Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Jan 8;65(Pt 2):o261. doi: 10.1107/S1600536809000245

3-Phenyl­isoquinolin-1(2H)-one

P Manivel a, Venkatesha R Hathwar b, R Subashini a, P Nithya a, F Nawaz Khan a,*
PMCID: PMC2968326  PMID: 21581876

Abstract

The title compound, C15H11NO, consists of a planar isoquinolinone group to which a phenyl ring is attached in a twisted fashion [dihedral angle = 39.44 (4)°]. The crystal packing is dominated by inter­molecular N—H⋯O and C—H⋯O hydrogen bonds which define centrosymmetric dimeric entitities.

Related literature

For general background and related crystal structures, see: Cho et al. (2002) and references therein. For new chemotherapeutic agents for the treatment of cancer derived from natural compounds, see: Mackay et al. (1997). For bond-length data, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995).graphic file with name e-65-0o261-scheme1.jpg

Experimental

Crystal data

  • C15H11NO

  • M r = 221.25

  • Triclinic, Inline graphic

  • a = 3.8692 (5) Å

  • b = 12.0171 (16) Å

  • c = 12.3209 (16) Å

  • α = 106.652 (2)°

  • β = 94.137 (2)°

  • γ = 90.579 (2)°

  • V = 547.14 (12) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 290 (2) K

  • 0.21 × 0.15 × 0.08 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.938, T max = 0.993

  • 5473 measured reflections

  • 2001 independent reflections

  • 1545 reflections with I > 2σ(I)

  • R int = 0.016

Refinement

  • R[F 2 > 2σ(F 2)] = 0.039

  • wR(F 2) = 0.106

  • S = 1.06

  • 2001 reflections

  • 158 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.15 e Å−3

Data collection: SMART (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008)’; program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1999) and CAMERON (Watkin et al., 1993); software used to prepare material for publication: PLATON (Spek, 2003).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809000245/bg2233sup1.cif

e-65-0o261-sup1.cif (17.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809000245/bg2233Isup2.hkl

e-65-0o261-Isup2.hkl (96.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.896 (16) 1.945 (16) 2.8373 (15) 174.0 (15)
C11—H11⋯O1ii 0.93 2.59 3.4449 (19) 152

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

We thank the Department of Science and Technology, India, for use of the CCD facility set up under the IRHPA–DST program at IISc. We thank Prof T. N. Guru Row, IISc, Bangalore, for useful crystallographic discussions. FNK thanks the DST for Fast Track Proposal funding.

supplementary crystallographic information

Comment

New chemotherapeutic agents for a treatment of cancer from natural compounds have been developed over the last decade (Mackay et al., 1997). Most of the 3-arylisoquinoline derivatives exhibited potent cytotoxicities against five different human tumor cell lines. These potent antitumor activity is studied by molecular modeling to correlate structure-activity relationships (Cho et al., 2002 and references therein).

In the title compound C15H11NO (Fig. 1) the phenyl ring attached to the isoquinolinone moiety at C2 is twisted, forming a dihedral angle of 39.44 (4)°. Bond lengths and angles are within normal ranges (Allen et al., 1987). The C15H11NO monomers are linked via N—H···O and C—H···O hydrogen bonds to form dimers across the inversion center located at (1/2, 1/2, 0) (Fig. 2) and giving raise to two R12(7) and one R22(14) graph-set motifs respectively (Bernstein et al., 1995).

Experimental

A solution of 3-pheylisocoumarin in THF was treated with ammonia and stirred overnight under reflux conditions; the solvent was concentrated to give the solid which was further purified by column chromatography. The material was recrystalized from Dichloromethane.

Refinement

All the H atoms in (I) were positioned geometrically and refined using a riding model with C—H = 0.93Å and Uiso(H) = 1.2Ueq(C) for aromatic H atoms. The H atom of N was located from difference fourier map and refined isotropically resulting in N—H abond length of 0.895 (17) Å.

Figures

Fig. 1.

Fig. 1.

ORTEP diagram of molecule (I) with 50% probability displacement ellipsoids.

Fig. 2.

Fig. 2.

The crystal packing diagram of (I).The dotted lines indicate intermolecular interactions. H atoms not involved in H-bonding have been omitted for clarity.

Crystal data

C15H11NO Z = 2
Mr = 221.25 F(000) = 232
Triclinic, P1 Dx = 1.343 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 3.8692 (5) Å Cell parameters from 956 reflections
b = 12.0171 (16) Å θ = 2.0–24.7°
c = 12.3209 (16) Å µ = 0.09 mm1
α = 106.652 (2)° T = 290 K
β = 94.137 (2)° Plate, brown
γ = 90.579 (2)° 0.21 × 0.15 × 0.08 mm
V = 547.14 (12) Å3

Data collection

Bruker SMART CCD area-detector diffractometer 2001 independent reflections
Radiation source: fine-focus sealed tube 1545 reflections with I > 2σ(I)
graphite Rint = 0.016
φ and ω scans θmax = 25.3°, θmin = 1.7°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −4→4
Tmin = 0.938, Tmax = 0.993 k = −14→14
5473 measured reflections l = −14→14

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106 H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0596P)2 + 0.0314P] where P = (Fo2 + 2Fc2)/3
2001 reflections (Δ/σ)max < 0.001
158 parameters Δρmax = 0.15 e Å3
0 restraints Δρmin = −0.15 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.3290 (3) 0.49798 (9) 0.14029 (9) 0.0377 (3)
H1N 0.425 (4) 0.4508 (14) 0.0808 (14) 0.053 (4)*
O1 0.3406 (3) 0.63724 (8) 0.04974 (8) 0.0494 (3)
C1 0.2740 (3) 0.60824 (11) 0.13505 (11) 0.0370 (3)
C2 0.2647 (3) 0.45724 (11) 0.23136 (11) 0.0355 (3)
C3 0.1426 (4) 0.53085 (11) 0.32449 (11) 0.0404 (3)
H3 0.1027 0.5045 0.3866 0.048*
C4 −0.0576 (4) 0.72807 (13) 0.42310 (12) 0.0475 (4)
H4 −0.1023 0.7044 0.4864 0.057*
C5 −0.1204 (4) 0.83970 (13) 0.42281 (13) 0.0539 (4)
H5 −0.2067 0.8912 0.4859 0.065*
C6 −0.0564 (4) 0.87701 (13) 0.32897 (14) 0.0540 (4)
H6 −0.0988 0.9533 0.3298 0.065*
C7 0.0688 (4) 0.80168 (12) 0.23554 (12) 0.0461 (4)
H7 0.1092 0.8266 0.1726 0.055*
C8 0.1361 (3) 0.68737 (11) 0.23437 (11) 0.0372 (3)
C9 0.0743 (3) 0.64835 (12) 0.32866 (11) 0.0377 (3)
C10 0.3263 (3) 0.33257 (11) 0.21691 (11) 0.0371 (3)
C11 0.2399 (4) 0.25028 (12) 0.11318 (12) 0.0434 (4)
H11 0.1454 0.2735 0.0519 0.052*
C12 0.2941 (4) 0.13396 (13) 0.10093 (14) 0.0526 (4)
H12 0.2356 0.0792 0.0313 0.063*
C13 0.4338 (4) 0.09853 (13) 0.19090 (15) 0.0558 (4)
H13 0.4695 0.0201 0.1821 0.067*
C14 0.5206 (4) 0.17909 (13) 0.29387 (14) 0.0527 (4)
H14 0.6149 0.1551 0.3547 0.063*
C15 0.4681 (4) 0.29547 (12) 0.30712 (12) 0.0442 (4)
H15 0.5279 0.3496 0.3770 0.053*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0459 (7) 0.0342 (6) 0.0338 (6) 0.0047 (5) 0.0075 (5) 0.0098 (5)
O1 0.0698 (7) 0.0432 (6) 0.0407 (6) 0.0101 (5) 0.0135 (5) 0.0181 (5)
C1 0.0399 (8) 0.0366 (7) 0.0351 (7) 0.0009 (6) 0.0006 (6) 0.0118 (6)
C2 0.0352 (7) 0.0375 (7) 0.0346 (7) −0.0010 (5) 0.0016 (5) 0.0120 (6)
C3 0.0441 (8) 0.0436 (8) 0.0356 (7) −0.0006 (6) 0.0054 (6) 0.0144 (6)
C4 0.0477 (9) 0.0507 (9) 0.0400 (8) 0.0004 (7) 0.0065 (6) 0.0059 (7)
C5 0.0530 (9) 0.0483 (9) 0.0493 (9) 0.0076 (7) 0.0040 (7) −0.0036 (7)
C6 0.0593 (10) 0.0376 (8) 0.0587 (10) 0.0082 (7) −0.0026 (8) 0.0053 (7)
C7 0.0518 (9) 0.0393 (8) 0.0458 (8) 0.0026 (6) −0.0010 (7) 0.0111 (6)
C8 0.0352 (7) 0.0367 (7) 0.0375 (7) 0.0002 (6) −0.0020 (5) 0.0082 (6)
C9 0.0341 (7) 0.0403 (8) 0.0356 (7) −0.0015 (6) 0.0015 (5) 0.0062 (6)
C10 0.0345 (7) 0.0377 (7) 0.0417 (8) 0.0003 (6) 0.0068 (6) 0.0148 (6)
C11 0.0493 (9) 0.0375 (8) 0.0444 (8) 0.0002 (6) 0.0017 (6) 0.0137 (6)
C12 0.0591 (10) 0.0383 (8) 0.0568 (10) −0.0021 (7) 0.0041 (7) 0.0082 (7)
C13 0.0591 (10) 0.0386 (8) 0.0752 (11) 0.0049 (7) 0.0100 (8) 0.0240 (8)
C14 0.0554 (10) 0.0525 (9) 0.0590 (10) 0.0073 (7) 0.0046 (7) 0.0301 (8)
C15 0.0476 (8) 0.0455 (8) 0.0421 (8) 0.0018 (6) 0.0028 (6) 0.0170 (6)

Geometric parameters (Å, °)

N1—C1 1.3631 (17) C6—H6 0.9300
N1—C2 1.3831 (16) C7—C8 1.3970 (19)
N1—H1N 0.895 (17) C7—H7 0.9300
O1—C1 1.2408 (15) C8—C9 1.4060 (18)
C1—C8 1.4574 (19) C10—C11 1.3894 (19)
C2—C3 1.3518 (18) C10—C15 1.3914 (19)
C2—C10 1.4811 (18) C11—C12 1.382 (2)
C3—C9 1.4263 (19) C11—H11 0.9300
C3—H3 0.9300 C12—C13 1.375 (2)
C4—C5 1.367 (2) C12—H12 0.9300
C4—C9 1.410 (2) C13—C14 1.374 (2)
C4—H4 0.9300 C13—H13 0.9300
C5—C6 1.391 (2) C14—C15 1.380 (2)
C5—H5 0.9300 C14—H14 0.9300
C6—C7 1.368 (2) C15—H15 0.9300
C1—N1—C2 125.14 (12) C7—C8—C9 120.48 (13)
C1—N1—H1N 115.8 (10) C7—C8—C1 119.76 (12)
C2—N1—H1N 119.0 (10) C9—C8—C1 119.76 (12)
O1—C1—N1 120.67 (12) C8—C9—C4 117.81 (13)
O1—C1—C8 123.27 (12) C8—C9—C3 119.16 (12)
N1—C1—C8 116.06 (11) C4—C9—C3 123.03 (13)
C3—C2—N1 119.03 (12) C11—C10—C15 118.75 (13)
C3—C2—C10 124.69 (12) C11—C10—C2 120.53 (12)
N1—C2—C10 116.25 (11) C15—C10—C2 120.72 (12)
C2—C3—C9 120.84 (12) C12—C11—C10 120.12 (13)
C2—C3—H3 119.6 C12—C11—H11 119.9
C9—C3—H3 119.6 C10—C11—H11 119.9
C5—C4—C9 120.84 (14) C13—C12—C11 120.49 (15)
C5—C4—H4 119.6 C13—C12—H12 119.8
C9—C4—H4 119.6 C11—C12—H12 119.8
C4—C5—C6 120.60 (14) C14—C13—C12 119.93 (14)
C4—C5—H5 119.7 C14—C13—H13 120.0
C6—C5—H5 119.7 C12—C13—H13 120.0
C7—C6—C5 120.09 (14) C13—C14—C15 120.12 (14)
C7—C6—H6 120.0 C13—C14—H14 119.9
C5—C6—H6 120.0 C15—C14—H14 119.9
C6—C7—C8 120.18 (14) C14—C15—C10 120.59 (14)
C6—C7—H7 119.9 C14—C15—H15 119.7
C8—C7—H7 119.9 C10—C15—H15 119.7
C2—N1—C1—O1 179.73 (12) C1—C8—C9—C3 −1.05 (19)
C2—N1—C1—C8 −0.11 (19) C5—C4—C9—C8 −0.4 (2)
C1—N1—C2—C3 −1.0 (2) C5—C4—C9—C3 −179.69 (13)
C1—N1—C2—C10 177.01 (11) C2—C3—C9—C8 −0.1 (2)
N1—C2—C3—C9 1.15 (19) C2—C3—C9—C4 179.11 (13)
C10—C2—C3—C9 −176.74 (12) C3—C2—C10—C11 139.32 (15)
C9—C4—C5—C6 0.2 (2) N1—C2—C10—C11 −38.62 (18)
C4—C5—C6—C7 0.3 (2) C3—C2—C10—C15 −39.97 (19)
C5—C6—C7—C8 −0.6 (2) N1—C2—C10—C15 142.09 (13)
C6—C7—C8—C9 0.4 (2) C15—C10—C11—C12 0.2 (2)
C6—C7—C8—C1 −179.14 (13) C2—C10—C11—C12 −179.14 (13)
O1—C1—C8—C7 0.8 (2) C10—C11—C12—C13 0.0 (2)
N1—C1—C8—C7 −179.33 (11) C11—C12—C13—C14 0.0 (2)
O1—C1—C8—C9 −178.69 (12) C12—C13—C14—C15 −0.1 (2)
N1—C1—C8—C9 1.15 (18) C13—C14—C15—C10 0.2 (2)
C7—C8—C9—C4 0.2 (2) C11—C10—C15—C14 −0.2 (2)
C1—C8—C9—C4 179.67 (12) C2—C10—C15—C14 179.07 (13)
C7—C8—C9—C3 179.44 (12)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1N···O1i 0.896 (16) 1.945 (16) 2.8373 (15) 174.0 (15)
C11—H11···O1ii 0.93 2.59 3.4449 (19) 152

Symmetry codes: (i) −x+1, −y+1, −z; (ii) −x, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BG2233).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  3. Bruker (2004). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Cho, W., Kim, E., Park, I. Y., Jeong, E. Y., Kim, T. S., Le, T. N., Kim, D. & Leed, E. (2002). Bioorg. Med. Chem.10, 2953–2961. [DOI] [PubMed]
  5. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  6. Mackay, S. P., Meth-Cohn, O. & Waich, R. D. (1997). In Advances in Heterocyclic Chemistry, edited by A. R. Katritzky. New York: Academic Press.
  7. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  10. Watkin, D. J., Pearce, L. & Prout, C. K. (1993). CAMERON Chemical Crystallography Laboratory, University of Oxford, England.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809000245/bg2233sup1.cif

e-65-0o261-sup1.cif (17.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809000245/bg2233Isup2.hkl

e-65-0o261-Isup2.hkl (96.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES