Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Jan 23;65(Pt 2):o369. doi: 10.1107/S1600536809002311

(E)-N′-[1-(4-Chloro­phen­yl)ethyl­idene]-2-hydroxy­benzohydrazide

Man-Lin Li a,*, Xianqiang Huang b, Ruo-Kun Feng b
PMCID: PMC2968327  PMID: 21581967

Abstract

In the title compound, C15H13ClN2O2, the dihedral angle between the two benzene rings is 7.0 (1)°. An intra­molecular N—H⋯O hydrogen bond is present and inter­molecular O—H⋯O hydrogen bonds link the mol­ecules into chains along [001].

Related literature

For related literature, see: Sumita et al. (1999). For the crystal structure of the closely related compound (E)-2-hydr­oxy-N′-(2-naphthyl­methyl­ene)benzohydrazide, see: Qiu et al. (2006).graphic file with name e-65-0o369-scheme1.jpg

Experimental

Crystal data

  • C15H13ClN2O2

  • M r = 288.72

  • Monoclinic, Inline graphic

  • a = 27.900 (3) Å

  • b = 7.880 (1) Å

  • c = 13.4899 (15) Å

  • β = 113.530 (2)°

  • V = 2719.2 (5) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.28 mm−1

  • T = 293 (2) K

  • 0.35 × 0.17 × 0.07 mm

Data collection

  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.907, T max = 0.980

  • 4744 measured reflections

  • 1663 independent reflections

  • 901 reflections with I > 2σ(I)

  • R int = 0.082

  • θmax = 22.0°

Refinement

  • R[F 2 > 2σ(F 2)] = 0.065

  • wR(F 2) = 0.266

  • S = 0.96

  • 1663 reflections

  • 182 parameters

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.37 e Å−3

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809002311/bi2333sup1.cif

e-65-0o369-sup1.cif (15.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809002311/bi2333Isup2.hkl

e-65-0o369-Isup2.hkl (82.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2 0.86 1.96 2.645 (6) 135
O2—H2⋯O1i 0.82 1.92 2.676 (6) 153

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors acknowledge the support of the National Natural Science Foundation of Liaocheng University (grant No. X051040).

supplementary crystallographic information

Comment

Salicyloyl hydrazide is an important organic intermediate, which can act as moulding board in inorganic complexes (Sumita et al., 1999). The title compound was obtained by reaction of salicyloyl hydrazide and 1-(4-chlorophenyl)ethanone. The bond lengths and angles are normal and comparable to those in the previously reported compound (E)-2-hydroxy-N'-(2-naphthylmethylene)-benzohydrazide (Qiu et al., 2006).

In the crystal structure, typical intramolecular N—H···O hydrogen bonds exist, and intermolecular O—H···O hydrogen bonds link the molecules into one-dimensional chains along [001].

Experimental

Salicyloyl hydrazide (0.3 mmol) and freshly prepared 1-(4-chlorophenyl)ethanone (0.3 mmol) were mixed in a 50 ml flask. After stirring for 30 min at 353 K, the mixture was cooled slowly to room temperature and the product was recrystallized from ethanol, affording the title compound as a green crystalline solid. Elemental analysis calculated: C 62.40, H 4.54, N 9.70%; found: C 62.58, H 4.45, N 9.64%.

Refinement

All H atoms were placed in geometrically idealized positions (N—H = 0.86, O—H = 0.82 and C—H = 0.93–0.96 Å) and refined as riding with Uiso(H) = 1.2 Ueq(C,O,N). Diffraction was relatively weak and the data are truncated to 0.95 Å resolution, with 901 of 1663 unique reflections (ca 54%) observed. As a consequence, the refined structure is of relatively low precision.

Figures

Fig. 1.

Fig. 1.

Molecular structure with displacement ellipsoids drawn at 30% probability for non-H atoms.

Crystal data

C15H13ClN2O2 F(000) = 1200
Mr = 288.72 Dx = 1.411 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yc Cell parameters from 951 reflections
a = 27.900 (3) Å θ = 2.7–25.1°
b = 7.880 (1) Å µ = 0.28 mm1
c = 13.4899 (15) Å T = 293 K
β = 113.530 (2)° Block, green
V = 2719.2 (5) Å3 0.35 × 0.17 × 0.07 mm
Z = 8

Data collection

Bruker SMART CCD diffractometer 1663 independent reflections
Radiation source: fine-focus sealed tube 901 reflections with I > 2σ(I)
graphite Rint = 0.082
φ and ω scans θmax = 22.0°, θmin = 1.6°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −29→20
Tmin = 0.907, Tmax = 0.980 k = −8→8
4744 measured reflections l = −14→14

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.065 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.266 H-atom parameters constrained
S = 0.96 w = 1/[σ2(Fo2) + (0.1726P)2] where P = (Fo2 + 2Fc2)/3
1663 reflections (Δ/σ)max < 0.001
182 parameters Δρmax = 0.33 e Å3
0 restraints Δρmin = −0.37 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 −0.16974 (8) 0.5453 (3) −0.40292 (16) 0.0745 (9)
N1 0.07264 (19) 0.1148 (7) 0.0780 (4) 0.0390 (15)
H1 0.0712 0.1193 0.1404 0.047*
N2 0.0332 (2) 0.1842 (7) −0.0112 (4) 0.0372 (15)
O1 0.11636 (19) 0.0271 (8) −0.0221 (4) 0.0714 (19)
O2 0.11905 (18) 0.0618 (6) 0.2888 (3) 0.0531 (15)
H2 0.1252 0.0612 0.3535 0.080*
C1 0.1133 (2) 0.0401 (10) 0.0666 (5) 0.0422 (19)
C2 0.1557 (2) −0.0358 (9) 0.1654 (5) 0.0400 (18)
C3 0.1585 (2) −0.0201 (9) 0.2719 (5) 0.0405 (19)
C4 0.2007 (3) −0.0898 (10) 0.3581 (5) 0.050 (2)
H4 0.2027 −0.0789 0.4283 0.060*
C5 0.2391 (3) −0.1741 (11) 0.3394 (6) 0.063 (2)
H5 0.2671 −0.2198 0.3975 0.075*
C6 0.2372 (3) −0.1928 (11) 0.2365 (6) 0.060 (2)
H6 0.2627 −0.2543 0.2242 0.071*
C7 0.1960 (3) −0.1174 (9) 0.1511 (6) 0.0457 (19)
H7 0.1958 −0.1225 0.0820 0.055*
C8 −0.0107 (3) 0.2598 (11) 0.1122 (5) 0.056 (2)
H8A −0.0043 0.1505 0.1465 0.084*
H8B −0.0452 0.2971 0.1005 0.084*
H8C 0.0145 0.3397 0.1578 0.084*
C9 −0.0057 (2) 0.2471 (9) 0.0044 (5) 0.0405 (18)
C10 −0.0473 (3) 0.3259 (9) −0.0938 (5) 0.0387 (18)
C11 −0.0867 (3) 0.4294 (9) −0.0915 (5) 0.046 (2)
H11 −0.0883 0.4545 −0.0254 0.055*
C12 −0.1242 (3) 0.4970 (10) −0.1857 (6) 0.052 (2)
H12 −0.1503 0.5674 −0.1824 0.063*
C13 −0.1227 (3) 0.4592 (9) −0.2842 (5) 0.0430 (19)
C14 −0.0845 (3) 0.3575 (10) −0.2901 (5) 0.052 (2)
H14 −0.0827 0.3366 −0.3563 0.062*
C15 −0.0479 (3) 0.2847 (9) −0.1954 (5) 0.0450 (19)
H15 −0.0236 0.2077 −0.2001 0.054*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0664 (15) 0.088 (2) 0.0516 (14) 0.0085 (12) 0.0054 (11) 0.0142 (12)
N1 0.039 (3) 0.058 (4) 0.023 (3) 0.000 (3) 0.016 (3) 0.002 (3)
N2 0.038 (3) 0.043 (4) 0.032 (3) −0.001 (3) 0.016 (3) 0.001 (3)
O1 0.061 (3) 0.136 (6) 0.026 (3) 0.018 (3) 0.027 (3) 0.006 (3)
O2 0.062 (3) 0.078 (4) 0.025 (2) 0.006 (3) 0.023 (2) 0.005 (2)
C1 0.038 (4) 0.065 (5) 0.028 (4) −0.011 (4) 0.018 (3) −0.006 (3)
C2 0.036 (4) 0.060 (5) 0.028 (4) −0.007 (4) 0.016 (3) 0.003 (3)
C3 0.038 (4) 0.053 (5) 0.036 (4) −0.003 (3) 0.020 (3) 0.002 (3)
C4 0.057 (5) 0.053 (6) 0.034 (4) −0.007 (4) 0.013 (4) 0.006 (4)
C5 0.045 (5) 0.084 (7) 0.054 (5) 0.009 (4) 0.014 (4) 0.015 (5)
C6 0.040 (5) 0.084 (7) 0.055 (5) 0.006 (4) 0.019 (4) 0.008 (5)
C7 0.051 (5) 0.046 (5) 0.047 (4) −0.001 (4) 0.027 (4) −0.004 (4)
C8 0.056 (5) 0.080 (7) 0.037 (4) −0.001 (4) 0.025 (4) 0.006 (4)
C9 0.042 (4) 0.049 (5) 0.033 (4) −0.013 (4) 0.018 (3) −0.007 (3)
C10 0.042 (4) 0.050 (5) 0.028 (4) −0.008 (4) 0.019 (3) 0.000 (3)
C11 0.044 (4) 0.059 (6) 0.038 (4) 0.001 (4) 0.020 (4) −0.007 (4)
C12 0.048 (5) 0.057 (6) 0.052 (5) 0.003 (4) 0.021 (4) 0.006 (4)
C13 0.037 (4) 0.041 (5) 0.042 (4) −0.005 (4) 0.006 (3) 0.006 (4)
C14 0.060 (5) 0.064 (6) 0.033 (4) −0.003 (4) 0.021 (4) 0.002 (4)
C15 0.042 (4) 0.061 (6) 0.035 (4) 0.008 (4) 0.019 (3) 0.002 (4)

Geometric parameters (Å, °)

Cl1—C13 1.752 (7) C6—H6 0.930
N1—C1 1.340 (8) C7—H7 0.930
N1—N2 1.379 (7) C8—C9 1.518 (8)
N1—H1 0.860 C8—H8A 0.960
N2—C9 1.284 (8) C8—H8B 0.960
O1—C1 1.237 (7) C8—H8C 0.960
O2—C3 1.372 (8) C9—C10 1.503 (9)
O2—H2 0.820 C10—C11 1.380 (9)
C1—C2 1.508 (9) C10—C15 1.403 (8)
C2—C7 1.374 (9) C11—C12 1.390 (9)
C2—C3 1.412 (9) C11—H11 0.930
C3—C4 1.395 (9) C12—C13 1.379 (10)
C4—C5 1.367 (10) C12—H12 0.930
C4—H4 0.930 C13—C14 1.361 (10)
C5—C6 1.375 (10) C14—C15 1.400 (9)
C5—H5 0.930 C14—H14 0.930
C6—C7 1.395 (9) C15—H15 0.930
C1—N1—N2 119.4 (5) C9—C8—H8B 109.5
C1—N1—H1 120.3 H8A—C8—H8B 109.5
N2—N1—H1 120.3 C9—C8—H8C 109.5
C9—N2—N1 116.2 (5) H8A—C8—H8C 109.5
C3—O2—H2 109.5 H8B—C8—H8C 109.5
O1—C1—N1 122.4 (6) N2—C9—C10 114.8 (5)
O1—C1—C2 119.3 (6) N2—C9—C8 126.1 (6)
N1—C1—C2 118.3 (5) C10—C9—C8 118.9 (6)
C7—C2—C3 117.8 (6) C11—C10—C15 117.4 (6)
C7—C2—C1 117.3 (5) C11—C10—C9 124.5 (5)
C3—C2—C1 124.8 (6) C15—C10—C9 118.0 (6)
O2—C3—C4 120.8 (6) C10—C11—C12 121.4 (6)
O2—C3—C2 119.2 (6) C10—C11—H11 119.3
C4—C3—C2 120.0 (6) C12—C11—H11 119.3
C5—C4—C3 120.0 (6) C13—C12—C11 119.8 (7)
C5—C4—H4 120.0 C13—C12—H12 120.1
C3—C4—H4 120.0 C11—C12—H12 120.1
C4—C5—C6 121.3 (7) C14—C13—C12 120.7 (6)
C4—C5—H5 119.3 C14—C13—Cl1 119.6 (5)
C6—C5—H5 119.3 C12—C13—Cl1 119.8 (6)
C5—C6—C7 118.4 (7) C13—C14—C15 119.4 (6)
C5—C6—H6 120.8 C13—C14—H14 120.3
C7—C6—H6 120.8 C15—C14—H14 120.3
C2—C7—C6 122.3 (6) C14—C15—C10 121.1 (7)
C2—C7—H7 118.8 C14—C15—H15 119.4
C6—C7—H7 118.8 C10—C15—H15 119.4
C9—C8—H8A 109.5

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1···O2 0.86 1.96 2.645 (6) 135
O2—H2···O1i 0.82 1.92 2.676 (6) 153

Symmetry codes: (i) x, −y, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BI2333).

References

  1. Bruker (1997). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Qiu, X.-Y., Luo, Z.-G., Yang, S.-L. & Liu, W.-S. (2006). Acta Cryst. E62, o3531–o3532.
  3. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  4. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  5. Sumita, N. R., Munshi, K. N., Nageswara, R. N., Bhadbhade, M. M. & Suresh, E. (1999). Polyhedron, 18, 2491–2497.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809002311/bi2333sup1.cif

e-65-0o369-sup1.cif (15.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809002311/bi2333Isup2.hkl

e-65-0o369-Isup2.hkl (82.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES