Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Jan 10;65(Pt 2):o290. doi: 10.1107/S1600536809000944

N-[4-(β-d-Allopyranos­yloxy)benzyl­idene]methyl­amine

Shi-Ming Lv a, Lei Zheng a, Hui Zhao a, Ying Li a, Shu-Fan Yin a,*
PMCID: PMC2968321  PMID: 21581901

Abstract

The title compound, C14H19NO6, was synthesized by the condensation reaction between hecilid (4-formyl­phenl-β-d-allopyran­oside) and methyl­amine in methanol. In the crystal structure, the pyran ring adopts a chair conformation and adjacent mol­ecules are linked by inter­molecular O—H⋯O and O—H⋯N hydrogen bonds, forming a three-dimensional network.

Related literature

For the pharmaceutical and biological properties of hecilid and its derivatives, see: Chen et al. (1981); Sha & Mao (1987); Zhu et al. (2006); Yang et al. (2008).graphic file with name e-65-0o290-scheme1.jpg

Experimental

Crystal data

  • C14H19NO6

  • M r = 297.30

  • Monoclinic, Inline graphic

  • a = 6.721 (4) Å

  • b = 7.751 (3) Å

  • c = 14.119 (4) Å

  • β = 91.46 (3)°

  • V = 735.3 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 292 (2) K

  • 0.48 × 0.46 × 0.44 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: none

  • 1479 measured reflections

  • 1469 independent reflections

  • 1325 reflections with I > 2σ(I)

  • R int = 0.004

  • 3 standard reflections every 120 reflections intensity decay: 0.8%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.034

  • wR(F 2) = 0.093

  • S = 1.09

  • 1469 reflections

  • 195 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.25 e Å−3

Data collection: DIFRAC (Gabe et al., 1993); cell refinement: DIFRAC; data reduction: NRCVAX (Gabe et al., 1989); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809000944/rz2284sup1.cif

e-65-0o290-sup1.cif (18.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809000944/rz2284Isup2.hkl

e-65-0o290-Isup2.hkl (72.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2O⋯O5i 0.82 2.02 2.742 (3) 147
O3—H3O⋯O2ii 0.82 2.14 2.942 (3) 165
O4—H4O⋯O2iii 0.82 2.02 2.824 (3) 167
O5—H5O⋯N1iv 0.82 1.91 2.723 (3) 170

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

The authors thank Mr Zhi-Hua Mao of Sichuan University for the X-ray data collection.

supplementary crystallographic information

Comment

The natural compound hecilid (systematic name: 4-formylphenl-β-D-allopyranoside], which is extracted from the fruit of Helicia nilagirica Beed. (Chen et al., 1981), has been one major active ingredient of herb medicine used in China for a long time. It has manifested good biological effects on the central nervous system and a low toxicity (Sha & Mao, 1987). Some derivatives of this compound have been reported with good pharmacological activities (Zhu et al., 2006; Yang et al., 2008). The title compound, a new helicid-derived compound, was synthesized via condensation reaction of hecilid and methyl amine with good yield.

In the molecule of the title compound (Fig. 1), the average of C–C bond length in the hexatomic ring is 1.524 (3) Å; The average C(sp3)–O and C(sp2)–O bond lengths are 1.421 (3) and 1.378 (3) Å, respectively. The hexatomic ring adopts chair conformation with the hydroxy group at C3 in axial position and the other substituents at C1, C2 and C4 in equatorial positions. The C(14)–N(1)–C(13)–C(10) and C(11)–C(10)–C(13)–N(1) torsion angles are -175.7 (3) and -165.5 (3) °, respectively, possibly as a consequence of O—H···.N hydrogen bond. In the crystal packing, intermolecular O—H···.O and O—H···.N hydrogen bonds (Table 1) link the molecules into a three-dimensional network.

Experimental

A solution of helicid (1.42 g, 5 mmol) in methanol (8 ml) and a 40% aqueous solution of methyl amine (0.75 ml, 10 mmol) was subjected to ultrasonic radiation for 3 h at 333 K. On cooling to room temperature, colourless crystals were obtained unintentionally.

Refinement

All H were positioned geometrically and refined using a riding model, with C—H = 0.93–0.98 Å, O—H = 0.82 Å, and with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C, O) for methyl and hydroxy H atoms. In the absence of significant anomalous dispersion effects, Friedel pairs were averaged.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level.

Crystal data

C14H19NO6 F(000) = 316
Mr = 297.30 Dx = 1.343 Mg m3
Monoclinic, P21 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2yb Cell parameters from 25 reflections
a = 6.721 (4) Å θ = 4.2–7.5°
b = 7.751 (3) Å µ = 0.11 mm1
c = 14.119 (4) Å T = 292 K
β = 91.46 (3)° Block, colourless
V = 735.3 (6) Å3 0.48 × 0.46 × 0.44 mm
Z = 2

Data collection

Enraf–Nonius CAD-4 diffractometer Rint = 0.004
Radiation source: fine-focus sealed tube θmax = 25.5°, θmin = 1.4°
graphite h = −8→8
ω/2θ scans k = 0→9
1479 measured reflections l = −5→17
1469 independent reflections 3 standard reflections every 120 reflections
1325 reflections with I > 2σ(I) intensity decay: 0.8%

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.093 H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0607P)2 + 0.0722P] where P = (Fo2 + 2Fc2)/3
1469 reflections (Δ/σ)max < 0.001
195 parameters Δρmax = 0.16 e Å3
1 restraint Δρmin = −0.24 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.3071 (3) −0.0753 (2) 0.21216 (11) 0.0379 (4)
O2 0.4392 (3) −0.3849 (2) 0.12078 (13) 0.0451 (5)
H2O 0.4074 −0.4260 0.1717 0.068*
O3 0.1787 (3) 0.0239 (3) −0.03679 (11) 0.0441 (4)
H3O 0.2854 0.0646 −0.0527 0.066*
O4 0.3774 (3) 0.2704 (2) 0.06228 (14) 0.0465 (5)
H4O 0.3892 0.3747 0.0704 0.070*
O5 0.2525 (3) 0.3895 (2) 0.23888 (12) 0.0403 (4)
H5O 0.1701 0.4234 0.2764 0.060*
O6 0.3519 (2) 0.0903 (3) 0.34359 (10) 0.0394 (4)
N1 1.0551 (3) −0.0235 (3) 0.64875 (15) 0.0434 (5)
C1 0.3201 (4) −0.0893 (3) 0.11071 (17) 0.0331 (5)
H1 0.4538 −0.0559 0.0915 0.040*
C2 0.1662 (4) 0.0309 (3) 0.06374 (16) 0.0364 (5)
H2 0.0333 −0.0081 0.0811 0.044*
C3 0.1951 (4) 0.2142 (3) 0.09971 (16) 0.0377 (5)
H3 0.0864 0.2873 0.0754 0.045*
C4 0.2018 (4) 0.2204 (3) 0.20805 (16) 0.0336 (5)
H4 0.0711 0.1891 0.2320 0.040*
C5 0.3562 (4) 0.0917 (3) 0.24383 (15) 0.0336 (5)
H5 0.4888 0.1242 0.2227 0.040*
C6 0.2829 (4) −0.2759 (3) 0.0851 (2) 0.0419 (6)
H6A 0.1575 −0.3126 0.1110 0.050*
H6B 0.2727 −0.2870 0.0167 0.050*
C7 0.5264 (3) 0.0507 (4) 0.39210 (15) 0.0346 (5)
C8 0.5361 (4) 0.1100 (4) 0.48498 (15) 0.0373 (6)
H8 0.4298 0.1704 0.5098 0.045*
C9 0.7042 (4) 0.0788 (4) 0.54001 (15) 0.0380 (6)
H9 0.7102 0.1165 0.6026 0.046*
C10 0.8654 (4) −0.0086 (3) 0.50277 (16) 0.0372 (6)
C11 0.8541 (4) −0.0656 (4) 0.40913 (17) 0.0414 (6)
H11 0.9618 −0.1226 0.3834 0.050*
C12 0.6830 (4) −0.0379 (4) 0.35401 (16) 0.0408 (6)
H12 0.6742 −0.0788 0.2921 0.049*
C13 1.0481 (4) −0.0398 (4) 0.55985 (18) 0.0415 (6)
H13 1.1629 −0.0727 0.5292 0.050*
C14 1.2474 (4) −0.0454 (5) 0.6982 (2) 0.0536 (7)
H14A 1.3461 −0.0776 0.6535 0.080*
H14B 1.2368 −0.1341 0.7453 0.080*
H14C 1.2855 0.0611 0.7282 0.080*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0468 (9) 0.0314 (9) 0.0350 (9) −0.0009 (8) −0.0059 (7) 0.0028 (8)
O2 0.0549 (11) 0.0277 (9) 0.0526 (10) 0.0046 (8) 0.0014 (8) 0.0060 (8)
O3 0.0518 (11) 0.0434 (11) 0.0366 (8) 0.0007 (9) −0.0127 (7) −0.0042 (8)
O4 0.0700 (13) 0.0285 (9) 0.0416 (9) −0.0075 (9) 0.0098 (8) −0.0041 (8)
O5 0.0488 (11) 0.0329 (9) 0.0394 (9) −0.0012 (8) 0.0074 (8) −0.0061 (8)
O6 0.0371 (9) 0.0501 (11) 0.0307 (8) 0.0036 (8) −0.0039 (7) 0.0020 (8)
N1 0.0370 (11) 0.0493 (14) 0.0435 (11) −0.0017 (10) −0.0059 (9) 0.0079 (10)
C1 0.0350 (12) 0.0281 (12) 0.0359 (11) −0.0010 (10) −0.0048 (9) −0.0006 (10)
C2 0.0373 (13) 0.0342 (13) 0.0373 (12) 0.0019 (11) −0.0098 (10) −0.0010 (11)
C3 0.0453 (13) 0.0328 (12) 0.0347 (12) 0.0072 (12) −0.0069 (10) 0.0012 (11)
C4 0.0365 (12) 0.0307 (12) 0.0335 (11) 0.0018 (11) −0.0007 (9) −0.0006 (10)
C5 0.0348 (12) 0.0368 (13) 0.0292 (11) −0.0011 (11) −0.0017 (9) 0.0012 (10)
C6 0.0464 (14) 0.0284 (13) 0.0504 (14) −0.0019 (12) −0.0091 (11) −0.0016 (11)
C7 0.0364 (12) 0.0338 (12) 0.0334 (11) −0.0003 (11) −0.0033 (9) 0.0054 (10)
C8 0.0374 (13) 0.0401 (14) 0.0345 (12) 0.0043 (11) 0.0015 (10) 0.0000 (11)
C9 0.0410 (13) 0.0430 (14) 0.0297 (11) 0.0006 (11) −0.0009 (9) 0.0004 (11)
C10 0.0381 (13) 0.0366 (13) 0.0368 (12) −0.0006 (10) −0.0021 (10) 0.0052 (10)
C11 0.0420 (14) 0.0412 (14) 0.0412 (13) 0.0085 (12) 0.0036 (10) 0.0018 (12)
C12 0.0491 (14) 0.0418 (14) 0.0315 (11) 0.0059 (13) −0.0031 (10) −0.0031 (11)
C13 0.0359 (13) 0.0411 (15) 0.0475 (14) 0.0003 (11) −0.0003 (11) 0.0064 (12)
C14 0.0420 (15) 0.0617 (19) 0.0564 (16) −0.0042 (15) −0.0165 (12) 0.0100 (15)

Geometric parameters (Å, °)

O1—C5 1.406 (3) C4—C5 1.517 (3)
O1—C1 1.441 (3) C4—H4 0.9800
O2—C6 1.430 (3) C5—H5 0.9800
O2—H2O 0.8200 C6—H6A 0.9700
O3—C2 1.425 (3) C6—H6B 0.9700
O3—H3O 0.8200 C7—C12 1.377 (4)
O4—C3 1.415 (3) C7—C8 1.390 (3)
O4—H4O 0.8200 C8—C9 1.376 (3)
O5—C4 1.420 (3) C8—H8 0.9300
O5—H5O 0.8200 C9—C10 1.392 (4)
O6—C7 1.378 (3) C9—H9 0.9300
O6—C5 1.410 (3) C10—C11 1.394 (3)
N1—C13 1.261 (3) C10—C13 1.471 (4)
N1—C14 1.463 (3) C11—C12 1.389 (4)
C1—C6 1.510 (3) C11—H11 0.9300
C1—C2 1.531 (3) C12—H12 0.9300
C1—H1 0.9800 C13—H13 0.9300
C2—C3 1.520 (4) C14—H14A 0.9600
C2—H2 0.9800 C14—H14B 0.9600
C3—C4 1.530 (3) C14—H14C 0.9600
C3—H3 0.9800
C5—O1—C1 111.46 (17) O6—C5—H5 110.4
C6—O2—H2O 109.5 C4—C5—H5 110.4
C2—O3—H3O 109.5 O2—C6—C1 111.5 (2)
C3—O4—H4O 109.5 O2—C6—H6A 109.3
C4—O5—H5O 109.5 C1—C6—H6A 109.3
C7—O6—C5 117.35 (18) O2—C6—H6B 109.3
C13—N1—C14 118.3 (2) C1—C6—H6B 109.3
O1—C1—C6 107.3 (2) H6A—C6—H6B 108.0
O1—C1—C2 109.09 (19) C12—C7—O6 124.5 (2)
C6—C1—C2 111.9 (2) C12—C7—C8 121.0 (2)
O1—C1—H1 109.5 O6—C7—C8 114.5 (2)
C6—C1—H1 109.5 C9—C8—C7 119.5 (2)
C2—C1—H1 109.5 C9—C8—H8 120.2
O3—C2—C3 111.0 (2) C7—C8—H8 120.2
O3—C2—C1 110.6 (2) C8—C9—C10 120.5 (2)
C3—C2—C1 110.17 (18) C8—C9—H9 119.7
O3—C2—H2 108.3 C10—C9—H9 119.7
C3—C2—H2 108.3 C9—C10—C11 119.2 (2)
C1—C2—H2 108.3 C9—C10—C13 121.3 (2)
O4—C3—C2 105.5 (2) C11—C10—C13 119.5 (2)
O4—C3—C4 111.1 (2) C12—C11—C10 120.5 (2)
C2—C3—C4 111.3 (2) C12—C11—H11 119.8
O4—C3—H3 109.6 C10—C11—H11 119.8
C2—C3—H3 109.6 C7—C12—C11 119.2 (2)
C4—C3—H3 109.6 C7—C12—H12 120.4
O5—C4—C5 110.4 (2) C11—C12—H12 120.4
O5—C4—C3 109.7 (2) N1—C13—C10 122.6 (2)
C5—C4—C3 108.34 (19) N1—C13—H13 118.7
O5—C4—H4 109.5 C10—C13—H13 118.7
C5—C4—H4 109.5 N1—C14—H14A 109.5
C3—C4—H4 109.5 N1—C14—H14B 109.5
O1—C5—O6 107.48 (19) H14A—C14—H14B 109.5
O1—C5—C4 110.26 (19) N1—C14—H14C 109.5
O6—C5—C4 107.84 (19) H14A—C14—H14C 109.5
O1—C5—H5 110.4 H14B—C14—H14C 109.5
C5—O1—C1—C6 175.0 (2) O5—C4—C5—O6 63.7 (2)
C5—O1—C1—C2 −63.6 (2) C3—C4—C5—O6 −176.21 (19)
O1—C1—C2—O3 178.37 (19) O1—C1—C6—O2 −66.7 (3)
C6—C1—C2—O3 −63.1 (3) C2—C1—C6—O2 173.71 (19)
O1—C1—C2—C3 55.3 (3) C5—O6—C7—C12 −21.4 (4)
C6—C1—C2—C3 173.8 (2) C5—O6—C7—C8 157.8 (2)
O3—C2—C3—O4 −53.9 (2) C12—C7—C8—C9 −0.4 (4)
C1—C2—C3—O4 68.9 (2) O6—C7—C8—C9 −179.6 (2)
O3—C2—C3—C4 −174.57 (19) C7—C8—C9—C10 1.2 (4)
C1—C2—C3—C4 −51.7 (3) C8—C9—C10—C11 −0.5 (4)
O4—C3—C4—O5 55.8 (3) C8—C9—C10—C13 178.6 (2)
C2—C3—C4—O5 173.1 (2) C9—C10—C11—C12 −1.0 (4)
O4—C3—C4—C5 −64.8 (3) C13—C10—C11—C12 179.9 (3)
C2—C3—C4—C5 52.6 (3) O6—C7—C12—C11 178.0 (3)
C1—O1—C5—O6 −176.31 (17) C8—C7—C12—C11 −1.1 (4)
C1—O1—C5—C4 66.4 (2) C10—C11—C12—C7 1.8 (4)
C7—O6—C5—O1 90.4 (2) C14—N1—C13—C10 −175.7 (3)
C7—O6—C5—C4 −150.8 (2) C9—C10—C13—N1 15.4 (4)
O5—C4—C5—O1 −179.22 (19) C11—C10—C13—N1 −165.5 (3)
C3—C4—C5—O1 −59.1 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O2—H2O···O5i 0.82 2.02 2.742 (3) 147
O3—H3O···O2ii 0.82 2.14 2.942 (3) 165
O4—H4O···O2iii 0.82 2.02 2.824 (3) 167
O5—H5O···N1iv 0.82 1.91 2.723 (3) 170

Symmetry codes: (i) x, y−1, z; (ii) −x+1, y+1/2, −z; (iii) x, y+1, z; (iv) −x+1, y+1/2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2284).

References

  1. Chen, W. S., Lu, S. D. & Eberhard, B. (1981). Liebigs Ann. Chem.10, 1893–1897.
  2. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  3. Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst.22, 384–387.
  4. Gabe, E. J., White, P. S. & Enright, G. D. (1993). DIFRAC Pittsburgh Meeting Abstract, PA 104. American Crystallographic Association, Buffalo, New York, USA.
  5. Sha, J. Z. & Mao, H. K. (1987). Chin. Pharm. Bull.22, 21–27.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Yang, H. J., Hu, C., Li, Y. & Yin, S. F. (2008). Chin. J. Org. Chem.28, 899–902.
  8. Zhu, Q. L., Tang, Q., Li, Y. & Yin, S. F. (2006). Chin. J. Org. Chem.26, 1264–1267.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809000944/rz2284sup1.cif

e-65-0o290-sup1.cif (18.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809000944/rz2284Isup2.hkl

e-65-0o290-Isup2.hkl (72.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES