.4 (2)
C11—C8—C9—C10i −179.6 (3) C4—C5—S1—O4 172.70 (19)

Symmetry codes: (i) −x, −y−1, −z.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H1···O7ii 0.93 (4) 1.68 (4) 2.593 (3) 168 (3)
O3—H3A···O2 0.87 (2) 2.04 (2) 2.591 (3) 121 (3)
O3—H3A···O3iii 0.87 (2) 2.46 (2) 2.883 (4) 111 (2)
O7—H7B···O4iv 0.81 (4) 1.93 (4) 2.741 (3) 173 (4)
O7—H7A···O5 0.88 (4) 1.93 (4) 2.799 (3) 172 (4)
N1—H1A···O6 0.79 (3) 1.95 (3) 2.707 (3) 160 (3)
C4—H4···O6v 0.93 2.51 3.411 (4) 164
C12—H12···O2vi 0.93 2.22 3.035 (3) 146
C14—H14···O6vii 0.93 2.52 3.219 (4) 132
C3—H3···Cg1viii 0.93 2.97 (1) 3.889 (3) 170

Symmetry codes: (ii) x, y, z−1; (iii) −x+2, −y, −z; (iv) −x+1, −y+1, −z+1; (v) −x+1, −y, −z+1; (vi) −x+1, −y, −z; (vii) −x, −y, −z+1; (viii) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2757).

References

  1. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  2. Bruker (2001). SMART and SAINT-Plus Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Hoskins, B. F., Robson, R. & Slizys, D. A. (1997). J. Am. Chem. Soc.119, 2952–2953.
  4. Meng, X.-G., Xiao, Y.-L., Wang, Z.-L. & Liu, C.-L. (2008). Acta Cryst. C64, o53–o57. [DOI] [PubMed]
  5. Meng, X.-G., Zhou, C.-S., Wang, L. & Liu, C.-L. (2007). Acta Cryst. C63, o667–o670. [DOI] [PubMed]
  6. Muthiah, P. T., Hemamalini, M., Bocelli, G. & Cantoni, A. (2003). Acta Cryst. E59, o2015–o2017. [DOI] [PubMed]
  7. Sheldrick, G. M. (1997). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Smith, G., Wermuth, U. D. & Healy, P. C. (2005a). Acta Cryst. C61, o555–o558. [DOI] [PubMed]
  10. Smith, G., Wermuth, U. D. & White, J. M. (2004). Acta Cryst. C60, o575–o581. [DOI] [PubMed]
  11. Smith, G., Wermuth, U. D. & White, J. M. (2005b). Acta Cryst. C61, o105–o109. [DOI] [PubMed]
  12. Smith, G., Wermuth, U. D. & White, J. M. (2005c). Acta Cryst. E61, o313–o316.
  13. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809002086/lh2757sup1.cif

e-65-0o365-sup1.cif (19.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809002086/lh2757Isup2.hkl

e-65-0o365-Isup2.hkl (155.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES