Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Jan 8;65(Pt 2):o244. doi: 10.1107/S1600536808044012

Biphenyl-3,3′,4,4′-tetra­carboxylic acid dihydrate

Fei Li a,*, Wu-Wei Wang a, Xing Ji a, Chang-Chun Cao a, Dong-Ya Zhu a,*
PMCID: PMC2968332  PMID: 21581861

Abstract

The asymmetric unit of the title compound, C16H10O8·2H2O, contains one-half of the centrosymmetric organic mol­ecule and one water mol­ecule. The dihedral angles between the carboxyl­ate groups and the adjacent phenyl ring are 71.31 (3) and 16.67 (3)°, while the carboxyl­ate groups are oriented at a dihedral angle of 72.01 (3)°. In the crystal structure, inter­molecular O—H⋯O and bifurcated O—H⋯(O,O) hydrogen bonds link the mol­ecules to form a three-dimensional supra­molecular network.

Related literature

For general background, see: Du et al. (2006, 2007); Desiraju (2003); Yaghi et al. (2003); Li et al. (2008). For a related structure, see: Coles et al. (2002). For bond-length data, see: Allen et al. (1987).graphic file with name e-65-0o244-scheme1.jpg

Experimental

Crystal data

  • C16H10O8·2H2O

  • M r = 366.27

  • Triclinic, Inline graphic

  • a = 5.5858 (16) Å

  • b = 6.6618 (19) Å

  • c = 11.086 (3) Å

  • α = 93.126 (5)°

  • β = 91.404 (4)°

  • γ = 109.110 (4)°

  • V = 388.81 (19) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 296 (2) K

  • 0.28 × 0.24 × 0.22 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001) T min = 0.943, T max = 0.973

  • 1992 measured reflections

  • 1362 independent reflections

  • 1222 reflections with I > 2σ(I)

  • R int = 0.008

Refinement

  • R[F 2 > 2σ(F 2)] = 0.033

  • wR(F 2) = 0.090

  • S = 1.08

  • 1362 reflections

  • 120 parameters

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.16 e Å−3

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808044012/hk2568sup1.cif

e-65-0o244-sup1.cif (14.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808044012/hk2568Isup2.hkl

e-65-0o244-Isup2.hkl (66.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O3i 0.82 1.88 2.683 (3) 168
O4—H4⋯O5ii 0.82 1.79 2.599 (3) 169
O5—H5A⋯O3iii 0.85 2.45 3.129 (3) 137
O5—H5A⋯O2iv 0.85 2.22 2.892 (3) 136
O5—H5B⋯O2 0.85 1.95 2.801 (3) 175

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

We acknowledge Tianjin Normal University for their active cooperation in this work.

supplementary crystallographic information

Comment

Non-covalent intermolecular interactions, mainly hydrogen bonding and aromatic stacking, play the key role to perfectly project and regulate the detailed crystal packing of supramolecular materials (Du et al., 2006; Desiraju, 2003). Aromatic carboxylates have also been proved to be effective building blocks in constructing various architectures (Yaghi et al., 2003; Li et al., 2008; Du et al., 2007). However, the crystal structures of these polycarboxyl acids themselves are rarely reported (Coles et al., 2002). We synthesized the title compound under hydrothermal condition, and report herein its crystal structure.

The asymmetric unit of the title compound (Fig. 1) contains one-half of the centrosymmetric molecule and one water molecule. The bond lengths (Allen et al., 1987) and angles are within normal ranges. The intramolecular O—H···O hydrogen bonding (Table 1) of the carboxylate O2 atom to the water molecule may cause to a small difference in the C1═O2 [1.2031 (18) Å] and C8═O3 [1.2156 (17) Å] double bonds of the carboxylate groups. The dihedral angles between the planar carboxylate groups (O1/C1/O2) and (O3/C8/O4) and the adjacent phenyl ring A (C2–C7) are 71.31 (3)° and 16.67 (3)°, respectively, while the carboxylate groups are oriented at a dihedral angle of 72.01 (3)°.

In the crystal structure, intra- and intermolecular O—H···O hydrogen bonds (Table 1) link the molecules to form a 3-D supramolecular network. Firstly, the O1—H1···O3 hydrogen bonds between the carboxyl units connect them into a 1-D zigzag chain (Fig. 2). Then, water molecules play the acceptor and donor roles, respectively, to participate in the formation of O4—H4···O5 and O5—H5B···O2 hydrogen bonds, giving rise to a 2-D supramolecular layer (Fig. 3). Finally, water molecules further act as donors to interconnect the supramolecular layers into 3-D networks with O5—H5A···O3 and O5—H5A···O2 hydrogen bonds (Fig. 4).

Experimental

The title compound was recrystallized from the mixture of H2O (15 ml) and HNO3 (0.5 ml) under the hydrothermal conditions on cooling from 393 K. Colorless block shaped crystals were obtained at room temperature.

Refinement

H atoms were positioned geometrically, with O—H = 0.82 Å (for OH), 0.85 Å (for OH2) and C—H = 0.93 Å for aromatic H, respectively, and constrained to ride on their parent atoms with Uiso(H) = xUeq(C,O), where x = 1.2 for aromatic H and x = 1.5 for all other H atoms.

Figures

Fig. 1.

Fig. 1.

The asymmetric unit of the title molecule with the atom-numbering scheme. Hydrogen bond is shown as dashed line.

Fig. 2.

Fig. 2.

The one dimensional hydrogen bonded chain showing hydrogen bonds between the carboxyl units. Other H atoms have been omitted for clarity.

Fig. 3.

Fig. 3.

The two dimensional hydrogen-bonding layered structure along [011] direction.

Fig. 4.

Fig. 4.

The three dimensional hydrogen-bonded supramolecular network. The adjacent layers are shown in green and rose colors, and interlayer hydrogen bonds are shown as red dashed lines.

Crystal data

C16H10O8·2H2O Z = 1
Mr = 366.27 F(000) = 190
Triclinic, P1 Dx = 1.564 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 5.5858 (16) Å Cell parameters from 1245 reflections
b = 6.6618 (19) Å θ = 3.2–27.8°
c = 11.086 (3) Å µ = 0.13 mm1
α = 93.126 (5)° T = 296 K
β = 91.404 (4)° Block, colourless
γ = 109.110 (4)° 0.28 × 0.24 × 0.22 mm
V = 388.81 (19) Å3

Data collection

Bruker SMART CCD area-detector diffractometer 1362 independent reflections
Radiation source: fine-focus sealed tube 1222 reflections with I > 2σ(I)
graphite Rint = 0.008
φ and ω scans θmax = 25.0°, θmin = 1.8°
Absorption correction: multi-scan (SADABS; Bruker, 2001) h = −6→6
Tmin = 0.943, Tmax = 0.973 k = −7→7
1992 measured reflections l = −9→13

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.090 H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0467P)2 + 0.0831P] where P = (Fo2 + 2Fc2)/3
1362 reflections (Δ/σ)max < 0.001
120 parameters Δρmax = 0.16 e Å3
0 restraints Δρmin = −0.16 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 1.2031 (2) 0.8456 (2) 0.40618 (9) 0.0535 (3)
H1 1.2130 0.8530 0.4803 0.080*
O2 0.7989 (2) 0.6702 (2) 0.43405 (9) 0.0528 (3)
O3 0.8059 (2) 1.09274 (19) 0.35300 (9) 0.0501 (3)
O4 0.5352 (2) 1.08299 (18) 0.20056 (9) 0.0473 (3)
H4 0.4952 1.1658 0.2468 0.071*
O5 0.3760 (2) 0.35552 (17) 0.32212 (8) 0.0433 (3)
H5A 0.2608 0.2949 0.3695 0.065*
H5B 0.4996 0.4558 0.3561 0.065*
C1 0.9670 (3) 0.7526 (2) 0.36863 (12) 0.0355 (3)
C2 0.9236 (2) 0.7450 (2) 0.23342 (11) 0.0327 (3)
C3 1.0093 (3) 0.6076 (2) 0.16299 (12) 0.0352 (3)
H3 1.1062 0.5354 0.1992 0.042*
C4 0.9533 (3) 0.5744 (2) 0.03778 (11) 0.0329 (3)
C5 0.8074 (3) 0.6846 (3) −0.01240 (12) 0.0426 (4)
H5 0.7650 0.6639 −0.0949 0.051*
C6 0.7238 (3) 0.8241 (3) 0.05735 (12) 0.0423 (4)
H6 0.6272 0.8963 0.0210 0.051*
C7 0.7815 (3) 0.8586 (2) 0.18104 (11) 0.0341 (3)
C8 0.7072 (3) 1.0210 (2) 0.25400 (12) 0.0349 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0436 (6) 0.0853 (9) 0.0246 (5) 0.0135 (6) −0.0053 (4) −0.0055 (5)
O2 0.0502 (7) 0.0738 (8) 0.0232 (5) 0.0062 (6) 0.0020 (5) −0.0023 (5)
O3 0.0567 (7) 0.0651 (7) 0.0316 (6) 0.0290 (6) −0.0118 (5) −0.0202 (5)
O4 0.0621 (7) 0.0599 (7) 0.0298 (5) 0.0363 (6) −0.0068 (5) −0.0100 (5)
O5 0.0480 (6) 0.0484 (6) 0.0323 (5) 0.0154 (5) 0.0033 (4) −0.0044 (4)
C1 0.0423 (8) 0.0418 (8) 0.0231 (7) 0.0164 (6) −0.0016 (6) −0.0054 (6)
C2 0.0342 (7) 0.0396 (7) 0.0216 (6) 0.0095 (6) −0.0006 (5) −0.0030 (5)
C3 0.0408 (8) 0.0430 (8) 0.0240 (7) 0.0175 (6) −0.0019 (5) −0.0016 (5)
C4 0.0375 (7) 0.0372 (7) 0.0226 (6) 0.0114 (6) −0.0003 (5) −0.0032 (5)
C5 0.0589 (10) 0.0540 (9) 0.0202 (7) 0.0276 (8) −0.0063 (6) −0.0065 (6)
C6 0.0559 (9) 0.0521 (9) 0.0265 (7) 0.0297 (8) −0.0055 (6) −0.0043 (6)
C7 0.0373 (7) 0.0390 (7) 0.0244 (7) 0.0113 (6) −0.0004 (5) −0.0036 (6)
C8 0.0381 (7) 0.0403 (8) 0.0250 (7) 0.0120 (6) 0.0007 (6) −0.0025 (6)

Geometric parameters (Å, °)

O1—C1 1.3065 (18) C2—C7 1.399 (2)
O1—H1 0.8200 C3—C4 1.4047 (19)
O2—C1 1.2031 (18) C3—H3 0.9300
O3—C8 1.2156 (17) C4—C5 1.388 (2)
O4—C8 1.3052 (17) C4—C4i 1.492 (3)
O4—H4 0.8200 C5—C6 1.380 (2)
O5—H5A 0.8500 C5—H5 0.9300
O5—H5B 0.8502 C6—C7 1.3901 (19)
C1—C2 1.5080 (18) C6—H6 0.9300
C2—C3 1.380 (2) C7—C8 1.4874 (19)
C1—O1—H1 109.5 C3—C4—C4i 121.05 (15)
C8—O4—H4 109.5 C6—C5—C4 121.45 (13)
H5A—O5—H5B 114.3 C6—C5—H5 119.3
O2—C1—O1 123.81 (12) C4—C5—H5 119.3
O2—C1—C2 122.09 (13) C5—C6—C7 121.10 (14)
O1—C1—C2 114.00 (12) C5—C6—H6 119.5
C3—C2—C7 120.53 (12) C7—C6—H6 119.5
C3—C2—C1 117.84 (12) C6—C7—C2 118.11 (13)
C7—C2—C1 121.39 (12) C6—C7—C8 120.75 (13)
C2—C3—C4 121.34 (13) C2—C7—C8 121.04 (12)
C2—C3—H3 119.3 O3—C8—O4 123.78 (13)
C4—C3—H3 119.3 O3—C8—C7 122.06 (13)
C5—C4—C3 117.43 (13) O4—C8—C7 114.11 (11)
C5—C4—C4i 121.52 (14)
O2—C1—C2—C3 −104.45 (17) C5—C6—C7—C2 −1.1 (2)
O1—C1—C2—C3 72.09 (17) C5—C6—C7—C8 175.44 (14)
O2—C1—C2—C7 70.0 (2) C3—C2—C7—C6 1.8 (2)
O1—C1—C2—C7 −113.51 (16) C1—C2—C7—C6 −172.41 (13)
C7—C2—C3—C4 −1.2 (2) C3—C2—C7—C8 −174.64 (12)
C1—C2—C3—C4 173.25 (13) C1—C2—C7—C8 11.1 (2)
C2—C3—C4—C5 −0.3 (2) C6—C7—C8—O3 −161.23 (14)
C2—C3—C4—C4i −179.98 (15) C2—C7—C8—O3 15.2 (2)
C3—C4—C5—C6 1.1 (2) C6—C7—C8—O4 16.55 (19)
C4i—C4—C5—C6 −179.21 (16) C2—C7—C8—O4 −167.06 (13)
C4—C5—C6—C7 −0.4 (3)

Symmetry codes: (i) −x+2, −y+1, −z.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H1···O3ii 0.82 1.88 2.683 (3) 168
O4—H4···O5iii 0.82 1.79 2.599 (3) 169
O5—H5A···O3iv 0.85 2.45 3.129 (3) 137
O5—H5A···O2v 0.85 2.22 2.892 (3) 136
O5—H5B···O2 0.85 1.95 2.801 (3) 175

Symmetry codes: (ii) −x+2, −y+2, −z+1; (iii) x, y+1, z; (iv) x−1, y−1, z; (v) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2568).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Bruker (2001). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Coles, S. J., Holmes, R., Hursthouse, M. B. & Price, D. J. (2002). Acta Cryst. E58, o626–o628.
  4. Desiraju, G. R. (2003). J. Mol. Struct.656, 5–15.
  5. Du, M., Li, C.-P. & Zhao, X.-J. (2006). CrystEngComm, 8, 552–562.
  6. Du, M., Li, C.-P., Zhao, X.-J. & Yu, Q. (2007). CrystEngComm, 9, 1011–1028.
  7. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  8. Li, C.-P., Tian, Y.-L. & Guo, Y.-M. (2008). Inorg. Chem. Commun.11, 1405–1408.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Yaghi, O. M., O’Keeffe, M., Ockwig, N. W., Chae, H. K., Eddaoudi, M. & Kim, J. (2003). Nature (London), 423, 705–714. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808044012/hk2568sup1.cif

e-65-0o244-sup1.cif (14.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808044012/hk2568Isup2.hkl

e-65-0o244-Isup2.hkl (66.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES