Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Jan 28;65(Pt 2):o402. doi: 10.1107/S1600536809001366

N,N-Bis(2-pyridylmeth­yl)-tert-butyl­amine

Allen Mambanda a, Deogratius Jaganyi a, Kirsty Stewart a,*
PMCID: PMC2968317  PMID: 21581995

Abstract

In the title compound, C16H21N3, the dihedral angle between the two pyridine rings is 88.11 (9)°. In the crystal, mol­ecules are linked through inter­molecular C—H⋯π inter­actions, forming a layer expanding parallel to the (10Inline graphic) plane.

Related literature

For related compounds, see: Mambanda et al. (2007); Foxon et al. (2007); Fujihara et al. (2004); Munro & Camp (2003). For metal complexes with the title compound as a ligand, see: Fujii et al. (2003); Lee & Lippard (2002); Mok et al. (1997). For the metal complex with N,N-bis­(2-pyridylmeth­yl)ethyl­amine as a ligand, see: Pal et al. (1992).graphic file with name e-65-0o402-scheme1.jpg

Experimental

Crystal data

  • C16H21N3

  • M r = 255.36

  • Monoclinic, Inline graphic

  • a = 6.1808 (3) Å

  • b = 17.9502 (8) Å

  • c = 13.7079 (6) Å

  • β = 100.239 (4)°

  • V = 1496.62 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 293 (2) K

  • 0.50 × 0.50 × 0.30 mm

Data collection

  • Oxford Diffraction Xcalibur2 CCD diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008) T min = 0.967, T max = 0.980

  • 7475 measured reflections

  • 2392 independent reflections

  • 2024 reflections with I > 2σ(I)

  • R int = 0.012

Refinement

  • R[F 2 > 2σ(F 2)] = 0.043

  • wR(F 2) = 0.119

  • S = 1.02

  • 2392 reflections

  • 175 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.22 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809001366/is2355sup1.cif

e-65-0o402-sup1.cif (18.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809001366/is2355Isup2.hkl

e-65-0o402-Isup2.hkl (115.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 and Cg2 are the centroids of the N2/C3–C7and N3/C9–C13 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H1⋯Cg2i 0.93 2.97 3.819 (2) 153
C15—H16⋯Cg1ii 0.96 2.94 3.836 (2) 156

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors gratefully acknowledge financial support from the University of Kwazulu-Natal and the South African National Research Foundation. We thank Mr C. Grimmer for the NMR analysis of the samples. We also thank Professor O. Q Munro and Professor J. Field for their guidance.

supplementary crystallographic information

Comment

The title compound is a versatile tridentate N-donor ligand, and it (Fujii et al., 2003; Lee & Lippard, 2002; Mok et al., 1997) and its analogue, N, N-bis(2-pyridylmethyl)ethylamine (Pal et al., 1992) have been used extensively in metal coordination. The related crystal structures of symmetrical bis(tridentate) ligands have been reportd (Mambanda et al., 2007; Foxon et al., 2007; Fujihara et al., 2004).

The crystal structure of the title compound (Fig. 1) shows that the three nitrogen atoms (one sp3 and two pyridine sp2) are not suitability orientated for pincer-like coordination to a metal. Rotation about the C2—C3 and C8—C9 bonds are required for that to occur. The relative orientation of the two pyridine rings is reflected in a dihedral angle between their mean planes of 88.11 (9)°, clearly this angle would have to change were the ligand to bind to a metal centre. The steric influence of the bulky tert-butyl group is reflected in the C1—N1—C2 and C1—N1—C8 angles [113.90 (13) and 115.34 (13)°, respectively], being larger than the C2—N1—C8 angle of 110.08 (13)°. The methylene groups of the structure all adopt the expected staggered (lowest energy) conformation (Munro & Camp, 2003). The pyridyl ring containing atom N2 is orientated at 18 (1)° relative to the mean plane of the N-tert-butyl group (plane through C16—C1—N1), whilst that containing N3 is orientated at 74 (1)°.

There are no short van der Waals contacts less than the sum of the van der Waals radii in this system, reflected in the loose packing, however weak (possibly stabilizing) C—H···π intermolecular interactions do occur. The metrics of such interactions reflect a T-shaped, edge-to-face geometry. Specifically, let us define Cg1 as the centre of gravity of the pyridyl N2/C3–C7 ring and Cg2 the centre of gravity of the pyridyl N3/C9–C13 ring. A C—H···π interaction with a separation of 2.97 (1) Å exists between C7—H1 from the pyridyl ring containing atom N2 and Cg2 of neighbouring symmetry related molecule [symmetry code: (i) x - 1/2, y - 1/2, z] (Table 1). A similar C—H···π interaction with a separation of 2.94 (1) Å exists between C15—H16 from one of the methyl groups of the tert-butyl moiety and Cg1 on the symmetry related neighbouring molecule with symmetry code: (ii) x, -y, z - 1/2. Figure 2 shows the packing within the unit cell for the title compound.

Experimental

The compound was synthesized following a literature method (Pal et al., 1992). Under a high flow of nitrogen, 6 ml of 20% NaOH solution was added to an aqueous solution of 2-picolyl chloridehydrochloride [(3.937 g (24 mmol) in 0.5 ml ultra pure water] to form a pink emulsion solution. 2-Amino-2-methyl propane (12 mmol) was added and the mixture stirred at 60°C. 40 ml of 20% NaOH solution was then added over a period of 1 h and the mixture left to stir for a further 12 h. The crude product was extracted with CHCl3 washed with ultra pure water and dried over Na2SO4. Excess solvent was removed under reduced pressure and the oil residue purified on a short chromatographic column packed with 0.5 g charcoal and 5 g of neutral alumina using CHCl3 as an eluent to afford a light yellow solution. Colourless single crystals suitable for X-ray diffraction were obtained from slow evaporation of the solvent from its solution made from a 5% chloroform in ethanol solution (yield: 1.73 g, 60%).

Spectroscopic data: 1H NMR (400 MHz, CDCl3) δ / p.p.m.: 8.40 (d, 2H), 7.60 (t, 2H), 7.45 (d, 2H), 7.05 (t, 2H), 3.95 (s, 4H), 1.18 (s, 9H). 13C NMR (125 MHz, CDCl3) δ / p.p.m.: 27.0, 57.0, 122.0, 123.0,136.0, 148.0, 160. Anal. Calc. for C16H21N3: C 75.26, H 8.29, N 16.46; Found: C 74.89, H 7.97, N 17.37.

Refinement

All Hydrogen atoms were positioned in geometrically idealized positions and constrained to ride on their parent atoms with C—H distances in the range 0.93–0.97 Å, and with Uiso(H) = 1.2 or 1.5Ueq(C). In the absence of significant anomalous scattering effects, Friedel pairs have been merged.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing 50% probability displacement ellipsoids and atomic numbering.

Fig. 2.

Fig. 2.

Unit cell packing diagram of the title compound, viewed along the a axis.

Crystal data

C16H21N3 F(000) = 552
Mr = 255.36 Dx = 1.133 Mg m3
Monoclinic, Cc Mo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2yc Cell parameters from 4672 reflections
a = 6.1808 (3) Å θ = 3.9–32.0°
b = 17.9502 (8) Å µ = 0.07 mm1
c = 13.7079 (6) Å T = 293 K
β = 100.239 (4)° Plate, colourless
V = 1496.62 (12) Å3 0.50 × 0.50 × 0.30 mm
Z = 4

Data collection

Oxford Diffraction Xcalibur2 CCD diffractometer 2392 independent reflections
Radiation source: Enhance (Mo)X-Ray Source 2024 reflections with I > 2σ(I)
graphite Rint = 0.012
Detector resolution: 8.4190 pixels mm-1 θmax = 31.9°, θmin = 4.1°
ω–2θ scans h = −8→7
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008) k = −26→26
Tmin = 0.967, Tmax = 0.980 l = −18→20
7475 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119 H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0873P)2 + 0.017P] where P = (Fo2 + 2Fc2)/3
2392 reflections (Δ/σ)max = 0.001
175 parameters Δρmax = 0.21 e Å3
2 restraints Δρmin = −0.21 e Å3
0 constraints

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C14 0.2251 (5) 0.16330 (11) 0.59751 (18) 0.0645 (6)
H20 0.1452 0.1875 0.6425 0.097*
H21 0.2314 0.1955 0.5421 0.097*
H19 0.3716 0.1525 0.6311 0.097*
C15 0.2342 (5) 0.05704 (14) 0.48509 (17) 0.0679 (6)
H18 0.3767 0.0409 0.5180 0.102*
H16 0.2508 0.0937 0.4359 0.102*
H17 0.1537 0.0152 0.4537 0.102*
C16 −0.1269 (5) 0.10773 (16) 0.5103 (2) 0.0739 (7)
H15 −0.1940 0.0630 0.4806 0.111*
H14 −0.1260 0.1449 0.4600 0.111*
H13 −0.2090 0.1258 0.5586 0.111*
N3 0.1632 (2) 0.14031 (8) 0.88126 (11) 0.0448 (3)
C9 0.2329 (2) 0.09809 (8) 0.81277 (11) 0.0365 (3)
N1 0.1221 (2) 0.03781 (7) 0.64559 (9) 0.0382 (3)
C3 0.1172 (3) −0.09657 (8) 0.68278 (12) 0.0384 (3)
C10 0.4530 (3) 0.08012 (10) 0.81845 (13) 0.0434 (3)
H8 0.4982 0.0513 0.7694 0.052*
C1 0.1094 (3) 0.09104 (10) 0.56073 (13) 0.0455 (4)
C2 0.0134 (3) −0.03384 (10) 0.61861 (13) 0.0452 (4)
H11 0.0200 −0.0449 0.5499 0.054*
H12 −0.1403 −0.0300 0.6245 0.054*
N2 −0.0196 (2) −0.14516 (8) 0.71406 (13) 0.0476 (3)
C8 0.0527 (3) 0.06774 (11) 0.73393 (12) 0.0442 (4)
H9 −0.0232 0.0287 0.7633 0.053*
H10 −0.0527 0.1073 0.7137 0.053*
C12 0.5344 (3) 0.14791 (10) 0.96934 (14) 0.0529 (4)
H6 0.6329 0.1652 1.0240 0.063*
C11 0.6047 (3) 0.10564 (11) 0.89812 (15) 0.0501 (4)
H7 0.7530 0.0941 0.9031 0.060*
C4 0.3437 (3) −0.10609 (10) 0.70322 (14) 0.0466 (4)
H4 0.4352 −0.0713 0.6809 0.056*
C13 0.3140 (4) 0.16421 (10) 0.95790 (14) 0.0519 (4)
H5 0.2664 0.1935 1.0060 0.062*
C5 0.4322 (3) −0.16716 (12) 0.75666 (16) 0.0553 (5)
H3 0.5836 −0.1743 0.7708 0.066*
C6 0.2920 (4) −0.21757 (11) 0.78883 (17) 0.0567 (5)
H2 0.3460 −0.2594 0.8252 0.068*
C7 0.0701 (3) −0.20409 (10) 0.76555 (17) 0.0554 (5)
H1 −0.0242 −0.2383 0.7871 0.066*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C14 0.0927 (17) 0.0403 (9) 0.0584 (12) −0.0074 (10) 0.0077 (11) 0.0060 (8)
C15 0.0990 (18) 0.0620 (12) 0.0486 (11) −0.0019 (12) 0.0296 (11) 0.0014 (9)
C16 0.0720 (14) 0.0773 (16) 0.0638 (13) 0.0155 (12) −0.0114 (11) 0.0176 (11)
N3 0.0476 (8) 0.0460 (7) 0.0408 (7) 0.0030 (6) 0.0075 (6) −0.0021 (5)
C9 0.0370 (7) 0.0395 (7) 0.0324 (6) −0.0014 (5) 0.0047 (5) 0.0033 (5)
N1 0.0426 (7) 0.0397 (6) 0.0307 (6) −0.0034 (5) 0.0021 (5) 0.0008 (4)
C3 0.0404 (8) 0.0389 (7) 0.0347 (7) −0.0029 (6) 0.0033 (5) −0.0005 (5)
C10 0.0369 (7) 0.0529 (9) 0.0396 (7) 0.0002 (6) 0.0044 (6) −0.0019 (6)
C1 0.0559 (10) 0.0416 (8) 0.0371 (7) 0.0006 (6) 0.0034 (7) 0.0054 (6)
C2 0.0446 (8) 0.0451 (8) 0.0409 (8) −0.0067 (6) −0.0060 (6) 0.0039 (6)
N2 0.0412 (7) 0.0437 (7) 0.0568 (9) −0.0058 (6) 0.0056 (6) 0.0045 (6)
C8 0.0342 (7) 0.0603 (10) 0.0369 (7) −0.0018 (6) 0.0031 (6) −0.0030 (6)
C12 0.0612 (11) 0.0493 (9) 0.0427 (9) −0.0136 (8) −0.0054 (8) 0.0022 (7)
C11 0.0403 (8) 0.0573 (10) 0.0493 (9) −0.0036 (7) −0.0013 (7) 0.0072 (7)
C4 0.0371 (8) 0.0526 (9) 0.0514 (9) −0.0026 (6) 0.0114 (7) 0.0003 (7)
C13 0.0678 (11) 0.0456 (8) 0.0413 (9) −0.0018 (8) 0.0071 (8) −0.0066 (7)
C5 0.0433 (9) 0.0576 (10) 0.0637 (12) 0.0114 (8) 0.0061 (8) −0.0027 (9)
C6 0.0618 (11) 0.0419 (8) 0.0640 (11) 0.0110 (7) 0.0043 (9) 0.0033 (8)
C7 0.0539 (10) 0.0426 (9) 0.0702 (12) −0.0057 (7) 0.0127 (9) 0.0088 (8)

Geometric parameters (Å, °)

C14—C1 1.523 (3) C3—C2 1.501 (2)
C14—H20 0.9600 C10—C11 1.385 (2)
C14—H21 0.9600 C10—H8 0.9300
C14—H19 0.9600 C2—H11 0.9700
C15—C1 1.525 (3) C2—H12 0.9700
C15—H18 0.9600 N2—C7 1.336 (2)
C15—H16 0.9600 C8—H9 0.9700
C15—H17 0.9600 C8—H10 0.9700
C16—C1 1.531 (3) C12—C11 1.367 (3)
C16—H15 0.9600 C12—C13 1.375 (3)
C16—H14 0.9600 C12—H6 0.9300
C16—H13 0.9600 C11—H7 0.9300
N3—C9 1.336 (2) C4—C5 1.377 (3)
N3—C13 1.345 (2) C4—H4 0.9300
C9—C10 1.387 (2) C13—H5 0.9300
C9—C8 1.509 (2) C5—C6 1.378 (3)
N1—C8 1.457 (2) C5—H3 0.9300
N1—C2 1.468 (2) C6—C7 1.374 (3)
N1—C1 1.497 (2) C6—H2 0.9300
C3—N2 1.338 (2) C7—H1 0.9300
C3—C4 1.388 (2)
C1—C14—H20 109.5 C15—C1—C16 109.18 (19)
C1—C14—H21 109.5 N1—C2—C3 112.38 (12)
H20—C14—H21 109.5 N1—C2—H11 109.1
C1—C14—H19 109.5 C3—C2—H11 109.1
H20—C14—H19 109.5 N1—C2—H12 109.1
H21—C14—H19 109.5 C3—C2—H12 109.1
C1—C15—H18 109.5 H11—C2—H12 107.9
C1—C15—H16 109.5 C7—N2—C3 117.31 (16)
H18—C15—H16 109.5 N1—C8—C9 116.05 (14)
C1—C15—H17 109.5 N1—C8—H9 108.3
H18—C15—H17 109.5 C9—C8—H9 108.3
H16—C15—H17 109.5 N1—C8—H10 108.3
C1—C16—H15 109.5 C9—C8—H10 108.3
C1—C16—H14 109.5 H9—C8—H10 107.4
H15—C16—H14 109.5 C11—C12—C13 118.10 (17)
C1—C16—H13 109.5 C11—C12—H6 121.0
H15—C16—H13 109.5 C13—C12—H6 121.0
H14—C16—H13 109.5 C12—C11—C10 119.36 (17)
C9—N3—C13 117.70 (16) C12—C11—H7 120.3
N3—C9—C10 121.88 (15) C10—C11—H7 120.3
N3—C9—C8 114.75 (14) C5—C4—C3 119.78 (16)
C10—C9—C8 123.24 (14) C5—C4—H4 120.1
C8—N1—C2 110.06 (14) C3—C4—H4 120.1
C8—N1—C1 115.35 (14) N3—C13—C12 123.79 (17)
C2—N1—C1 113.90 (12) N3—C13—H5 118.1
N2—C3—C4 121.83 (15) C12—C13—H5 118.1
N2—C3—C2 116.63 (15) C4—C5—C6 118.68 (17)
C4—C3—C2 121.42 (15) C4—C5—H3 120.7
C11—C10—C9 119.16 (17) C6—C5—H3 120.7
C11—C10—H8 120.4 C7—C6—C5 117.95 (18)
C9—C10—H8 120.4 C7—C6—H2 121.0
N1—C1—C14 109.25 (14) C5—C6—H2 121.0
N1—C1—C15 108.06 (15) N2—C7—C6 124.45 (18)
C14—C1—C15 107.53 (19) N2—C7—H1 117.8
N1—C1—C16 112.96 (17) C6—C7—H1 117.8
C14—C1—C16 109.70 (18)
C13—N3—C9—C10 −1.1 (2) C2—C3—N2—C7 175.54 (17)
C13—N3—C9—C8 174.86 (16) C2—N1—C8—C9 134.62 (15)
N3—C9—C10—C11 1.0 (2) C1—N1—C8—C9 −94.82 (18)
C8—C9—C10—C11 −174.62 (17) N3—C9—C8—N1 165.09 (14)
C8—N1—C1—C14 50.8 (2) C10—C9—C8—N1 −19.0 (2)
C2—N1—C1—C14 179.45 (17) C13—C12—C11—C10 −0.8 (3)
C8—N1—C1—C15 167.47 (17) C9—C10—C11—C12 0.0 (3)
C2—N1—C1—C15 −63.8 (2) N2—C3—C4—C5 0.3 (3)
C8—N1—C1—C16 −71.6 (2) C2—C3—C4—C5 −175.51 (17)
C2—N1—C1—C16 57.1 (2) C9—N3—C13—C12 0.3 (3)
C8—N1—C2—C3 −77.86 (18) C11—C12—C13—N3 0.7 (3)
C1—N1—C2—C3 150.82 (15) C3—C4—C5—C6 −0.1 (3)
N2—C3—C2—N1 137.29 (16) C4—C5—C6—C7 0.1 (3)
C4—C3—C2—N1 −46.7 (2) C3—N2—C7—C6 0.5 (3)
C4—C3—N2—C7 −0.5 (3) C5—C6—C7—N2 −0.3 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C7—H1···Cg2i 0.93 2.97 3.819 (2) 153
C15—H16···Cg1ii 0.96 2.94 3.836 (2) 156

Symmetry codes: (i) x−1/2, y−1/2, z; (ii) x, −y, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2355).

References

  1. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  2. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  3. Foxon, S., Xu, J., Turba, S., Leibold, M., Hampel, F., Walter, O., Wurtele, C., Holthausen, M. & Schindler, S. (2007). Eur. J. Inorg. Chem. pp. 423–443.
  4. Fujihara, T., Saito, M. & Nagasawa, A. (2004). Acta Cryst. E60, o262–o263.
  5. Fujii, T., Naito, A., Yamaguchi, S., Wada, A., Funahashi, Y., Jitsukawa, K., Nagatomo, S., Kitagawa, T. & Masuda, H. (2003). Chem. Commun. pp. 2700–2701. [DOI] [PubMed]
  6. Lee, D. & Lippard, S. J. (2002). Inorg. Chim. Acta, 341, 1–11.
  7. Mambanda, A., Jaganyi, D. & Munro, O. Q. (2007). Acta Cryst. C63, o676–o680. [DOI] [PubMed]
  8. Mok, H. J., Davis, J. A., Pal, S., Mandal, S. K. & Armstrong, W. H. (1997). Inorg. Chim. Acta, 263, 385–394.
  9. Munro, O. Q. & Camp, G. L. (2003). Acta Cryst. C59, o672–o675. [DOI] [PubMed]
  10. Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Abingdon, England.
  11. Pal, S., Chan, M. K. & Armstrong, W. H. (1992). J. Am. Chem. Soc.114, 6398–6404.
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809001366/is2355sup1.cif

e-65-0o402-sup1.cif (18.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809001366/is2355Isup2.hkl

e-65-0o402-Isup2.hkl (115.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES