Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Jan 14;65(Pt 2):o308. doi: 10.1107/S1600536809000932

1-Benzoyl-3-(5-quinol­yl)thio­urea

Wen-Hu Du a,b, Chang-Mei Wei b,c,*, Wei-Feng Wang a,b
PMCID: PMC2968342  PMID: 21581917

Abstract

The title compound, C17H13N3OS, was obtained by the reaction of benzoyl chloride, ammonium thio­cyanate and 5-amino­quinoline in the presence of polyethyl­eneglycol-400 (PEG-400) as a phase-transfer catalyst. The compound crystallized as discrete mol­ecules linked by N—H⋯N and C—H⋯N hydrogen bonds involving all the potential donors, generating sheets parallel to (100). An intramolecular N—H⋯O bond is also present.

Related literature

For the biological activity of acyl thio­ureas, see: Hackmann (1960); Sarkis & Faisal (1985). For their application in the synthesis of supra­molecular complexes, see: Pluta & Sadlej (2001); Kaminsky et al. (2002). For a related structure, see: Xue et al. (2004).graphic file with name e-65-0o308-scheme1.jpg

Experimental

Crystal data

  • C17H13N3OS

  • M r = 307.36

  • Monoclinic, Inline graphic

  • a = 5.0875 (1) Å

  • b = 16.1718 (4) Å

  • c = 18.2847 (4) Å

  • β = 95.892 (2)°

  • V = 1496.41 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 296 (2) K

  • 0.40 × 0.30 × 0.20 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968) T min = 0.939, T max = 0.969

  • 13322 measured reflections

  • 3411 independent reflections

  • 2184 reflections with I > 2σ(I)

  • R int = 0.032

  • 3 standard reflections every 97 reflections intensity decay: 2.1%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.048

  • wR(F 2) = 0.129

  • S = 1.04

  • 3411 reflections

  • 207 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.22 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809000932/hg2453sup1.cif

e-65-0o308-sup1.cif (18.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809000932/hg2453Isup2.hkl

e-65-0o308-Isup2.hkl (167.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H6⋯N3i 0.825 (17) 2.283 (17) 3.100 (3) 170.5 (18)
N2—H7⋯O1 0.91 (3) 1.84 (3) 2.619 (3) 143 (3)
C6—H5⋯N3i 0.93 2.46 3.252 (3) 143

Symmetry code: (i) Inline graphic.

Acknowledgments

We are grateful to the Science Foundation of Jiangsu Education Bureau (05KJD 150039), the Professor Foundation of Huaiyin Teachers College (05 HSJS018) and the Science Foundation of Jangsu Key Laboratory for the Chemistry of Low-Dimensional Materials (JSKC 06028) for financial support.

supplementary crystallographic information

Comment

Acyl thioureas have extensive biological activities such as bacteriostasis, weeding (Hackmann, 1960) and plant growth regulating (Sarkis & Faisal, 1985). In addition, acyl thioureas are excellent ligands, and have been widely applied in synthesis of supramolecular complexes (Pluta & Sadlej, 2001; Kaminsky et al., 2002). The title compound, (I) crystallizes as discrete molecules (Fig. 1). The full molecule is a big conjugated system because the bond lengths of C1—C7, C7—N1, C8—N1, C8—N2 and C9—N2 become shorter than standard values, and the bond lengths of C7—O1 and C8—S1 become longer than standard values. In (I) the torsion angle for C17—C9—N2—C8 of -78.2 (3)° indicates the quinoline ring is approximately orthogonal to the rest of the molecule. The molecules in (I) are linked by N1—H6···N3, N2—H7···O1 and C6—H5···N3 hydrogen bonds involving all the potential donors, generating sheets parallel to (100), as shown in Fig. 2. In addition, the bond lengths of S—C (1.655 (2)Å) and O—C(1.223 (2)Å) in (I) are longer than the bond lengths of S—C(1.6503Å) and O—C(1.201Å) in N-(4,6-dimethylpyrimidin-2-ylcarbamothioyl)benzamide (Xue et al., 2004)

Experimental

The title compound was synthesized as following. A mixture of benzoyl chloride (1400 mg, 10 mmol), ammonium thiocyanate (1140 mg, 15 mmol), 5-aminoquinoline (1300 mg, 9 mmol) and dichloromethane (50 ml) in the presence of PEG-400 (1200 mg, 3 mmol) as phase transfer catalyst at room temperature for 8h with stirring. The reaction mixture was evaporated to give a residue. Singles crystals suitable for X-ray analysis were obtained by slow evaporation of a mixture solution of dichloromethane and ethanol.

Refinement

The atom H6 attached to N1 and the atom H7 attached to N2 was located in a difference Fourier map and refined with N—H distance restrained to 0.87 (2)Å, and with Uiso(H) = 0.85Ueq(N) and Uiso(H) = 1.91Ueq(N) All H atoms bound to carbon were refined using riding models with d(C—H) = 0.93Å and Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I), with atom labels and 50% probability displacement ellipsoids for non-H atoms.

Fig. 2.

Fig. 2.

The packing of (I), viewed down the a axis, showing two layers of molecules connected by van der waals.

Crystal data

C17H13N3OS F(000) = 640
Mr = 307.36 Dx = 1.364 Mg m3
Monoclinic, P21/n Melting point = 446.2–446.7 K
Hall symbol: -P 2yn Mo Kα radiation, λ = 0.71073 Å
a = 5.0875 (1) Å Cell parameters from 3090 reflections
b = 16.1718 (4) Å θ = 2.2–22.4°
c = 18.2847 (4) Å µ = 0.22 mm1
β = 95.892 (2)° T = 296 K
V = 1496.41 (6) Å3 Rod, yellow
Z = 4 0.40 × 0.30 × 0.20 mm

Data collection

Enraf–Nonius CAD-4 diffractometer 2184 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.032
graphite θmax = 27.4°, θmin = 1.7°
ω/2θ scans h = −6→6
Absorption correction: ψ scan (North et al., 1968) k = −20→18
Tmin = 0.939, Tmax = 0.969 l = −23→23
13322 measured reflections 3 standard reflections every 97 reflections
3411 independent reflections intensity decay: 2.1%

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.129 H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0482P)2 + 0.4696P] where P = (Fo2 + 2Fc2)/3
3411 reflections (Δ/σ)max < 0.001
207 parameters Δρmax = 0.30 e Å3
2 restraints Δρmin = −0.22 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 −0.00333 (14) 0.14855 (4) 0.20925 (4) 0.0704 (2)
O1 0.5088 (4) 0.09876 (10) 0.02568 (9) 0.0724 (5)
N1 0.2883 (4) 0.17950 (11) 0.10117 (10) 0.0503 (4)
N2 0.2175 (4) 0.04129 (12) 0.12428 (10) 0.0602 (5)
C17 0.2711 (4) −0.05169 (12) 0.23117 (11) 0.0442 (5)
C13 0.1919 (4) −0.12237 (12) 0.26802 (11) 0.0482 (5)
C7 0.4431 (5) 0.16753 (13) 0.04478 (11) 0.0524 (5)
N3 0.3173 (4) −0.14846 (11) 0.33306 (10) 0.0579 (5)
C1 0.5204 (4) 0.24240 (13) 0.00465 (10) 0.0470 (5)
C16 0.4940 (4) −0.00801 (14) 0.26304 (13) 0.0558 (6)
H13 0.5538 0.0389 0.2404 0.067*
C8 0.1748 (4) 0.11985 (13) 0.14277 (11) 0.0511 (5)
C12 −0.0297 (5) −0.16872 (13) 0.23615 (14) 0.0582 (6)
H10 −0.0850 −0.2156 0.2597 0.070*
C9 0.1265 (4) −0.02866 (13) 0.16352 (12) 0.0520 (5)
C11 −0.1587 (5) −0.14385 (14) 0.17142 (14) 0.0607 (6)
H9 −0.3023 −0.1745 0.1508 0.073*
C2 0.7141 (5) 0.23490 (16) −0.04248 (13) 0.0650 (6)
H1 0.8019 0.1848 −0.0458 0.078*
C15 0.6203 (5) −0.03616 (15) 0.32799 (13) 0.0621 (6)
H12 0.7686 −0.0090 0.3502 0.075*
C14 0.5228 (5) −0.10613 (16) 0.36003 (13) 0.0637 (6)
H11 0.6111 −0.1242 0.4042 0.076*
C6 0.3941 (5) 0.31702 (15) 0.00781 (13) 0.0658 (7)
H5 0.2610 0.3232 0.0386 0.079*
C5 0.4626 (6) 0.38332 (17) −0.03438 (14) 0.0784 (8)
H4 0.3787 0.4340 −0.0308 0.094*
C4 0.6519 (6) 0.37434 (18) −0.08094 (14) 0.0747 (7)
H3 0.6947 0.4184 −0.1102 0.090*
C10 −0.0822 (5) −0.07367 (14) 0.13504 (13) 0.0599 (6)
H8 −0.1754 −0.0578 0.0909 0.072*
C3 0.7785 (5) 0.30086 (19) −0.08470 (15) 0.0764 (8)
H2 0.9100 0.2950 −0.1161 0.092*
H6 0.268 (4) 0.2277 (10) 0.1143 (10) 0.043 (6)*
H7 0.324 (5) 0.0371 (19) 0.0876 (14) 0.115 (11)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0932 (5) 0.0458 (4) 0.0790 (4) 0.0004 (3) 0.0421 (4) 0.0001 (3)
O1 0.1085 (14) 0.0473 (10) 0.0671 (10) 0.0049 (9) 0.0359 (10) −0.0030 (8)
N1 0.0701 (12) 0.0363 (10) 0.0461 (10) 0.0012 (9) 0.0131 (9) 0.0013 (8)
N2 0.0852 (15) 0.0426 (11) 0.0558 (12) 0.0015 (10) 0.0220 (11) 0.0056 (9)
C17 0.0501 (11) 0.0343 (10) 0.0503 (11) 0.0001 (9) 0.0159 (9) −0.0048 (9)
C13 0.0589 (13) 0.0362 (11) 0.0522 (12) 0.0016 (9) 0.0189 (10) −0.0032 (9)
C7 0.0653 (14) 0.0480 (13) 0.0443 (11) 0.0010 (10) 0.0080 (10) −0.0033 (9)
N3 0.0709 (13) 0.0490 (11) 0.0550 (11) 0.0006 (10) 0.0123 (10) 0.0033 (9)
C1 0.0554 (12) 0.0489 (12) 0.0368 (10) −0.0039 (10) 0.0048 (9) 0.0001 (9)
C16 0.0594 (14) 0.0449 (13) 0.0664 (14) −0.0077 (10) 0.0227 (12) −0.0067 (11)
C8 0.0664 (14) 0.0387 (12) 0.0493 (11) 0.0025 (10) 0.0108 (10) 0.0039 (9)
C12 0.0687 (15) 0.0393 (12) 0.0692 (15) −0.0076 (10) 0.0199 (12) −0.0077 (10)
C9 0.0642 (14) 0.0401 (12) 0.0536 (12) 0.0027 (10) 0.0154 (11) −0.0035 (10)
C11 0.0597 (14) 0.0515 (14) 0.0711 (15) −0.0089 (11) 0.0068 (12) −0.0150 (12)
C2 0.0682 (15) 0.0633 (16) 0.0668 (15) 0.0042 (12) 0.0220 (13) 0.0018 (12)
C15 0.0542 (14) 0.0669 (16) 0.0655 (15) −0.0073 (12) 0.0077 (12) −0.0149 (12)
C14 0.0670 (16) 0.0664 (16) 0.0581 (14) 0.0028 (13) 0.0084 (12) 0.0030 (12)
C6 0.0821 (17) 0.0613 (15) 0.0584 (14) 0.0085 (13) 0.0276 (13) 0.0110 (11)
C5 0.104 (2) 0.0613 (16) 0.0740 (16) 0.0143 (15) 0.0295 (16) 0.0208 (13)
C4 0.0806 (18) 0.0751 (19) 0.0706 (16) −0.0080 (15) 0.0187 (14) 0.0243 (14)
C10 0.0687 (15) 0.0509 (14) 0.0597 (14) 0.0019 (12) 0.0054 (12) −0.0091 (11)
C3 0.0728 (17) 0.086 (2) 0.0761 (17) −0.0040 (15) 0.0362 (14) 0.0121 (15)

Geometric parameters (Å, °)

S1—C8 1.655 (2) C12—C11 1.354 (3)
O1—C7 1.223 (2) C12—H10 0.9300
N1—C7 1.374 (3) C9—C10 1.347 (3)
N1—C8 1.390 (3) C11—C10 1.391 (3)
N1—H6 0.826 (15) C11—H9 0.9300
N2—C8 1.338 (3) C2—C3 1.376 (3)
N2—C9 1.441 (3) C2—H1 0.9300
N2—H7 0.909 (17) C15—C14 1.389 (3)
C17—C13 1.407 (3) C15—H12 0.9300
C17—C16 1.410 (3) C14—H11 0.9300
C17—C9 1.422 (3) C6—C5 1.386 (3)
C13—N3 1.358 (3) C6—H5 0.9300
C13—C12 1.427 (3) C5—C4 1.357 (4)
C7—C1 1.490 (3) C5—H4 0.9300
N3—C14 1.304 (3) C4—C3 1.357 (4)
C1—C6 1.371 (3) C4—H3 0.9300
C1—C2 1.379 (3) C10—H8 0.9300
C16—C15 1.369 (3) C3—H2 0.9300
C16—H13 0.9300
C7—N1—C8 127.96 (19) C10—C9—N2 120.8 (2)
C7—N1—H6 116.7 (14) C17—C9—N2 118.35 (19)
C8—N1—H6 115.2 (14) C12—C11—C10 121.7 (2)
C8—N2—C9 123.42 (19) C12—C11—H9 119.1
C8—N2—H7 112 (2) C10—C11—H9 119.1
C9—N2—H7 124 (2) C3—C2—C1 120.6 (2)
C13—C17—C16 117.8 (2) C3—C2—H1 119.7
C13—C17—C9 118.79 (19) C1—C2—H1 119.7
C16—C17—C9 123.39 (19) C16—C15—C14 118.7 (2)
N3—C13—C17 122.7 (2) C16—C15—H12 120.6
N3—C13—C12 118.3 (2) C14—C15—H12 120.6
C17—C13—C12 118.9 (2) N3—C14—C15 125.1 (2)
O1—C7—N1 122.5 (2) N3—C14—H11 117.4
O1—C7—C1 120.3 (2) C15—C14—H11 117.4
N1—C7—C1 117.14 (19) C1—C6—C5 120.8 (2)
C14—N3—C13 117.0 (2) C1—C6—H5 119.6
C6—C1—C2 118.1 (2) C5—C6—H5 119.6
C6—C1—C7 123.1 (2) C4—C5—C6 120.1 (3)
C2—C1—C7 118.6 (2) C4—C5—H4 119.9
C15—C16—C17 118.6 (2) C6—C5—H4 119.9
C15—C16—H13 120.7 C3—C4—C5 119.8 (2)
C17—C16—H13 120.7 C3—C4—H3 120.1
N2—C8—N1 115.68 (19) C5—C4—H3 120.1
N2—C8—S1 124.54 (17) C9—C10—C11 120.3 (2)
N1—C8—S1 119.78 (16) C9—C10—H8 119.9
C11—C12—C13 119.5 (2) C11—C10—H8 119.9
C11—C12—H10 120.2 C4—C3—C2 120.6 (2)
C13—C12—H10 120.2 C4—C3—H2 119.7
C10—C9—C17 120.8 (2) C2—C3—H2 119.7
C16—C17—C13—N3 1.5 (3) C16—C17—C9—C10 178.8 (2)
C9—C17—C13—N3 −179.51 (18) C13—C17—C9—N2 −176.79 (18)
C16—C17—C13—C12 −178.68 (18) C16—C17—C9—N2 2.1 (3)
C9—C17—C13—C12 0.3 (3) C8—N2—C9—C10 105.1 (3)
C8—N1—C7—O1 −2.7 (4) C8—N2—C9—C17 −78.2 (3)
C8—N1—C7—C1 174.7 (2) C13—C12—C11—C10 −0.4 (3)
C17—C13—N3—C14 −1.8 (3) C6—C1—C2—C3 0.3 (3)
C12—C13—N3—C14 178.4 (2) C7—C1—C2—C3 175.3 (2)
O1—C7—C1—C6 160.1 (2) C17—C16—C15—C14 −0.4 (3)
N1—C7—C1—C6 −17.3 (3) C13—N3—C14—C15 1.0 (4)
O1—C7—C1—C2 −14.6 (3) C16—C15—C14—N3 0.1 (4)
N1—C7—C1—C2 168.0 (2) C2—C1—C6—C5 −1.0 (4)
C13—C17—C16—C15 −0.4 (3) C7—C1—C6—C5 −175.7 (2)
C9—C17—C16—C15 −179.3 (2) C1—C6—C5—C4 1.7 (4)
C9—N2—C8—N1 176.8 (2) C6—C5—C4—C3 −1.6 (4)
C9—N2—C8—S1 −4.2 (3) C17—C9—C10—C11 −0.3 (3)
C7—N1—C8—N2 −1.6 (3) N2—C9—C10—C11 176.3 (2)
C7—N1—C8—S1 179.31 (18) C12—C11—C10—C9 0.6 (4)
N3—C13—C12—C11 179.8 (2) C5—C4—C3—C2 0.9 (4)
C17—C13—C12—C11 0.0 (3) C1—C2—C3—C4 −0.3 (4)
C13—C17—C9—C10 −0.1 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H6···N3i 0.83 (2) 2.28 (2) 3.100 (3) 171 (2)
N2—H7···O1 0.91 (3) 1.84 (3) 2.619 (3) 143 (3)
C6—H5···N3i 0.93 2.46 3.252 (3) 143

Symmetry codes: (i) −x+1/2, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2453).

References

  1. Enraf–Nonius (1989). CAD-4 Software Enraf–Nonius, Delft, The Netherlands.
  2. Hackmann, J. T. (1960). US Patent No. 2 923 656.
  3. Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  4. Kaminsky, W., Goldberg, K. I. & West, D. X. (2002). J. Mol. Struct.605, 9–15.
  5. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  6. Pluta, T. & Sadlej, A. J. (2001). J. Chem. Phys.114, 136–146.
  7. Sarkis, G. Y. & Faisal, E. D. (1985). J. Heterocycl. Chem.22, 137–140.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Xue, S. J., Duan, L. P., Ke, S. Y. & Zhu, J. M. (2004). Chin. J. Struct. Chem.23, 441–444.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809000932/hg2453sup1.cif

e-65-0o308-sup1.cif (18.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809000932/hg2453Isup2.hkl

e-65-0o308-Isup2.hkl (167.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES